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Abstract techniques [13]. The second application is for supervised
classification tasks. Choosing a good distance metric is
Relevant Component Analysis (RCA) has been proposedlso critical for these tasks. For example, face recogni-
for learning distance metrics with contextual constraints for tion or general image classification tasks usually use dis-
image retrieval. However, RCA has two important disad- tance based techniques, such as k-Nearest Neighbor, whose
vantages. One is the lack of exploiting negative constraints performance normally relies on the given distance metric.
which can also be informative, and the other is its inca- Moreover, many retrieval tasks in multimedia information
pability of capturing complex nonlinear relationships be- retrieval also need to learn a good distance metric in order
tween data instances with the contextual information. In to retrieve the users’ query targets effectively. In content-
this paper, we propose two algorithms to overcome thesebased image retrieval (CBIR), images are usually repre-
two disadvantages, i.e., Discriminative Component Analy- sented by low-level features, such as color, texture, and
sis (DCA) and Kernel DCA. Compared with other compli- shape. It is simply too restricted to employ the rigid Eu-
cated methods for distance metric learning, our algorithms clidean distance to measure distances of images. Learning
are rather simple to understand and very easy to solve. Weeffective distance metrics for image retrieval has attracted
evaluate the performance of our algorithms on image re- more and more attentions in recent years [5].

trieval in which experimental results show that our algo-  Here we illustrate an example to show that different dis-
rithms are effective and promising in learning good quality tance metrics are important for the applications with differ-
distance metrics for image retrieval. ent contexts. Figure 1 shows an example of grouping the
data instances on different contextual conditions. Figure 1
. (a) is the given data. Figure 1 (b)-(d) show three different
1 Introduction grouping results under different context environments, e.g.,
Machine learning algorithms have been popularly ap- (°) groups by proximity, (c) groups by shape, (d) groups by
plied to image retrieval for bridging the semantic gap be- Size. This example shows that it is important for the clus-
tween low-level image features and high-level semanticte”r?g _algonthms to choose the right dlstance metrics for
concepts [15]. Many machine learning algorithms, such ach|§vmg th(_e correct group results under different contex-
as k-Means and k-Nearest Neighbor, usually define sometual information.
distance metrics or functions to measure the similarity of
data instances. For example, Euclidean distance is often . ,
used for distance measure in many applications. Typically, a ** DA A ** Yo Y|
good quality distance metric can influence the performance i |
of the learning algorithm significantly. Thus, it is impor- ANRAN AA L8 AA
tant to choose appropriate distance metrics when applying a
learning algorithm to image retrieval under given different

contexts [2]. ‘** e ﬁ‘ ‘** Y Y|

Many research tasks in image retrieval are required to =~ ;R s . ‘
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choose a good distance metric or function in order to solve ANIAN § WANWANY ’
the problems effectively. The first widely studied task is
data clustering under unsupervised settings [9]. A suited (c) By Shape (d) By Size

distance metric can importantly improve the performance of _ _ o
the clustering algorithms, such as k-Means or graph based  Figure 1. Clustering with different contexts.



In general, the approach to find a good distance metricconstraints. Wagstaff et al. [18] suggested the K-means
for various learning algorithms is equivalent to looking for clustering algorithms by introducing the pairwise relations.
a good data transformation functigh: X — Y, which Xing et al. [21] studied the problem of finding an optimal
transforms the datX into another representation Bf[2]. Mahalanobis metric from contextual constraints in com-
These two problems can be solved together in a unifiedbination with constrained K-means algorithm. But their
framework. Hence, our goal is to find a good distance met- method requires solving the convex optimization problem
ric which not only can be used for similarity measure of with gradient descent and iterative projections which often
data, but also can transform the data into another better repsuffers from large computation cost. Later on, Bar-Hillel
resentation of the original data. et al. [2] proposed a much simpler approach called Rele-

For learning distance metrics and data transformation,vance Component Analysis (RCA), which enjoys compara-
traditional techniques normally need to acquire explicit ble performance with Xing’s method. As our approach is
class labels. However, in many real-world applications, ex- motivated by RCA, we will discuss it in detail below.
plicit class labels might be too expensive to be obtained. Let us first introduce some basic concepts. Mathemati-
For example, in image retrieval, obtaining the exact class cally, the Mahalanobis distance between two data instances
label of images is usually quite expensive due to the dif- is defined as:
ficulty of image annotation. However, it is much easier to
know the relevance relationship between images, which can dn (xi,%5) = \/(Xi —x;) T M(x; — x;) (1)
be obtained from the logs of user relevance feedback [6, 7].
Therefore, it is more attractive to learn the distance metrics
or data transformation directly from the pairwise constraints
without using explicit class labels.

