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Abstract

Detecting nonrigid surfaces is an interesting research
problem for computer vision and image analysis. One im-
portant challenge of nonrigid surface detection is how to
register a nonrigid surface mesh having a large number
of free deformation parameters. This is particularly sig-
nificant for detecting nonrigid surfaces from noisy obser-
vations. Nonrigid surface detection is usually regarded
as a robust parameter estimation problem, which is typi-
cally solved iteratively from a good initialization in order
to avoid local minima. In this paper, we propose a novel
progressive finite Newton optimization scheme for the non-
rigid surface detection problem, which is reduced to only
solving a set of linear equations. The key of our approach
is to formulate the nonrigid surface detection as an un-
constrained quadratic optimization problem which has a
closed-form solution for a given set of observations. More-
over, we employ a progressive active-set selection scheme,
which takes advantage of the rank information of detected
correspondences. We have conducted extensive experiments
for performance evaluation on various environments, whose
promising results show that the proposed algorithm is more
efficient and effective than the existing iterative methods.

1. Introduction

The detection and tracking of the nonrigid objects in im-
ages and videos is an interesting and beneficial research
issue for computer vision and image analysis [1, 19, 21].
The goal of nonrigid surface detection is to extract the de-
formable shape’s structure from an input image. The differ-
ence between nonrigid surface recovery and detection is that
the latter does not require any initialization or a priori pose
information. An effective nonrigid surface detection tech-
nique can be applied in a variety of applications for digital
entertainment, medical imaging [1] and augmented reality,
such as the re-texturing of images and videos [22, 23].

Nonrigid surface detection can usually be treated as the
problem of recovering the explicit surface with a few de-

formation parameters and finding out the correct corre-
spondences from noisy data simultaneously. Many ap-
plications have been investigated for deformable object
tracking and registration, such as face tracking and mod-
elling [6, 24, 25, 3, 7], and also more generic and more
deformable objects [1]. The major problem of these meth-
ods is that they tend to be computationally expensive and
mainly aim at object recognition and image segmentation
tasks rather than nonrigid surface recovery. However, a real-
time and automated solution [19] has recently been pro-
posed, which takes advantage of an iterative robust opti-
mization scheme.

Unlike the rigid object pose estimation, it is difficult to
directly employ a robust estimator, such as RANSAC [8]
or Hough transform [10], to remove the spurious matches
for nonrigid surface detection. Because the nonrigid sur-
face is usually highly dynamic and represented by many
deformation parameters, the problem is far more complex
than the rigid object detection. Moreover, it requires a suffi-
cient number of correct correspondences in order to obtain
high registration accuracy. An alternative strategy is to it-
eratively solve for both the correspondence and the trans-
formation [2, 19]. However, these methods are either sensi-
tive to initial conditions and parameter choices, or involve
too many iterations and a complex optimization procedure.
Consequently, they are neither efficient nor effective for
real-time applications.

In this paper, we propose a novel progressive finite New-
ton optimization scheme for nonrigid surface detection,
which has the advantage of solving only a fixed number of
linear equations. Moreover, a progressive sample scheme
far more efficient than RANSAC is proposed to initialize
the optimization process. The previous method [19] is cur-
rently generally accepted as the most effective methods of
solving this kind of problem. It employs an implicit itera-
tive scheme for the first order partial differential equation;
however, this requires a large number of iterations to solve
the problem and remove the outliers simultaneously. We
tackle this critical problem from two angles. First, the non-
rigid surface detection is formulated as an unconstrained
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Figure 1. Detecting nonrigid surfaces in real-time video (a-d). (a) The contour is overlaid on the Starbucks pad. (b) T-shirt with shadow.
(c) The cover of a magazine. (d) A piece of paper with specular reflection.

quadratic optimization problem, which has a closed-form
solution for a given set of observations. Thus, it can be
efficiently solved through LU factorization. Then, a pro-
gressive sample [5] scheme is employed to initialize the op-
timization scheme, which can decrease the number of tri-
als significantly. Therefore, the present approach requires
much fewer iterations than the semi-implicit iterative opti-
mization scheme [20]. Thus, the proposed method is very
efficient for real-time nonrigid surface recovery tasks. To
evaluate the performance of our proposed algorithm, we
conduct extensive experiments on such diverse objects as
a Starbucks pad, a T-shirt, and the cover of a magazine, as
shown in Fig. 1.

