
592 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 4, DECEMBER 2005

Optimal Testing Resource Allocation, and Sensitivity
Analysis in Software Development

Chin-Yu Huang, Member, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract—We consider two kinds of software testing-resource al-
location problems. The first problem is to minimize the number of
remaining faults given a fixed amount of testing-effort, and a re-
liability objective. The second problem is to minimize the amount
of testing-effort given the number of remaining faults, and a reli-
ability objective. We have proposed several strategies for module
testing to help software project managers solve these problems, and
make the best decisions. We provide several systematic solutions
based on a nonhomogeneous Poisson process model, allowing sys-
tematic allocation of a specified amount of testing-resource expen-
ditures for each software module under some constraints. We de-
scribe several numerical examples on the optimal testing-resource
allocation problems to show applications & impacts of the pro-
posed strategies during module testing. Experimental results indi-
cate the advantages of the approaches we proposed in guiding soft-
ware engineers & project managers toward best testing resource
allocation in practice. Finally, an extensive sensitivity analysis is
presented to investigate the effects of various principal parameters
on the optimization problem of testing-resource allocation. The re-
sults can help us know which parameters have the most significant
influence, and the changes of optimal testing-effort expenditures
affected by the variations of fault detection rate & expected initial
faults.

Index Terms—Non-homogeneous Poisson processes, sensitivity
analysis, software reliability, testing resource allocation.

ACRONYMS1

NHPP nonhomogeneous Poisson process
SRGM software reliability growth model
TEF testing-effort function
TE testing-effort
MLE maximum likelihood estimation
LSE least squares estimation

NOTATION

expected mean number of faults detected in time
, mean value function

failure intensity for ,
current testing-effort consumption at time
cumulative testing-effort consumption at time

Manuscript received February 1, 2004; revised April 18, 2005. This research
was supported by the National Science Council, Taiwan, under Grant NSC
94-2213-E-007-087 and also partially supported by a grant from the Research
Grant Council of the Hong Kong Special Administrative Region, China (Project
no. CUHK4205/04E). Associate Editor: K. Kanoun.

C.-Y. Huang is with the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan (e-mail: cyhuang@cs.nthu.edu.tw).

M. R. Lyu is with the Computer Science and Engineering Depart-
ment, The Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
lyu@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TR.2005.858099

1The singular and plural of an acronym are always spelled the same.

expected number of initial faults
fault detection rate per unit testing-effort
total amount of testing-effort eventually consumed
consumption rate of testing-effort expenditures in
the generalized logistic testing-effort function
constant parameter in the generalized logistic
testing-effort function
structuring index whose value is larger for better
structured software development efforts
constant parameter
weighting factor to measure the relative importance
of a fault removal from module
conditional software reliability

I. INTRODUCTION

ACOMPUTER system comprises two major components:
hardware, and software. With the steadily growing power

& reliability of hardware, software has been identified as a major
stumbling block in achieving desired levels of system depend-
ability. We need quality software to produce, manage, acquire,
display, and transmit information anywhere in the world. Soft-
ware producers must ensure the adequate reliability of the de-
livered software, the time of delivery, and its cost. According
to the ANSI definition: “Software reliability is defined as the
probability of failure-free software operation for a specified pe-
riod of time in a specified environment” [1]. Alternatively, it
may be viewed from the perspective of general use on a va-
riety of different inputs, in which case it is the probability that
it will correctly process a randomly chosen input. Many Soft-
ware Reliability Growth Models (SRGM) were developed in
the 1970s–2000s [1], [2]. SRGM describe failures as a random
process, which is characterized in either times of failures, or the
number of failures at fixed times.

In addition to software reliability measurement, SRGM can
help us predict the fault detection coverage in the testing phase,
and estimate the number of faults remaining in the software sys-
tems. From our studies, there are some SRGM that describe the
relationship among the calendar testing, the amount of testing-
effort, and the number of software faults detected by testing. The
testing-effort (TE) can be represented as the number of CPU
hours, the number of executed test cases, or human power, etc
[2]. Musa et al. [2] showed that the effort index, or the execution
time is a better time domain for software reliability modeling
than the calendar time because the observed reliability growth
curve depends strongly on the time distribution of the TE.