whereM must be positive semi-definite to satisfy the prop-
erties of metric, i.e., non-negativity and triangle inequality.
The matrixM can be decomposed & = AT A, whereA

In this paper we study the problem of learning dis- is atransfqrmatlon matrlx..The goal of RCA Iegrnmg is to
tance metrics from contextual constraints among data in-/nd an optimal Mahalanobis matrii and the optimal data

stances. We first propose Discriminative Component Anal- transformat_|or_1 matrixi using the conj[extual mformatlon.
ysis (DCA) to learn the linear data transformation for the _ 1€ basic idea of RCA for learning the distance met-

optimal Mahalanobis distance metric with contextual infor- 1€ IS t0 identify and down-scale global unwanted vari-
mation. Based on DCA, we further develop Kernel DCA ability within the data. RCA changes the feature space

to learn the nonlinear distance metric by kernel transforma- US€d for data representation via a global linear transforma-
tions tion in which relevant dimensions are assigned with large

weights [2]. The relevant dimensions are estimated by
2 Related Work chunklets [2], each of them is defined as a group of data
instances linked together with positive constraints. More
The problems for learning distance metrics and data specifically, given a data s&f = {x;}¥, andn chunklets
transformation have become more and more popular in re-C; = {x;;}.~,, RCA computes the following matrix:
cent research due to their broad applications. One kind of .
approaches is to use the class labels of data instances to A 1 T
learn distance metrics in supervised classification settings. =5 Z Z (xji = my)(xji — my)
We briefly introduce several traditional methods. Hastie et
al. [4] and Jaakkola et al. [8] used the labeled data instancesvherem; denotes the mean of theth chunklet,x;; de-
to learn distance metrics toward classification tasks. Tishbynotes thei-th data instance in thg-th chunklet andV is
et al. [16] considered the joint distribution of two random the number of data instances. The optimal linear transfor-
variablesX andY to be known, and then learned a com- mation by RCA is then computed at = C~% and the
pact representation of that enjoys high relevance af. Mahalanobis matrix is equal to the inverse of the mafttix
Most recently, Goldberger et al. [3] proposed the Neigh- i.e., M = C~!. RCA is simple and effective for learn-
borhood Component Analysis to learn a distance measurdang distance metrics and data transformation, yet it has two
for KNN classification by directly maximizing a stochas- critical disadvantages. One is the lack of including the nega-
tic variant of the leave-one-out KNN score on the training tive constraints which can provide important discriminative
set. Zhou et al. proposed a kernel partial alignment schemeclues. The other is that RCA can learn only the linear re-
to learn kernel metrics for interactive image retrieval [23]. lation between data instances which may be too restricted
Most of these studies need to explicitly use the class labelsto discover the nonlinear relations in many applications. To
as the side-information for learning the representations andthis end, we propose the Discriminative Component Analy-
distance metrics. sis (DCA) and Kernel DCA to overcome the two drawbacks.
Recently, some work has addressed the problems of Summary of Contributions. In this paper we study
learning with contextual information in terms of pairwise the problem of learning data transformations for distance

)

j=1i=1



metrics with contextual constraints with application to im-

age retrieval. We propose the Discriminative Component
Analysis and Kernel Discriminative Component Analysis

algorithms to learn both linear and nonlinear distance met-
rics. Our algorithms need no explicit class labels, which
can be applicable to many broad applications. The rest of
this paper is organized as follows. Section 3 formulates the
Discriminative Component Analysis and presents the algo-

rithm. Section 4 suggests kernel transformations to extendwhere n,

DCA for learning nonlinear distance metrics. Section 5
discusses our experimental evaluations on image retrieval
Section 6 concludes this work.