The rest of this paper is organized as follows. Section 2
reviews the previous approaches employed for the nonrigid
surface detection and recovery. In Section 3, we present the
proposed progressive finite Newton solution. Section 3.1
describes the nonrigid surface model and mapping function
for a feature matching-based method. Section 3.2 presents
the object function which minimizes the correspondence er-
rors and surface energy. A robust estimator is introduced to
deal with the large outliers. In Section 3.3, the nonrigid sur-
face detection is formulated as an unconstrained quadratic
optimization problem, which is efficiently solved using the
factorization method. Section 3.4 presents the progressive
finite Newton optimization scheme to remove the spurious
correspondences, and the progressive sampling method to
initialize the optimization. Section 4 provides the details of
our experimental implementation and describes our exper-
imental results. We discuss limitations and future work in
Section 5. Section 6 sets out our conclusion.

2. Related Work

Although nonrigid surface detection in general is not
new to researchers in the computer vision domain, only
a few approaches are automatic and can achieve real-time
results. Some appearance-based approaches directly min-
imize the residual image between the input image and the
synthesized model image [6]. Moreover, optical flow in-
formation [7, 1] can be incorporated into the optimization

scheme to obtain better results. However, the major limita-
tion of these methods is that they tend to become stuck at a
local minimum and hence require good initialization. In ad-
dition, it is usually difficult to handle the partial occlusion
for an appearance-based method. Well-designed markers
widely used in motion capture are also applied to recover
the structure of a nonrigid surface, such as cloth and pa-
per [23, 22]. As these methods rely on the physical mark-
ers, they require the placing of pre-defined patterns on the
target surface. Nevertheless, they are capable of high ac-
curacy. On the other hand, feature-based methods [2, 19]
try to find out the transformation from the correspondences
built by feature matching methods. Thus, these methods can
benefit from the recent advances in the feature detection and
matching. In[19, 20], J. Pilet et al. proposed an iterative ap-
proach to attack the fast nonrigid surface recovery problem.
Physical constraints based on the Finite Element Model [21]
are employed for regularization. A semi-implicit iterative
scheme is proposed to solve the optimization problem.

Recently, several sophisticated feature descriptors [16,
18] have been proposed to handle the wide-baseline match-
ing problem, including images with large deformation [15].
In addition, machine learning methods, such as random
classification trees [14], are also employed to find the point
correspondences. These methods can take advantage of
shifting part of the computational load from the matching
phase to the training phase.

It is more complex to handle a large amount of defor-
mation parameters for detecting the nonrigid surface rather
than only a few pose parameters used in rigid object detec-
tion. Therefore, there are several challenges when applying
conventional robust estimators, such as RANSAC and M-
estimator, for the nonrigid surface detection task. One is
the lack of a concise function which can estimate the de-
formed mesh from the correspondences directly; instead,
one may need to use a large number of free variables, which
can lead to a high computational cost for each prediction
step. Obviously, the semi-implicit iterative approach [19]
is not efficient enough to deal with this problem. Another
challenge is that the RANSAC-based approach requires a



large number of trials. This makes the problem even more
complex. Moreover, to the best of our knowledge, there is
still a lack of criteria for selecting the number of samples
for each trial in nonrigid surface detection. In rigid object
pose estimation, the sample number is usually set according
to the number of free parameters. However, the number of
deformation parameters for a nonrigid surface may be larger
than the total number of observations. We tackle the initial-
ization problem through a modified RANSAC method. The
key is to draw from progressively larger sets of top-ranked
correspondences [5], rather than to treat all correspondences
as equal and draw random samples uniformly from the full
set in RANSAC. Thus, our progressive sample scheme af-
fords large computational savings, and the conventional ro-
bust estimator can be engaged for initializing the nonrigid
surface detection.

