
Extendable and Interchangeable Architecture 
Description of Distributed Systems Using UML and XML  

Chang-ai Sun1,2, Jiannong Cao1, Maozhong Jin2, Chao Liu2, Michael R. Lyu3 

1 Department of Computing 
Hong Kong Polytechnic University 

Hung Hom, KLW Hong Kong  
{cscasun,csjcao}@comp.polyu.edu.hk 

http://www.comp.polyu.edu.hk/people/csjcao.html  
2 School of Computer Science and Engineering 

Beijing University of Aeronautics and Astronautics 
Xueyuan Road 37, Haidian district 

100083 Beijing, P.R. China 
{jmz,liuchao}@buaa.edu.cn 

 3Department of Computer Science and Engineering 
The Chinese University of Hong Kong 

Shatin N.T. Hong Kong  
lyu@cse.cuhk.edu.hk 

Abstract. Software Architecture can help people to better understand the gross 
structure and, with powerful analysis techniques, to evaluate the properties of a 
software system. To accommodate the dynamic changes and facilitate interop-
eration of tools, an architectural description of the distributed system should be 
extensible and interchangeable. In this paper, we utilize the built-in extension 
mechanism of the Unified Modeling Language (UML) to describe the architec-
tures of distributed systems, with the underlying architectural metadata repre-
sented in XML. In particular, the approach has been applied to describe the ar-
chitectural model of distributed software in the Graph-Oriented Programming 
framework. The proposed approach has many desirable features, characterized 
by being visual, easily extendable and interchangeable, and well supported by 
tools.    

1 Introduction 

Software Architecture (SA), as a bridge between requirements and design [1,2], is a 
high level abstraction of system structure. It is composed of a set of components with 
independent functions and explicit interfaces and interactions between the compo-
nents. Software architecture description is the representation of abstract architectural 
model in Architecture Description Language (ADL). It provides a blueprint for sys-
tem construction and composition, and permits designers to make early design deci-
sions based on the architectural documentation. Various ADLs have been proposed in 
the community of SA, such as Darwin, C2, Rapide, Aesop, Wright, SADL,Acme[3].  



Software architecture description can be characterized by various features, includ-
ing composition, abstraction, reusability, configuration, heterogeneity, and analysis 
[6]. Furthermore, it has been argued that software architecture description of distrib-
uted systems should be dynamic and reflective [7]. With the development of many 
well-known ADLs, some additional issues need to be addressed. For example, how to 
decide the tradeoff between visualization and rigorousness is still a key issue to de-
sign ADL. Another problem is how to exchange description between the architectural 
models described by different ADLs. It is our opinion that architecture description of 
a distributed system should also be: 

Extendable: The architecture description should be able to be extended as required. 
For example, the support of time performance analysis is a key requirement of the 
architecture model of Real-time systems, while it may be neglected in early systems.  

Interchangeable: The architectural representation should be able to be exchanged 
between heterogeneous environments, including different languages and platforms. 
This property is particularly important for distributed systems. 

There are some attempts to address the interoperability, including: (1) The devel-
opment of an architectural interchange language, e.g. Acme [4]. (2) The establish-
ment of methods to integrate architecture-based tools [2]. (3) The definition of ADL 
based on XML schema, such as xADL [5]. The first approach requires that ADLs 
involved in architecture description interchange be homogeneous. This is hard to 
imagine because any individual ADL is designed for special types of applications or 
features. The second approach leaves the task of translation to the tools, which is 
impossible in some cases. The third approach utilizes XML, which makes the descrip-
tion easily extensive, and more the physical model easily exchanged. For this ap-
proach to be successful, however special graphic notations for architectural elements 
must be redesigned for the feature of visualization, and thereby some corresponding 
supporting tools are also developed. 

 This paper proposes an approach to develop description of architecture of distrib-
uted systems, which is extendable, interchangeable and well supported by standard 
graphic notation. The core idea of the approach is to incorporate UML and XML. In 
particular, rather than translating an ADL to UML, we will extend UML based on its 
built-in extension mechanism, to directly describe an architectural model for distrib-
uted systems, namely the Graph-Oriented Programming (GOP) Model [7].  