In the software development phase, testing begins at the com-
ponent level, and different testing techniques are appropriate at
different points in time. Testing is conducted by the developer

0018-9529/$20.00 © 2005 IEEE

HUANG AND LYU: OPTIMAL TESTING RESOURCE ALLOCATION, AND SENSITIVITY ANALYSIS IN SOFTWARE DEVELOPMENT 593

of the software, as well as an independent test group [3]. One
major software development challenge is that testing is too ex-
pensive & lengthy, yet the project schedule has to meet a de-
livery deadline. Most popular commercial software products are
complex systems composed of a number of modules. As soon
as the modules are developed, they have to be tested in a variety
of ways, and tests are derived from the developer’s experience.
Practically, module testing is the most detailed form of testing
to be performed. Thus, project managers should know how to
allocate the specified testing resources among all the modules
& develop quality software with high reliability.

From our studies [4]–[23], there are many papers that have
addressed the problems of optimal resource allocation. In this
paper, we first consider two kinds of software testing-resource
allocation problems, and then propose several strategies for
module testing. Namely, we provide systematic methods for the
software project managers to allocate a specific amount of TE
expenditures for each module under some constraints, such as
1) minimizing the number of remaining faults with a reliability
objective, or 2) minimizing the amount of testing-effort with a
reliability objective. Here we employ a SRGM with generalized
logistic testing-effort function to describe the time-dependency
behaviors of detected software faults, and the testing-resource
expenditures spent during module testing. The proposed model
is based on Non-homogeneous Poisson processes (NHPP).

The remaining contents of this paper consist of four sections.
Section II describes an SRGM with generalized logistic TEF.
In Section III, the methods for testing resource allocation &
optimization for modular software testing are introduced. Nu-
merical examples for the optimum TE allocation problems are
demonstrated in Section IV. In Section V, we analyze the sensi-
tivity of parameters of proposed SRGM.

II. SRGM WITH GENERALIZED LOGISTIC TESTING-EFFORT

FUNCTION

A. Software Reliability Modeling

A number of SRGM have been proposed on the subject of
software reliability [1]. Traditional SRGM, such as the well-
known Goel-Okumoto model, and the Delayed S-shaped model,
have been shown to be very useful in fitting software failure
data. Yamada et al. [6]–[8] modified the G-O model, and incor-
porated the concept of TE in an NHPP model to get a better de-
scription of the software fault phenomenon. Later, Huang et al.
[24], [25] proposed a new SRGM with the logistic TEF to pre-
dict the behavior of failure occurrences, and the fault content of
a software product. Based on our past experimental results [26],
[27], this approach is suitable for estimating the reliability of
software application during the development process. The fol-
lowing are the modeling assumptions:

1) The fault removal process is modeled as a NHPP, and the
software application is subject to failures at random times
caused by the remaining faults in the system.

2) The mean number of faults detected in the time interval
by the current TE is proportional to the mean

number of remaining faults in the system at time , and
the proportionality is a constant over time.

3) TE expenditures are described by a generalized logistic
TEF.

4) Each time a failure occurs, the corresponding fault is im-
mediately removed, and no new faults are introduced.

Let be the mean value function of the expected number
of faults detected in time . Because the expected number
of detected faults is finite at any time, is an increasing
function of , and . According to these assumptions,
we get

(1)

That is

(2)

Consequently, if the number of detected faults due to the cur-
rent TE expenditures is proportional to the number of remaining
faults, we obtain the differential equation

(3)

Solving the above differential equation under the boundary con-
dition , we have

(4)

Note that parameter is the number of initial faults, and this
number is usually a representative measure of software relia-
bility. It can also provide an estimate of the number of failures
that will eventually be encountered by the customers. Besides,
parameter is the fault detection rate, or the rate of discovering
new faults in software during the testing phase. In general, at the
beginning of the testing phase, many faults can be discovered
by inspection, and the fault detection rate depends on the fault
discovery efficiency, the fault density, the testing-effort, and the
inspection rate [3]. In the middle stage of the testing phase, the
fault detection rate normally depends on other parameters, such
as the execution rate of CPU instruction, the failure-to-fault re-
lationship, the code expansion factor, and the scheduled CPU
execution hours per calendar day [2]. We can use this rate to
track the progress of checking activities, to evaluate the effec-
tiveness of test planning, and to assess the checking methods
we adopted [25]. In fact, is nondecreasing with respect to
testing time . Knowing its value can help us determine whether
the software is ready for release, and if not, how much more of
the testing resources are required. It can also provide an estimate
of the number of failures that will eventually be encountered by
the customers.