3 Discriminative Component Analysis

3.1 Overview

Let us first give an overview of the concept of Discrimi-
native Component Analysis (DCA). In the settings of DCA
learning, we assume the data instances are given with con
textual constraints which indicate the relevance relationship
(positive or negative) between data instances. According

to the given constraints, one can group the data instances

into chunklets by linking the data instances together with
positive constraints. The basic idea of DCA is to learn an
optimal data transformation that leads to the optimal dis-
tance metric by both maximizing the total variance between
the discriminative data chunklets and minimizing the total

variance of data instances in the same chunklets. In the fol-

lowing part, we formalize the approach of DCA and present
the algorithm to solve the DCA problem.

3.2 Formulation

Assume we are given a set of data instanéés=
{x;}}¥ | and a set of contextual constraints. Assume that

follows:

n

- 1
Cy = TTZ > (m; —my)(m; —m,)’
bi=1ieD,
1 n 1 n; (3)
Cuw=—> " — > (xji — my)(x; —my) "
ni= =
= >i—1|Dj|, | - | denotes the cardinality of

a set,m; is the mean vector of thg-th chunklet, i.e.,
o 2oil1 Xji, X is thed-th data instance in the

th chunklet, andD; is the discriminative set in which each
element is one of chunklets that has at least one negative
constraint to thg-th chunklet.

The idea of Discriminative Component Analysis is to
look for a linear transformation that leads to an optimal dis-
tance metric by both maximizing the total variance of data
between the discriminative chunklets and minimizing the
total variance of data among the same chunklets. The DCA
learning task leads to solve the optimization as follows:

|ATC,A

L 4
|ATC,, Al )

J(A) = arg max

where A denotes the optimal transformation matrix to be
learned. When the optimal transformatidnis solved, it
leads to obtain the optimal Mahalanobis matrix= AT A.

3.3 Algorithm

According to the Fisher theory [11, 12], the optimal so-
lution in Equation (4) is corresponding to the transforma-
tion matrix that diagonalizes both the covariance matrices
¢y, andC,, simultaneously [10]. To obtain the solution ef-
fectively, we propose an algorithm to find the optimal trans-
formation matrix, which was used to solve LDA in the pre-
vious study [22]. The details of our algorithm are shown in

chunklets can be formed by the positive constraints amongAlgorithm 1.

the given constraints. For each chunklet, a discriminative
setis formed by the negative constraints to represent the dis
criminative information. For example, for theth chunklet,
each element in the discriminative 92 indicates one of.
chunklets that can be discriminated from thth chunklet.
Here, a chunklet is defined to be discriminated from another

In our algorithm, a matriX/ is first found to diagonalize
the covariance matrik’, of between-chunklets. After dis-
carding the column vectors with zero eigenvalues, we can
obtain ak * k principal sub-matrixD, of the original diago-
nal matrix. This procedure leads to obtain a set of projected
subspaces, i.eZ = RD; "/?, that can best discriminate

chunklet if there is at least one negative constraint betweenihe chunklets. Further, we form a mat@, = 21,2
them. Note that RCA can be considered as a special cas@ng find a matrixi’ to diagonalize the matrix,. If di-

of DCA in which all discriminative sets are empty sets that
ignore all negative constraints.

To perform Discriminative Component Analysis, two co-
variance matrices’, and C,, are defined to calculate the
total variance between data of the discriminative chunklets

mension reduction is required, such thais the desired
dimensionality, then we extract the firstcolumn vectors
of V' with the smallest eigenvalues to form a lower rank
matrix V. This leads to obtain the reduced diagonal ma-
trix D, = VTC.V. Finally, the optimal transformation

and the total variance of data among the same chunklets rematrix and the optimal Mahalanobis Matrix are given as

spectively. These two matricé€%, andC,, are computed as

A= ZVDy"? andM = AT A, respectively.



Algorithm 1:The DCA Algorithm
Input
- a set of N data instancesX = {x;};
- n chunkletsC; and discriminative set®;, j=1,...,n
Output
- optimal transformation matrix
- optimal Mahalanobis matrix/
Procedure
1. Compute’, andC,, by Equation (3) ;
2. Diagonalize(, by eigenanalysis
2.1. FindU to satisfyU ' C,U = A, andU TU = I, here
Ay is a diagonal matrix sorted in increasing order ;
2.2. Form a matriXU by the lastk column vectors of/
with nonzero eigenvalues ;
2.3. LetD, = U ' C,U be thek = k submatrix ofA, ;
2.4.LetZ =UD, *andC. = 27 C\ Z ;
3. DiagonalizeC’, by eigenanalysis
3.1. FindV to satisfyV " C,V = A, andV 'V = I, here
A, is a diagonal matrix sorted in decreasing order ;
3.2. If dimension reduction is needed, assume the desired
dimension is-, then formV’ by the firstr column
vectors ofV” with the smallest eigenvalues and let
D, =V 'C,V : otherwise, let/ = V andDy, = Ay |
4. Final Outputs
A=ZVDy"?andM = AT A
End of Algorithm

4 Kernel DCA

4.1 Overview

Similar to the RCA learning [2], DCA is so far also a

using the kernel trick.