The rest of this paper is organized as follows. The next section describes the pro-
posed framework of describing the GOP architecture. Section 3 proposes an approach 
to extending UML to describe the GOP architectural model based on UML extension 
mechanism and XML and provides an example of GOP demonstrating how the pro-
posed approach can be used. Section 4 concludes this paper by offering some conclu-
sions and plans for future works. 

2 The Framework of Describing the GOP Architecture 

In this section, we introduce the underlying concepts of GOP model and present the 
framework of describing the GOP architecture. 



2.1 The GOP Model  

The Graph-Oriented Programming Model (GOP Model) was originally proposed for 
distributed programming [7]. Under the GOP model, the components of a distributed 
program are configured as a logical graph and implemented using a set of operations 
defined over the graph. In GOP, a distributed program is defined as a collection of 
local programs (LPs) that may execute on several processors. Each LP performs 
operations on available data at various points in the program and communicates with 
other LPs. The GOP model is shown as Fig.1: 

 
 
 
 
 
 
 
 
 
 
 

Fig.1. The GOP Conceptual Model 

Local programs 

Logical graph 

Underlying 

Network 

Physical Layer  

Implementation Layer  

Architectural Layer 

Workstation Workstation Workstation Workstation

Workstation Workstation

As illustrated in Figure 1, the GOP model consists of:       
• a logical graph (directed or undirected), whose nodes are associated with lo-

cal programs (LPs), and whose edges define the relationships amongst the 
LPs. 

• a set of local programs (LPs) performing the computation tasks and cooperat-
ing with each other using the graph-oriented programming primitives. 

• a LPs-to-nodes mapping, which allows the programmer to bind LPs to spe-
cific nodes,  

• an optional nodes-to-processors mapping: which allows the programmer to 
explicitly specify the mapping of the logical graph to the underlying network 
of processors.  

• a library of language-level graph-oriented programming primitives. 
It is noted that the logical graph in Fig.1 is very similar to the architecture of dis-

tributed program, according to the definition of Software Architecture discussed in 
Section 1. Further, this architecture layer of GOP Model relates to the implementa-
tion layer, which consists of a set of Local Programs, and the physical Layer, which 
consists of a set of processors connected by the underlying network.  

When the distributed programs following the GOP Model are implemented, the 
Logical Graph is used as a type object, implementing the expected functions together 
with all the local programs. That is, the graph-oriented architecture model has been 
incorporated into the runtime system. Therefore, the architecture of distributed pro-



gram can be dynamically reconfigured with explicit reflection, by invoking the be-
haviors provided by a logical graph object. It is a highly desirable feature in building 
dynamic distributed system. 

We have leveraged the GOP Model as the architectural model. All processors will 
need to share the architecture representation of GOP Model, so the architecture de-
scription should be easily interchangeable between the different processors. It is es-
pecially true, as a result, for the heterogeneous distributed systems. Next, we will 
focus on extending UML to describe the GOP-based architecture.      

2.2 The Framework         

The principle of extending UML to describe the architecture model of GOP is illus-
trated in Figure 2. The central idea is to describe the architectural level information 
and semantics (including concepts and properties) of the GOP Model, a kind of archi-
tecture model, based on UML infrastructure (standard modeling notations and built-in 
extension mechanism) and XML. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract Syntax 

Concept View 

Behavior 
 info.  

Deploy 
 info.  

Implementation 
info.  

Domain 
info.  

Structure 
info.