In contrast to the previous work, our proposed approach
is based on a progressive finite Newton scheme, in which
the optimization problem can be solved very efficiently by a
factorization method. In addition to offering computation-
ally highly competitive performance, our proposed modi-
fied RANSAC initialization method can further reduce the
number of Newton optimization steps.

3. Nonrigid Surface Detection

In this section, we describe the present progressive finite
Newton optimization scheme for detecting and recovering
the nonrigid surface. For tackling the challenges, a mapping
function is used to associate the feature correspondences
with a mesh model. Therefore, the nonrigid surface detec-
tion turns out to be a problem which minimizes the corre-
spondence error and the surface energy. Moreover, we for-
mulate the nonrigid surface detection into an unconstrained
quadratic optimization problem. A progressive scheme is
proposed to deal with outliers and find out as many correct
correspondences as possible. Finally, a modified RANSAC
scheme is introduced to select the initial active set for the
optimization scheme.

3.1. 2D Nonrigid Surface Model

The nonrigid surface is usually explicitly represented by
triangulated meshes. As shown in Fig. 1(c), we employ a
triangulated 2D mesh with N hexagonally connected ver-
tices, which are formed into a shape vector s as below:

s = [xvy]
= [961 T2 IN Y1 Y2 ... yN}T

where x and y are the vectors of the coordinates of mesh
vertices. We assume that a point m lies in a triangle whose
three vertices’ coordinates are (x;, y;),(z;, y;) and (zx, yx)
respectively, and {i, 7, k} € [1, N] is the index of each ver-
tex. The piecewise affine transformation is used to map the

image points inside the corresponding triangle into the ver-
tices in the mesh. Thus, the mapping function Ts(m) is
defined as below

T, Ti Tk T
T.(m) = J 1
(m) {yl v yk][& & & | ()
where (£1,&2,&3) are the barycentric coordinates for the
point m.

3.2. Nonrigid Surface Recovery

In general, the nonrigid surface detection problem ap-
proximates a 2D mesh with 2NV free variables, which is usu-
ally ill-posed. One effective way to attack this problem is
to introduce regularization, which preserves the regularity
of a deformable surface. The following object function is
widely used in deformable surface fitting [11, 12, 19, 20]
for energy minimization:

E(s) = Ec(s) + A\ Er(s) )

where F,(s) is the sum of the weighted square error residu-
als for the matched points. Also, F,(s) is the regularization
term that represents the surface deformation energy, and A,
is a regularization coefficient.

A set of correspondences M between the model and the
input image can be built through a point matching algo-
rithm. Therefore, a pair of matched points is represented
in the form of m = {my, m; } € M, where my is defined
as the 2D coordinates of a feature point in the training image
and m; is the coordinates of its match in the input image.
Then, the correspondence error term FE, (s) is formulated as
below:

E(s)= ) wmV(6,0) 3)
meM
where V(d, 0) is a robust estimator, and wy, € [0,1] is a
weight linked with each correspondence.

The regularization term E,. in Equ. 2, also known as in-
ternal force in Snakes [12], is composed of the sum of the
squared second-order derivatives of the mesh vertex coor-
dinates. As the mesh is regular, E.(s) can be formulated
through a finite difference:

| K 0
E.(s)=s [ 0 K}S
where K is a sparse and banded matrix which is determined
by the structure of the explicit mesh model [9].

4)

3.3. Finite Newton Formulation

In this paper, we employ a robust estimator V(0, o) with
compact support size 0. Moreover, ¢ is the residual error,
which is defined as follows:

d =m; — Ts(my) %)
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Figure 2. The robust estimator that assesses a fixed penalty to
residuals larger than a threshold o.

The robust estimator function V(d,0) that assesses a
fixed penalty for residuals larger than a threshold o is em-
ployed in the present work; this approach is relatively in-
sensitive to outliers [4]:

sl
V(b,0) = { o’

O.2—n

My ={m| [é] <o?}

- 6
; My = M, ©)

where the set M7 contains the inlier matches, and M5 is the
set of the outliers. In addition, the order n determines the
scale of the residual. As shown in Fig. 2, the most corre-
spondences are included when the support o is large. As o
decreases, the robust estimator becomes narrower and more
selective.