Yamada et al. [11], [26] reported that the TE could be
described by a Weibull-type curve, and the Weibull curve is
one of the three known extreme-value distributions. Although
a Weibull-type curve can fit the data well under the general
software development environment, it will show the apparent
peak phenomenon when the value of the shape parameter is

594 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 4, DECEMBER 2005

greater than 3 [26]. From our past studies [27], [28], a logistic
TEF with a structuring index was proposed, which can be used
to consider & evaluate the effects of possible improvements
on software development methodology. The idea of a logistic
TEF was proposed by F. N. Parr [29]; it predicts essentially the
same behavior as the Rayleigh curve, except during the early
part of the project. For a sample of some two dozen projects
studied in the Yourdon 1978–1980 project survey, the logistic
TEF was fairly accurate in describing expended TE [30]. In
[28], we extended the logistic TEF to a generalized form, and
the generalized logistic TEF is formulated as

(5)

The current TE consumption is

(6)

The TE reaches its maximum value at time

(7)

The conditional reliability function after the last failure occurs
at time is obtained by [1], [2]

(8)
Taking the logarithm on both sides of the above equation, we
obtain

(9)

Here we will define another measure of reliability, i.e., the
ratio of the cumulative number of detected faults at time to the
expected number of initial faults.

(10)

Note that is an increasing function in . Using , we can
obtain the required testing time needed to reach the reliability
objective , or decide whether the reliability objective can be
satisfied at a specified time. If we know that the value of has
achieved an acceptable level, then we can determine the right
time to release this software.

B. Methods of Model’s Parameter Estimation

To validate the proposed model, experiments on real soft-
ware failure data will be performed. Two most popular esti-
mation techniques are Maximum Likelihood Estimation (MLE),
and Least Squares Estimation (LSE) [1], [2], [26]. For example,
using the method of LSE, the evaluation formula
of (5) with is depicted as

Minimize: (11)

where is the cumulative testing-effort actually consumed
in time , and is the cumulative TE estimated by

(5). Differentiating with respect to , , and , setting the
partial derivatives to zero, and rearranging these terms, we can
solve this type of nonlinear least square problems. We obtain

(12)

Thus, the least squares estimator is given by solving the above
equation to yield

(13)

Next, we have

(14)

and

(15)

The other parameters & can also be obtained by substituting
the least squares estimator into (14) & (15). Similarly, if the
mean value function is described in (4), then the evaluation for-
mula can be obtained as

Minimize: (16)

where is the cumulative number of detected faults in a given
time interval , and is the expected number of soft-
ware faults estimated by (4). Differentiating with respect to
& , setting the partial derivatives to zero, and rearranging these
terms, we can solve this type of nonlinear least square problems.

On the other hand, the likelihood function for the parameters
& in the NHPP model with in (4) is given by

(17)

where for . Therefore, taking the logarithm of the
likelihood function in (17), we have

(18)

HUANG AND LYU: OPTIMAL TESTING RESOURCE ALLOCATION, AND SENSITIVITY ANALYSIS IN SOFTWARE DEVELOPMENT 595

From (3), we know that
. Thus,

(19)

Consequently, the maximum likelihood estimates & can be
obtained by solving

(20)

III. TESTING-RESOURCE ALLOCATION FOR MODULE TESTING

In this section, we will consider several resource allocation
problems based on an SRGM with generalized logistic TEF
during software testing phase.

Assumptions [4], [5], [7], [11]–[14], [27]:

1) The software system is composed of modules, and the
software modules are tested individually. The number of
software faults remaining in each module can be esti-
mated by an SRGM with generalized logistic TEF.