Interaction 
info

Map or Projection  

D
es

cr
ib

ed
 b

y 

D
es

cr
ib

ed
 b

y 

Specify with XML 

Instance 
Architecture 

Instantiation Instantiation Instantiation 

UML Infrastructure  

XML  

UML Extension Mechanism 

UML Meta-Model 

XMI: XML Metadata Interchange 

Extension Strategy 

E
xt

en
si

on
 p

ro
ce

du
re

 

Architectural level Informa-
tion and Semantics 

XML and XML Schema 

Exchangeable and Extensive XML files & 
Graphical Architecture Model 

Architecture Specification Schema 

Semantics 

Well-formed Rules 

Architecture 
Model in GOP 

General 
Architecture 

GOP Model 

Behavior based on Scenario 
Logical Graph  

Execution View Code View Module View



Fig.2.The Framework for Describing GOP Architecture Model with Extensive UML and XML 

The framework of our approach is divided into three layers. The top layer is Archi-
tectural information and semantics, which is concerned with what should be de-
scribed for software architecture. Four common recognized architecture views are 
mapped or projected into the logical graph of the GOP model. The middle layer is 
UML infrastructure and XML. Extension strategy, the key element of this layer is 
concerned with issues, such as which Meta-model of UML is selected and extended 
to describe logical graph and behavior based on Scenario, how to extend them, and 
shat are the steps to follow for extension. The bottom layer is Instance Architecture. 
An architecture instance can be described as a group of graphical architecture views 
or a set of interchangeable and extendable XML files. 

3 Extending UML to Describe GOP Model 

In this section, we propose an approach to extending UML to describe the architec-
ture model in GOP. 

3.1 UML Built-in Extension Mechanisms and XMI 

UML [8] is a standard object notation for industry. A UML Model of a software sys-
tem generally consists of several partial models, each of which addresses a certain set 
of issues from different angels and at different levels. UML is graphical language 
with a fairly well defined syntax and semantics. The syntax and semantics of the 
underlying model are specified semi-formally via descriptive text and constraints, 
such as OCL expression. The linguistics architecture of UML is a four-layer meta-
model, and the meta-model layer is a focus for extension and the development of 
tools. It is noted that the meta-model of UML itself is organized in the form of pack-
age. 

UML is an extendable language in that new constructs may be added to address 
new issues in software development. Three mechanisms are provided to allow exten-
sions without changing the existing syntax or semantics of the language: 1) Stereo-
type allows groups of constraints and tagged values to be given descriptive names and 
applied to other model elements, 2) Tagged Value allows new attributes to be added 
to model elements, 3) Constraint allows new semantics to be specified linguistically 
for a model element.  

To enable model representations generated by the different supporting tools to be 
exchanged between the tools, XML Metadata Interchange (XMI) Specification is also 
provided in version 1.4, and later version.  



3.2 Extension Strategy  

As discussed in Section 3.1, UML provides a set of extension mechanism to satisfy 
new modeling requirements. Some standard stereotypes are also provided in the meta-
model of UML for general extension. The process of extending UML to describe the 
architecture can be summarized as follows: 

1) Select an appropriate meta-model package to extend. The meta-model selected 
should be the one closest to the architectural view from the perspective of semantics. 

2) Decide the Meta-Class to use as the base-class of standard element in the UML 
meta-model. 

3) Associate architectural semantics to the elements of the architectural view, in-
cluding some extended attributes or specific constraints. Here, extensions for 
different architectural views and architecture properties can differ greatly.  

The architectural model using UML can be described with different extension 
strategies. David Garlan et al. proposed that different extension strategies for archi-
tecture structure should be evaluated by using three evaluation criteria: Semantics-
Match, Legibility, and Completeness [9]. Extension strategies should also be: 1) Ex-
tensible and well-structured, meaning that architectural description should be able to 
be enhanced further to support the description and analysis of new properties. 2) 
Efficient and Effective, meaning that the extension should as far as possible reuse the 
features of UML supporting tools to serve the requirements of the architectural de-
scription.       

3.3 A Reference Extension for the Logical Graph  

As an illustration, we propose a reference extension for the logical graph. First, we 
must choose the meta-model package closest to the logical graph in semantics. Com-
paring UML Component and UML Class, it’s more suitable to select the meta-model 
of Class to extend for describing the logical graph, based on the extension criteria 
discussed in Section 3.2 and the following observations: 

1) UML Component focuses on physical implementation, while logical graph 
focuses on logical structure. 