Since the robust estimator function is not convex, the as-
sociated penalty function approximation problem becomes
a hard combinational optimization problem. We tackle this
problem under the finite Newton optimization framework.
An augmented vector t € R containing the barycentric
coordinates is defined as below:

ti=& t;=8 tp=2¢&3

while the remaining elements in the vector t are all set to
zero. Therefore, the residuals for the inlier correspondences
can be rewritten as follows:

18] = (u—t7x)* + (v~ t"y)?

where (u, v) are the coordinates of m;. Therefore, the error
term in Equ. 3 turns out to be

-
E, = Z w—f(uz—i—vz—Q[zz} S
mGMla

ttT 0 _
+ ST|:0 ttT}s)—i—qaz"

where ¢ is the number of outliers.

Let b € R2N be defined as below:

b, Wm | ut
b[by]zg”{vt] (7)

meM;

and a matrix A € RV*V is equal to

A=Y ‘;—j‘jtﬂ 8)

meM;

Thus, the energy function Equ. 3 is formulated into an un-
constrained quadratic optimization problem, which can be
solved by the modified finite Newton method [17, 13].

T MK+ A 0 on T
E = s [ 0 MK+ A s—2b's
2-n Wm 2 2

+ qoT"+ E — (u® +v%)

meM;

The finite gradient of the energy function £ with respect to
s can be derived as below:

B MK+ A 0 b,
VQ<[ 0 )\,.K—l—A}S[by})

and the Hessian [4] can also be computed by

HZQ[A,»K+A 0 ]

0 MK+ A

Thus the gradient can be rewritten as below:
V=Hs—-2b

Each Newton step will perform the following operation:

s—s—yH 'V

where 7 is the step size. We simply set it equal to one, and
no convergence problem occurs in our experiments. Since
K is regular, we find that update of the state vector s can be
computed by the following linear equation:

0 ME+A |7 | b,

Moreover, the problem can be further simplified into two
linear equations, which can be efficiently solved via LU de-
composition:

x=(A\K + A)"'b, ()]
y =K+ A)"'b, (10)

The overall complexity is thus the complexity of one New-
ton step.



3.4. Progressive Finite Newton Optimization

Generally speaking, the incorrect matches cannot be
avoided in the first stage of the matching process where
only local image descriptors are compared. We introduce
a coarse-to-fine scheme to deal with those outliers. The
support o of robust estimator V(4, o) is progressively de-
cayed at a constant rate . Since the derivatives of V(4, o)
are inversely proportional to the support o, the regulariza-
tion coefficient A, is kept constant during the optimization.
For each value of o, the object function E is minimized
through the finite Newton step and the result is employed
as the initial state for the next minimization. The minimiza-
tion of F is directly solved through Equ. 9 and Equ. 10 for a
given initial state, and one step is enough to achieve conver-
gence. The optimization procedure stops when o reaches a
value close to the expected precision, which is usually one
or two pixels. The algorithm reports a successful detection
when the number of inlier matches is above a given thresh-
old. Thus, the whole optimization problem can be solved
within a fixed number of steps. This is in contrast to the
semi-implicit optimization scheme [20], which involves a
few iterations for each o, and at least 40 iterations in total
to ensure the convergence.

In order to select most of the correspondences into the
initial active set and avoid getting stuck at local minima, the
initial value of ¢ is usually set to a sufficiently large value.
However, this requires a fixed initial state. The method is
dependent on the object position, and needs a few iterations
to compensate for the errors generated by the pose varia-
tions. In the present work, we solve this problem through a
modified RANSAC approach. Taking advantage of our con-
cise finite Newton formulation and closed-form solution,
the explicit mesh can be directly estimated from a given set
of correspondences. Moreover, we draw from progressively
larger sets of top-ranked correspondences, which decreases
the number of trials significantly. In the experiments, the
sampling process stopped within 5 trials. In the worst case,
such as when an object does not appear in the scene, it still
converges towards RANSAC. Therefore, the output of the
proposed progressive sample can be employed as the initial
state for the finite Newton optimization. Since the result
of progressive sample estimation is quite close to the solu-
tion, o is relatively small. Thus, the proposed progressive
scheme requires fewer stages, and is somewhat invariant to
the initial position.