2) For each module, the failure data have been collected, and
the parameters of each module, including the fault detec-
tion rate and the module fault weighting factor, can be es-
timated.

3) The total amount of testing resource expenditures avail-
able for the module testing processes is fixed, and denoted
by .

4) If any of the software modules fails upon execution, the
whole software system is in failure.

5) The system manager has to allocate the total testing
resources to each software module, and minimize
the number of faults remaining in the system during the
testing period. The desired software reliability after the
testing phase should achieve the reliability objective .

From Section II-A, the mean value function of a software
system with modules can be formulated as

(21)
If for all , the objective is to minimize
the total number of faults remaining in the software system after
this testing phase. This indicates that the number of remaining
faults in the system can be estimated by

(22)

We can further formulate two optimization problems as follows.

A. Minimizing the Number of Remaining Faults With a Given
Fixed Amount of TE, and a Reliability Objective

A successful test is one that uncovers an as-yet-undiscovered
fault. We should know that tests show the presence, not the ab-
sence, of defects [3]. It is impossible to execute every combi-
nation of paths during testing. The Pareto principle implies that
80 percent of all faults uncovered during testing will likely be
traceable to 20 percent of all program components [3]. Thus the
question of how much to test is an important economic question.
In practice, a fixed amount of TE is generally spent in testing a
program. Therefore, the first optimization problem in this paper
is that the total amount of TE is fixed, and we want to allocate
these efforts to each module in order to minimize the number
of remaining faults in the software systems. Suppose the total
amount of TE is , and module is allocated testing efforts;
then the optimization problem can be represented as [11]–[14],
[17], [18], [27]

Minimize: (23)

Subject to: (24)

(25)

From (25), we can obtain

(26)

Let , . Thus, we have

where

That is, the optimal testing resource allocation can be specified
as below [7]–[9]

Minimize:

Subject to: and

(27)

Let , then we can transform the above equations
to

Minimize: (28)

Subject to:

(29)

596 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 4, DECEMBER 2005

Note that the parameters , , and should already be esti-
mated by the proposed model. To solve the above problem, the
Lagrange multiplier method can be applied. The Lagrange mul-
tiplier method transforms the constrained optimization problem
into the unconstrained problem by introducing the Lagrange
multipliers [22], [27], [31], [32].

Consequently, (28) & (29) can be simplified as

Minimize:

(30)

Based on the Kuhn-Tucker conditions (KTC), the necessary
conditions for a minimum value of (30) exist, and can be stated
as [12]–[15], [31], [32]

(31a)

(31b)

(31c)

Theorem 1: A feasible solution of (30)
is optimal iff

a) ,
b) .

Proof:

a) From (30), we have
. Therefore,

from (31a), we know that
.

b) From (30) & (31b), we have
.

Corollary 1: Let be a feasible solution of (13)

a) iff .
b) If , then .

Proof:

a) If , then Theorem 1 part a) im-
plies that . Besides, if

, then from Theorem 1 part b), we
know that

or
. Because , , and

, we have or , i.e.,
. That is, . If , then

(because) or

. Therefore,
from Theorem 1 part b), we have .

b) From Theorem 1 part b), we know that if , then
. Therefore,

.

From (30), we have

Thus, the solution is

(32)
The solution is

(33)

Hence, we get as an optimal so-
lution to (30). However, the above may have some negative
components if , making infea-
sible for (28) & (29). If this is the case, the solution can be
corrected by the following steps [4], [5], [10]:

Algorithm 1
Step 1: Set .
Step 2: Calculate the equations

Step 3: Rearrange the index such that
.

Step 4: If , then stop (i.e., the
solution is optimal)

Else, ; .
End If.

Step 5: Go to Step 2.