Similar to the kernel techniques, we propose the Kernel
Discriminative Component Analysis (KDCA) to overcome
the disadvantage of RCA and DCA by applying the ker-
nel trick. We first project input data into an implicit feature
space via the kernel trick. Then the linear DCA is applied on
the projected feature space to find the optimal linear trans-
formation in the feature space. Consequently, we are able
to find the nonlinear structures of the given data using the
Kernel DCA technique.

4.2 Formulation

Let us now formulate Kernel Discriminative Component
Analysis formally. Typically, a kernel-based analysis tech-
nigue usually implicitly maps original data in input space
to a high-dimensional feature spaEevia some basis func-
tion ¢ : x — ¢(x) € F. The similarity measure of data in
the projected feature space is achieved by the kernel func-
tion which is defined as an inner product between two vec-
tors in the projected spade as follows:

K(xi,%;) = ((x:), p(x;)). (5)

Assume that a set of data instanceX = {x;} , is given

in an original input spacé. To do kernel DCA learning,
we first choose a basis functiehto map the data in the
original input spacd to a high-dimensional feature space
F. For any two data instances, we compute their distance
via the kernel function defined in the projected feature space
as follows:

do(xi,%)) =/ (6(0:) — B(x,) TM(B(x:) — 6(x;))
(6)

linear technique that is insufficient to discover nonlinear re-
lationships among real-world data. In the machine learning
area, the kernel trick is a powerful tool to learn the com-
plex nonlinear structures from the input data [17, 14]. In
the literature, the kernel trick has been successfully applied
on many linear analysis techniques, such as Kernel Prin-
cipal Component Analysis (PCA) [19], Kernel Fisher Dis-
criminant Analysis [10, 12], Support Vector Machines [17], !

Kernel Independent Component Analysis [1], etc. Similar W, = Z @i Pj s (7)
to these approaches, we can also apply the kernel trick on j=1

DCA toward more powerful analysis performance in real- whereq;; are the coefficients to be learned in the feature

world applications. _ _ _ ~ space. Therefore, for a given data instamgets projec-
In general, the kernel technique first maps input data into tion onto thei-th directionw; in the feature space can be
a high dimensional feature space. A linear technique ap-computed as follows:

plied on the data in the feature space is able to achieve the
goal of nonlinear analysis. For example, in Kernel PCA,
input data are first projected into an implicit feature space
via the kernel trick, then the linear PCA is applied on the
projected feature space to extract the principal componentsHence, Equation (6) can be represented as
in the feature space. This enables the Kernel PCA to extract
the nonlinear principal components in the input data space

where M is a full rank matrix that must be positive semi-
definite to satisfy the metric property and is often formed
by a transformation matri¥}’. The linear transformation
matrix W can be represented & = [wy,...,w,,] in
which each of then column vectors is a span of dltrain-

ing samples in the feature space, such that

l
(Wi - ¢(x)) = Zain(Xj’X) : (8)

dolxirxs) = /(G = B)TM(F = %), (9)



where?; = [K(x1,%;),...,K(x1,%)]", andA is the lin- Algorithm 2:The Kernel DCA Algorithm

ear transformation matrix formed by = [@1,...,d;] in Input
which@; = [a41,...,ay]T. Hence, we can similarly com- - a set of N data instancesX = {x;}
pute the two covariance matrices in the projected feature- »n chunkletsC; and discriminative set®;, j=1,...,n
space as follows: Output
- optimal transformation matrixd
1 o e T - optimal Mahalanobis matrix/
Ky = o Zl ,ZD (2 — @) (W — ) Procedure
I=he :1 (10) 1. ComputeK;, and K., by Equation (10) ;
R T 2. DiagonalizeX,, by eigenanalysis
Ko =+ z; n, z;(” =) (7 — i) 2.1. FindU to satisfyU " K,U = A, andU U = I, here
J= i=

Ay is a diagonal matrix sorted in increasing order ;
Whereﬁj _ [ni Z@jl K(thi)j ’% :;1 K(thi)]T 2.2. Fprm amatm(f by the lastt column vectors ot/
J J with nonzero eigenvalues ;

1=
denotes the mean vector. Consequently, the Kernel DCA . A .