4. Experimental Results

In this section, we discuss the details of our experimental
implementation and report the results of performance eval-
uation on nonrigid surface detection. We show that the pro-
posed approach is very efficient for real-time tracking, and
can be easily employed for augmented reality applications.

4.1. Experimental Setup

In order to register the mesh model conveniently, a model
image is acquired when the nonrigid surface contains no de-
formation. In order to facilitate real-time augmented real-
ity applications, a random-trees based method [14] is used
to build the correspondences between the model image and
input image.

Since the number of free variables for nonrigid surface
recovery is usually quite large (even up to one thousand),
the sample size of each RANSAC iteration becomes a tricky
issue. We compare the performance with different sample
sizes. In our experiments, the support ¢ is empirically set
to 30, and A, is set to a large value to ensure the regularity
of the nonrigid surface. Interestingly, we find that the best
sample size is three. This is because the nonrigid surface
degenerates into a rigid one, and only three points are neces-
sary to determine the position of a rigid surface. Moreover,
when the sample size increases, the probability of selecting
the inlier data is decreased. Thus, three is the best choice
for the sample size.

In the finite Newton optimization, the weighting scheme
is beneficial for a single step. However, it changes the scale
of the error term in the object function, and so the regu-
larization coefficient A, is no longer kept constant during
the optimization. In our experiments, all weight coeffi-
cients w are set to one. A set of synthetic data is used to
select the parameters, and the reference mesh is manually
registered. The performance is evaluated by the percent-
age of mesh vertices within 2 pixels of those in the refer-
ence mesh. The best regularization coefficient is found to
be around 3 x 10~* by grid searching. Similarly, the initial
support oy is set to 80, and decay rate « is 0.5. Fig. 4 plots
the success probability with different orders n of the robust
estimator function. Based on these results, n is set to 4.

Success probility
s o o

Figure 4. Probability of success with different order n of the robust
estimator function.

All the experiments reported in this paper were carried
out on a Pentium-4 3.0GHz PC with 1GB RAM, and a DV
camera was engaged to capture video. We also implemented
a semi-implicit iterative method [20], which is regarded as



(a) Model image

(b) Result

(c) Result

(d) Result (e) Plastic cup

Figure 3. We use a Starbucks pad as the deformable object. The model image is shown in (a) the contour of the model image is extracted
using a simple gradient and filling operator, which is overlaid on the input image. (b) to (d) show the results. (¢) shows the result where the
pad is replaced by a plastic cup. The model contains 120 vertices, and the whole process, including image capturing and rendering, runs
around 18 frames per second. More results are included in the supplementary material.

the state-of-the-art approach.

4.2. Computational Efficiency

The complexity of the proposed method is mainly domi-
nated by the order of Equ. 9 and Equ. 10, which is equal to
the number of vertices N in the mesh model. Another im-
portant factor is the number of inlier matches, which affects
the sparseness of matrix A. This usually differs from one
frame to another. For the Starbucks pad with 120 vertices,
as shown in Fig. 3, the proposed method runs at 18 frames
per second on real-time video with size of 720 x 576. As
depicted in Table 1, the proposed optimization scheme re-
quires around 8 iterations and only takes half of the time of
the feature matching algorithm, which is the bottleneck of
the whole system. Our implementation ! of semi-implicit
iterative approach [20] needs around 40 iterations to reach
the convergence, and runs about 9 frames per second. The
improvement is more significant for high resolution mesh.
Thus, the proposed method requires far less iterations, and
is efficient for real-time applications. We also conduct the
experiments without using the modified RANSAC initial-
ization, and start the optimization scheme from a suffi-
ciently large support ¢ = 1000. This requires 11 iterations,
and the fitting accuracy is worse than the proposed method.
In addition, the modified RANSAC initialization can also be
used for a semi-implicit method, in which case the number
of iterations is reduced to around 25.

'We use the same parameters setting as [20]. The convergence condi-
tion is set to 0.9995, with at most 5 iterations for each support value o.