The optimal solution has the form shown in (34) at the bottom
of the next page. Algorithm 1 always converges in, at worst,

HUANG AND LYU: OPTIMAL TESTING RESOURCE ALLOCATION, AND SENSITIVITY ANALYSIS IN SOFTWARE DEVELOPMENT 597

steps. Thus, the value of the objective function given by
(28) at the optimal solution as

(35)

B. Minimizing the Amount of TE Given the Number of
Remaining Faults, and a Reliability Objective

Now suppose specifies the number of remaining faults in
the system, and we have to allocate an amount of TE to each
software module to minimize the total TE. The optimization
problem can then be represented as

Minimize: (36)

Subject to: (37)

(38)

Similarly, from (38), we can obtain

(39)

Following similar steps described in Section III-A and letting
, where , we

can transform the above equations to

Minimize: (40)

Subject to:

(41)

To solve this problem, the Lagrange multiplier method can again
be used. Equation (40) & (41) are combined to the equation

Minimize:

(42)

Theorem 2: A feasible solution of (42)
is optimal iff

a) ,
b)

Proof:

a) From (42), we know that
. Besides, from

(31a), we have ,
i.e., . Therefore,

.
b) From (42) & (31b), we have

.
Corollary 2: Let be a feasible solution of (42)

a) iff .
b) If , then .

Proof:

a) If , then Theorem 2 part a) implies that
. Besides, if ,

then from Theorem 2 part b), we know that
. Thus, we have

or , i.e., . That
is, . If , that is,

or .
Hence, .
Because , then we have

or
. Therefore, from The-

orem 2 part b), we have .
b) From Theorem 2 part b), we know that if ,

. Therefore,
.

From (42), we have

(43)

(44)

Thus, the solution is

(45)

, where

otherwise.

(34)

598 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 4, DECEMBER 2005

TABLE I
THE ESTIMATED VALUES OF a ; r ; v , AND �

The solution is

(46)

That is

(47)
Hence, we get as an optimal
solution to (42). However, the above may have some neg-
ative components if ,

making infeasible for (40) & (41). In this case, the solution
can be corrected by the following steps. Similarly, we pro-

pose a simple algorithm to determine the optimal solution for
the TE allocation problem.

Algorithm 2
Step 1: Set .
Step 2: Calculate

Step 3: Rearrange the index such that
.

Step 4: If then stop.
Else update ; .
End If.

Step 5: Go to Step 2.

The optimal solution has the form

(48)

Algorithm 2 always converges in, at worst, steps.

TABLE II
THE OPTIMAL TE EXPENDITURES USING ALGORITHM 1

IV. EXPERIMENTAL STUDIES AND RESULTS

In this section, three cases for the optimal TE allocation prob-
lems are demonstrated. Here we assume that the estimated pa-
rameters & in (21), for a software system consisting of 10
modules, are summarized in Table I. Moreover, the weighting
vectors in (21) are also listed. In the following, we illustrate
several examples to show how the optimal allocation of TE ex-
penditures to each software module is determined. Suppose that
the total amount of TE expenditures is 50 000 man-hours,
and . Besides, all the parameters & of (21) for
each software module have been estimated by using the method
of MLE or LSE in Section II-B. We apply the proposed model
to software failure data set [12], [15], [27], [33]. Here we have
to allocate the expenditures to each module, and minimize the
number of remaining faults. From Table I & Algorithm 1 in Sec-
tion III-A, the optimal TE expenditures for the software systems
are estimated, and shown in Table II.

For example, using the estimated parameters , , the
weighting factor in Table I, and the optimal TE expenditures
in Table II, the value of the estimated number of remaining
faults is 172 for Example 1. That is, the total number of
remaining faults is intended to decrease from 514 to 172 by
using testing-resource expenditures of 50 000 man-hours, and
about a 33.6% reduction in the number of remaining faults.
Conversely, if we want to decrease more remaining faults, and
get a better reduction rate, then we have to re-plan & consider
the allocation of testing-resource expenditures; i.e., using the
same values of , , , and , the optimal TE expenditures
should be re-estimated. Therefore, we can know how much

HUANG AND LYU: OPTIMAL TESTING RESOURCE ALLOCATION, AND SENSITIVITY ANALYSIS IN SOFTWARE DEVELOPMENT 599

TABLE III
THE REDUCTION IN THE NUMBER OF REMAINING FAULTS

TABLE IV
THE OPTIMAL TE EXPENDITURES USING ALGORITHM 2

extra amount of testing-resource expenditures is expected [12],
[15]. The numbers of initial faults, the estimated remaining
faults, and the reduction in the number of remaining faults for
the other examples are shown in Table III.