2) As the core element of OO, UML Class can specify systems from several 
abstract levels, such as concept, specification and implementation. 

3) The relationships between UML Classes are also richer than those between 
UML Components. This can make it easier to depict the interaction of com-
ponents. 

Once we decide to choose UML Class to extend for describing the node of logical 
graph of GOP, the next thing is to decide the Extension Procedure. In order to main-
tain consistency with the UML manual, we take the following steps: Abstract Syntax, 
Well-formed Rules, Semantics and specificationA reference extension to the Core 
Package of Foundation package of UML meta-model is illustrated as Figure 3. 

Step 1: Abstract Syntax  



In Figure 3, <<LGcomponent>> is used to describe the components of the architec-
tural model from three perspectives, namely context, specification, and implementa-
tion. We’ll focus on the specification of a component, which consists of: 

Name: is inherited from ModelElement::Class 
isOption: indicates whether the component takes part in the current configuration  
isComposite: indicates whether the component is a composite component  
Type: abstracts the function of the component described in certain kind of specifi-

cation language 
 

LGContext: documentation 

participant 

ConnectionEnd 

       0..*
Container

Specification 

Specification 

type 

Owner 

Part 1..* 
Specification 

Part 

Element 1..* 

Context 

LGConnectionEnd 
LGConnectionEndType <<LGConnector>>     2 ..* 

Ordered connection

Owner 
Element 0..* 

<<LGConfiguration>> 

<<LGCompositeComponent>> 

LGImplemenation:  
      documentation 

     <<LG Component>> 
      isOption: enum{true, false} 

isComposite:enum{Com,Pri} 
       Version:String 
            Type:String 
Vocabulary:enum{.}

<< LGInterface>> 
LGInterfaceType 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Meta Model for the Logical Graph of GOP 

Version: is used to identify the version information of the component 
Vocabulary: indicates special type or customary component, such as Filter or Pipe. 

Preserved for Architecture style or Pattern.  
LGComponent assembles Interface, Context and Implementation, by means of the 

association.  
Implementation: the extension used to indicate the implementation of components. 

It can be one or more artifacts, such as binary, executable, or script files.  
Context: the extension specifying the scenario in which the component can operate 

as expected.   
Interface: the extension that names the points through which the component can 

interact with the environments, including asking for and providing services. 
CompositeComponent: the extension used to indicate the compositecomponent in 

which the component takes part. 
LGConnector, LGConfiguration and LGCompositeComponent can be specified in 

the similar ways. But they will not be further discussed here. 



Step 2:Well-Formed Rules 
Some well-formed rules must be followed when using the extended UML model to 
describe the logical graph of the GOP model. Otherwise, the extension will not be 
interpreted appropriately. Once again, for brevity, we will demonstrate only a few 
important well-formed rules.  

 LGInterface is an instance of a meta-class Interface. It defines the interface of 
LGComponent and must satisfy following constraints: 

1) The contents of LGInterface must be public or protected operation (Interfaces 
may not have Attributes, Associations, or Methods). 

      Self.allFeatures->forAll(f| f.visibility=# Public or f.visibility=# Protected )   
2) Only two interface types are allowed in the LGComponent. 
         LGInterfaceType: Enum{Request, Service} 
 LGComponent is an instance of meta-class Class. It incorporates many tagged 

values for describing architecture attributes. Some enhanced constraints must be satis-
fied in our architectural model, including: 

1) A LGComponent must have at least one Service Interface. 
           self.allInterfaces->exist(i| i.LGInterfaceType=#Service ) 
2) Any attribute of a LGComponent can be accessed only by the LGInterface. 
            Self.OclType.feature->forAll(f| f.oclIsKindOf(Operation)) 

Step3: Semantics 
LGComponent is a basic construct of the logical graph. A LGComponent consists of 
at least an interface to communicate with external environments. Communication 
with LGComponent can only occur through the LGInterface. LGComponent can be 
categoried as Atomic and Composite component, the latter is composed by many 
LGComponents and LGConnectors. A composite component can also be a part of one 
or more larger composite components.  