4 Y 2.3. LetD, = U K,U be thek * k submatrix ofA, :

2.4.letZ =UD, "?andK. = Z K, Z ;

task leads to solve the optimization problem as follows:
|ATKbA| 3. DiagonalizeK , by eigenanalysis

AT, Al (11) 3.1. FindV to satisfyV " K,V = A, andV K.V = I, here
v Ay is a diagonal matrix sorted in decreasing order ;
So|ving the above optimization pr0b|em gives the optima| 3.2. If dimension reduction is needed, assume the desired

J(A) = arg max

linear transformatiom in the projected space. It also leads dimension is, then formV" by the firstr column

to the optimal Mahalanobis matrix in the projected space. vectors ofl” with the smallest eigenvalues and let
D, =V TK.,V ;otherwise, let/ = V andD,, = Ay ;

4.3 Algorithm 4. Final Outputs

A=2ZVDy"?andM = ATA .
The method to solve the optimization of Kernel DCA is End of Algorithm
similar to that for the linear DCA, i.e., to find the linear
transformation matrix4 that can diagonalize botk};, and

K,,. For limited space, please kindly referAdgorithm 2 we use the edge direction histogram. Canny edge detec-

for the details of Kernel DCA algorithm. tor is applied to obtain the edges. Then 18-dimensional
edge direction histogram features are computed to repre-

5 Experimental Results sent the shapes. For texture, we use the wavelet-based tex-

_ ture features. The Discrete Wavelet Transformation (DWT)

To evaluate the performance of our algorithms, we con- js applied on the gray images of original images by a

duct empirical evaluation of learning distance metrics for paubechies-4 wavelet filter. In total, we perform 3-level
content-based image retrieval in comparisons with tradi- gecompositions and extract 9-dimension wavelet-based tex-

tional methods in distance metric learning [21, 2]. We de- tyre features for each image. All together, we use 36 fea-
scribe the details of our empirical evaluation below. tures to represent images in our experiment.

5.1 Experimental Testbed 5.2 Performance Evaluation

To test the performance of DCA and Kernel DCA for We now empirically evaluate our algorithms for learn-
learning distance metrics for image retrieval, we employ an ing distance metrics with contextual constraints in image
image dataset from COREL image CDs. 10 image cate-retrieval. Although our application is on image retrieval,
gories are selected to form our dataset, suctaas cats our algoirthms can also be beneficial to other information
horses etc. Each of them has a distinct semantic meaning retrieval tasks.
and contains 100 images. In total, 1000 images are engaged In our experiments, six different retrieval methods are
in our dataset. compared as follows: (1) Euclidean: retrieval by Euclidean

For image retrieval, low-level feature representation is metric; (2) RCA: retrieval by the metric of RCA, (3) Xing:
critical. In our experiment, three kinds of low-level fea- retrieval by the metric of Xing's method with nonlinear op-
tures are extracted: color, shape, and texture. For color, welimization [21]; (4) DCA: retrieval by the metric of DCA,;
extract the color moments: color mean, color variance and(5) KDCA: retrieval by the nonlinear metric of KDCA.
color skewness in each color channel (H, S, and V). Thus, For a real-world image retrieval application, contextual
9-dimensional color moment features are used. For shapeinformation can be obtained easily. For example, a CBIR



Table 1. Performance Evaluation for Image Retrieval (Average Precision on TOP 20 Returned Images.)