Table 1. Computational time of proposed method at each step.

| Total | Match | Optimization | Iteration | Other |
[ 57ms [ 27ms | 14ms

| ~1.9ms | 16ms |

4.3. Performance of Nonrigid Surface Recovery

We use a Starbucks pad as the deformable object. As
shown in Fig. 3, the proposed method is robust to large
deformations and perspective distortion. In practice, the
whole process runs at around 18 frames per second. Fig. 6
describes the result of detecting a piece of paper, where
similar performance is achieved. As another feature-based
method, the performance of the proposed method is closely
related to the texture of objects. Better results can be ob-
tained for objects with more texture, because it is easy to
find more correct correspondences than with those lack-
ing texture. This problem may be solved by incorporating
global appearance and edge constraints into the optimiza-
tion scheme.

4.4. Augmented Reality

Once the nonrigid surface is recovered, an immediate ap-
plication is to re-texture an image. In order to obtain real-
istic results, the texture should be correctly relighted. As
suggested in [20], a re-textured input image is generated
by directly multiplying a blank shaded image, which is the
quotient of the input image and the warped reference im-
age. The reference image is acquired when the nonrigid sur-
face is lighted uniformly. Moreover, the quotient image is
normalized through multiplying the intensity of white color
in the reference image. This relighting procedure is easily



Figure 5. Re-texturing of a shirt print. The first row shows the 720 x 576 images captured by a DV camera. The second row shows the

results of replacing the bunny with the CVPR logo.

done by the GPU and requires only a short OpenGL shading
language program; and the whole process runs at about 17
frames per second. Fig. 5 shows the results of re-texturing a
T-shirt with a Lambertian surface. It is difficult to estimate a
blank shaded image due to dividing near zero intensity val-
ues and the use of an uncontrolled optical sensor. However,
the visual effect is that the bunny in the input video is re-
textured by the CVPR logo. For a specular surface, Fig. 6
describes the results on a piece of paper with a saturated re-
gion. In addition, the right two columns of Fig. 6 show the
results in a cluttered environment.

5. Discussions and Future Work

We have proposed a novel scheme for non-rigid surface
detection by progressive finite Newton optimization. In
comparison with semi-implicit optimization methods [20],
the proposed method has several advantages. First, we need
not solve the optimization iteratively for every o, because
it can be solved in one step directly. Second, the iterative
method starts from a sufficiently large support value in or-
der to estimate the location and pose of an object, which
leads to a large number of iterations. Thus, the proposed
method is far more efficient than the semi-implicit method.
Additionally, it is easy to implement the proposed approach,
which only involves solving the sparse linear equation, and
does not require tuning the viscosity parameters and a so-
phisticated Levenberg-Marquardt optimization algorithm.

Although promising experimental results have validated
the efficiency of our methodology, some limitations and fu-
ture directions should be addressed. First of all, some jitter
may occur due to the point matching algorithm or the lack
of texture information. Also, we have focused our attention
only on single deformable surface detection, whereas it is
also interesting to study the multiple case. In future work,
global bundle-adjustment will be introduced to tackle the

jittering problem. Furthermore, an efficient octree structure
can be used to build a simplified multi-scale mesh model.
Finally, we may consider extending the proposed scheme to
3D environments and exploring new regularization meth-
ods.

6. Conclusion

This paper presented a novel progressive scheme to solve
the non-rigid surface detection problem. In contrast to the
previous approaches involving iterative and explicit mini-
mization, we proposed a progressive finite Newton algo-
rithm, which directly solves the unconstrained quadratic
optimization problem by an efficient factorization method.
Moreover, our modified RANSAC scheme takes advan-
tage of our concise formulation and progressive sampling
of the top-ranked correspondences, and can handle high-
dimensional spaces with noisy data.

We have conducted extensive experimental evaluations
on diverse objects with different materials. The proposed
method is very fast and robust, and can handle large de-
formations and illumination changes. It was tested in sev-
eral applications, such as real-time Augmented Reality and
medical image registration. The promising experimental re-
sults showed that our algorithm is more efficient and effec-
tive than previous methods.
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Figure 6. Re-texturing a picture on a piece of paper. The first row is the 720 x 576 images captured by a DV camera. The second row is
the results of replacing the picture with the CVPR logo.
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