Step4: Specification   
The results of a graphical architectural description must be translated into the textual 
specification or other binary files. To be exchanged between different UML tools and 
other architecture supporting tools, the specification should be represented in XML 
based on the base of XMI. Since the extended meta-model is an architecture type 
rather than an instance architecture, we use XML Schema to represent extended meta-
model. To effectively represent extended meta-model, the XML schemas must be 
well structured, we organize XML schema into a hierarchy structure [1].  

3.4 Case Study: a Simple Example   

In this section, we will illustrate our approach using the calcpi program used in [10]. 
This program computes an approximation to π by calculating the area under the curve 
4/(1+x2) between 0 and 1 using numerical integration. The program is structured as a 
set of workers, each computing the area, and a supervisor collecting the results and 
averaging them.  



We will represent worker and supervisor as components, which execute different 
calculations, while the communication between worker and supervisor is treated as 
connectors. In the following example, there are two workers. The logical graph rep-
resenting the architecture of this distributed application is described by extended 
UML meta-model as shown in Figure 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{LGContext=””} 
{LGProcessor=”IPaddr1”} 
{LGImplementaion=”module1”}

{isOtion=”true” 
isComposite=”Pri” 
version=”1.0”…} 
 

<<LGComponent>> 

Message 

MReceive 

MReceive 

MReceive 

MSend MSend 

MSend 

<<LGComponent>> 
{   isOtion=”true” 

isComposite=”Pri” 
version=”1.0”…} 
{LGContext=””} 
{LGProcessor=”Ipaddr3”} 
{LGImplementaion=”module3”} 

<<LGComponent>> 

    {isOtion=”true” 
isComposite=”Pri” 
version=”1.0”…} 

{LGImplementaion=”module2”} 
{LGProcessor=”Ipaddr2”} 
{LGContext=””} 

Fig.4.The Architecture Model Described by Extended UML Class Diagram 

The extended UML Sequence Diagram can be used to describe collaborations be-
tween worker and supervisor. In the GOP Model, nodes-to-processors mappings are 
used to deploy the logical graph on the physical networks environments. This can be 
implemented by specifying the tagged value LGComponent, namely LGProcessor. 
Similarly, when all components are assembled to run, local programs must be bound 
to the worker and supervisor of logical graph. This is implemented by LPs-to-Nodes 
mappings in GOP model. In our approach, this can be implemented just by specifying 
LGImplementation of LGComponent. Moreover, Version of LGComponent can be 
labeled with a different version number to recognize the changes of the implementa-
tions of components. The specification for architectural configuration and compo-
nents of this distributed application described in XML is omitted for the limitation in 
space. 



4 Conclusions  

 This paper has proposed an extendable and interchangeable architecture description 
approach based on UML and XML. The idea of our extension strategy can be sum-
marized as follows. 1) UML class is extended as component, 2) UML interface as the 
interface of component, 3) UML association as connector, 4) UML subsystem as 
architecture configuration.  

Compared with the existing work [11,12], our approach can be characterized by 
the following features: 1) Visual modeling of architecture of distributed system by 
reusing one standard modeling language UML and its supporting tools.2) Resulting 
architecture specification can be interchangeable or shared by different supporting 
tools. 3) Flexible extension can be further obtained. Here, we examine some derived 
features of our approach, and explain why or how they can be obtained.  

Integrated Version Management in architecture level can be obtained. In our ap-
proach, the component and configuration can be labeled version. If we want to mod-
ify a component of the distributed system, the version number of component has been 
changed from the perspective of version management. This is also easily imple-
mented by modifying the version attribute of node in Logical Graph. At any time, the 
configuration of logical graph maintains the version profile of the current system. 
When the system evolves, it can be characterized by the evolution of configuration 
version. If the version information is not required, just set all the version attributes of 
component and configuration to default or neglect them. 