Category | Euclidean| RCA

| Xing

[ DCA

[ KDCA

|

Dogs 0.420 0.455 (+8.3%) | 0.390 (-7.1%) | 0.500 (+19.0%) | 0.600 (+42.9%)
Cats 0.495 0.590 (+19.2%) | 0.640 (+29.3%)| 0.600 (+21.2%) | 0.640 (+29.3%)
Horses 0.775 0.865 (+11.6%) | 0.830 (+7.1%) | 0.850 (+9.7%) 0.820 (+5.8%)
Eagles 0.575 0.595 (+3.5%) | 0.665 (+15.7%)| 0.590 (+2.6%) 0.625 (+8.7%)
Penguins| 0.215 0.465 (+116.3%) 0.260 (+20.9%)| 0.470 (+118.6%)| 0.325 (+51.2%)
Roses 0.505 0.570 (+12.9%) | 0.545 (+7.9%) | 0.610 (+20.8%) | 0.610 (+20.8%)
Mountain | 0.505 0.605 (+19.8%) | 0.570 (+12.9%)| 0.635 (+25.7%) | 0.670 (+32.7%)
Sunset 0.570 0.365 (-36.0%) | 0.560 (-1.8%) | 0.395(-30.7%) | 0.510 (-10.5%)
Butterfly | 0.310 0.395 (+27.4%) | 0.345 (+11.3%)| 0.390 (+25.8%) | 0.430 (+38.7%)
Balloon | 0.260 0.240 (-7.7%) 0.265 (+1.9%) | 0.240 (-7.7%) 0.320 (+23.1%)
] MAP \ 0.463 \ 0.515 (+11.1%) \ 0.507 (+9.5%) \ 0.528 (+14.0%) \ 0.555 (+19.9%)\

system often provides the relevance feedback function foring the performance of image retrieval. In the future work,
users. The relevance feedback records can then be loggede may compare our methods with other more complicated
for learning the distance metrics [6]. In our experiment, distance function learning techniques, such as kernel target
to enable objective evaluation, we generate the contextualalignments [20].
constraints automatically according to the ground truth of
the image datasets. In total, we generate 1% positive con6 Conclusion
straints and 1% negative constraints. For performance eval-
uation, we employ the standard evaluation metric forimage In this paper we studied the problem of learning dis-
retrieval [15, 6], i.e., retrieval precision, which is defined as tance metrics and data transformation using the contextual
the ratio of the number of relevant images over the numberinformation for image retrieval. We addressed two impor-
of returned images. tant limitations in the previous approach of Relevance Com-
In our experiment, every image in each category is usedPonent Analysis. One is the lack of exploiting negative
as the query for retrieval. In total, 100 queries are per- constraints. Another is the limitation of learning the lin-
formed for each category. We measure the average preci.ear distance metrics which are not adequate for describ-
sion on the top returned images for each compared schemend the complex nonlinear relations of real-world objects.
Figure 2 shows the evaluation curves of average retrieval To address the first problem, we proposed the Discrimina-
performance on several semantic categories. For the expertive Component Analysis (DCA), which can exploit both
imental results, we can see that the DCA slightly outper- Positive and negative constraints in an efficient learning
forms the RCA approach while the Kernel DCA achieves scheme. For solving the second problem, the Kernel DCA
the best performance in most cases. is proposed by applying the kernel trick on the linear DCA.
More specifically, we make a comparison on the TOP We conducted exte.nsive experiments te evaluate the perfor—
20 returned images for each category. Table 1 shows the exMance of our algorithms on image retrieval. The promising
perimental results. We can see that RCA and Xing’s method"€Sults show that our algorithms are simple but quite effec-
are comparable, in which RCA achieves 11.1% average im-tive in learning good q_uallty metrics for image retrieval. In
provement over the baseline approach, while Xing’s method the future work, we will apply our methodology for other
achieves 9.5% average improvement over the baseline apgppllcatmns, such as data clustering and dimension reduc-
proach. Our DCA algorithm achieves better results than fion problems.
both RCA and Xing's method, i.e., 14.0% average improve-
ment over the baseline method. Our Kernel DCA method Acknowledgements
achieves the best performance among all, i.e., 19.9% aver-
age improvement over the baseline method. Note that there This work was done when Steven C. H. Hoi and Wei
is an exceptional case, i.e., the “sunset” retrieval, in which Liu were interns at Microsoft Research Asia. The work de-
all metric learning methods were fail to improve the perfor- scribed in this paper was partially supported by two grants,
mance. This may be caused by noisy features in the dataone from the Shun Hing Institute of Advanced Engineer-
In sum, the overall results demonstrate our proposed meth-ing, and the other from the Research Grants Council of the
ods are empirically more effective to learn good quality dis- Hong Kong Special Administrative Region, China (Project
tance metrics than the traditional approaches for improv- No. CUHK4205/04E).
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Figure 2. Performance Evaluation for Image Retrieval (Average Precision on Top Returned Images).
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