Visual Architectural Description can be supported. UML notations can be reused 
by our approach, but the semantics for notation of UML is changed, which is entitled 
with constraints and architectural semantics. For example, LGComponent can be 
represented as the notation for UML Class, but the semantics must be interpreted as 
semantics of LGComponnent discussed in Section 3.   

Existing tools for UML can be reused. Our extension approach is compatible with 
UML manual, and XMI is accepted as the base of architectural specification, so most 
of functions provided by UML supporting tools can be reused to describe software 
architecture. 

Further Extension for new architecture properties can be easily obtained. Here, 
we give an illustration of the further extension. In GOP model, the logical graph can 
also be deployed on the physical environments while the system is running. This can 
be implemented by adding an attribute LGProcessor to the construct LGComponent, 
an item responsible for this attribute should at the same time be added into their archi-
tecture specification.  

Our future work will be conducted to integrate further our approach and the GOP 
model, including the development of supporting environments, mapping the specifi-
cation into different platforms, such as Web, Component and Cluster, and represent-
ing some large-scale real world applications using our approach in this paper.       

Acknowledgement  



This research is partially supported by the Hong Kong Polytechnic University under 
the research grant H-ZJ80, the National High Technology Development 863 program 
of China (No. 2001AA110244), and RGC Project (No.CUHK4360/02E). 

References 

[1]Chang-ai Sun. Contributions to Software Architectural Description and Construction and 
Reconstruction.[PhD Thesis]. Beijing University of Aeronautics and Astronautics, 2002.12  

[2]David Garlan. Software architecture: a roadmap. In proceedings of the conference on the 
future of Software Engineering, (2000) 91–101 

[3] Nenad Medvidovic, Richard N.Taylor. A Classification and Comparison Framework for 
Software Architecture Description Languages, IEEE Transaction on Software Engineering, 
Vol.26 No.1, January 2000,70-93 

[4] D.Garlan, R.T. Monroe, D. Wile. Acme: An architecture description interchange language. 
In proceedings of CASCON’97 Ontario, Canada, November, (1997) 169-183 

[5] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor A Highly-Extensible, XML-
Based Architecture Description Language.In Proceedings of the Working IEEE/IFIP Con-
ference on Software Architectures (WICSA 2001), Amsterdam, Netherlands. 

[6]Mary Shaw, David Garlan. Characteristics of higher-level Languages for Software Architec-
ture, Carnegie Mellon University, Technical Report, CMU-CS-94-210, 1994. 

[7]Jiannong Cao, Xiaoxing Ma, Alvin. T.S. Chan, and Jian Lu, Architecting and Implementing 
Web-based Distributed Applications Using the Graph-Oriented Approach, to appear in 
Software: Practice and Experiences (John Wiley & Sons).  

[8]OMG, Unified Modeling Language Specification (Ver 1.5), Mar 2003  
[9] D. Garlan, A. J. Kompanek and P. Pinto. Reconciling the needs of architectural description 

with object-modeling notations. In proceedings of the Third International Conference on the 
Unified Modeling Language, York, UK, October 2000.  

[10] N.Rodriguez, R. Ierusalimschy, and R. Cerqueira, Dynamic Configuration with CORBA 
Components, In proceedings of the Fourth International Conference on Configurable Dis-
tributed Systems, IEEE Computer Society Press, May 1998, 27-34 

[11] Nenad Medvidovic, David S.Rosenblum , David F.Redmiles, Jason E. Robbing. Modeling 
software architectures in the Unified Modeling Language, ACM Transactions on Software 
engineering and Methodology, Vol.11, No.1, January 2002, 2 - 57  

[12] C. Hofmeister, R. L. Nord and D. Soni. Describing software architecture with UML. In 
Proceedings of the First Working IFIP Conference on Software Architecture, San Antonio, 
TX, February1999, 145-160  


	References