Finally, suppose the total number of remaining faults is
100. We have to allocate the expenditures to each module, and
minimize the total amount of TE expenditures. Similarly, using
Algorithm 2 in Section III-B & Table I, the optimal solutions
of TE expenditures are derived & shown in Table IV. Further-
more, the relationship between the total amount of testing-effort
expenditures, and the reduction rate of the remaining faults, are
also depicted in Fig. 1.

V. SENSITIVITY ANALYSIS

In this section, sensitivity analysis of the proposed model is
conducted to study the effect of the principal parameters, such as
the expected initial faults, and the fault detection rate. In (4), we
know that there are some parameters affecting the mean value
function, such as the expected total number of initial faults, the
fault detection rate, the total amount of TE, the consumption
rate of TE expenditures, and the structuring index, etc. Conse-
quently, we have to estimate all these parameters for each soft-
ware module very carefully because they play an important role
for the optimal resource allocation problems. In general, each
parameter is estimated based on the available data, which is
often sparse. Thus, we analyze the sensitivity of some principal
parameters, but not all parameters due to the limitation of space.
Nevertheless, we still can evaluate the optimal resource alloca-
tion problems for various conditions by examining the behavior
of some parameters with the most significant influence. We per-
form the sensitivity analysis of optimal resource allocation prob-
lems with respect to the estimated parameters so that attention
can be paid to those parameters deemed critical [34]–[40]. In
this paper, we define

Relative Change (49)

where OTEE is the original optimal TE expenditures, and MTEE
is the modified optimal TE expenditures.

Fig. 1. The reduction rate of remaining faults vs. the total TE expenditures.

TABLE V
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN a (ALGORITHM 1)

A. Effect of Variations on Expected Initial Faults & Fault
Detection Rate (Algorithm 1)

Assuming we have obtained the optimal TE expenditures to
each software module that minimize the expected cost of soft-
ware, then we can calculate the MTEE concerning the changes
of expected number of initial faults for the specific module .
The procedure can be repeated for various values of . For in-
stance, for the data set used in Section IV (here we only use Ex-
ample 1 as illustration), if the expected number of initial faults

of module 1 is increased or decreased by 40%, 30%, 20%,
or 10%, then the modified TE expenditures for each software
module can be obtained by following the similar procedures.
Table V shows some numerical values of the optimal TE expen-
ditures for the case of 40%, 30%, 20%, and 10% increase to .
The result indicates that the estimated values of optimal TE ex-
penditures will be changed when changes. That is, if is
increased by 40%, then the estimated value of optimal TE ex-
penditure for module 1 is changed from 6254 to 7011, and its
RC is 0.121 (about 12% increment). But for modules 2, 3, 4, 5,
7, and 8, the estimated values of optimal TE expenditures are
about 1.02%, 1.21%, 0.12%, 1.01%, 1.69%, and 2.32% decre-
ment, respectively. Therefore, the variation in has the most
significant influence on the optimal allocation of TE expendi-
tures. From Table V, we can also know that, if the change of

600 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 4, DECEMBER 2005

TABLE VI
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN a (ALGORITHM 1)

TABLE VII
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN a & a (ALGORITHM 1)

is small, the sensitivity of the optimal testing-resources alloca-
tion with respect to the value of is low. Next, from Table VI, it
is shown that, if is decreased by 30%, the estimated value of
optimal TE expenditure for module 1 is changed from 6254 to
5452, and its RC is (about 12.8% decrement). It is noted
that for modules 2, 3, 4, 5, 7, and 8, the estimated values of op-
timal TE expenditures are about 1.10%, 1.31%, 3.29%, 1.07%,
1.79%, and 2.47% increment, respectively.

We have performed an extensive sensitivity analysis for the
expected initial faults as shown above. But each is consid-
ered in isolation. Now we try to study the effects of simultaneous
changes of & . If we let & both be increased
by 40%, then the estimated values of optimal TE expenditure for
modules 1, and 2 are changed from 6254 to 6972 (about 11.48%
increment), and 3826 to 4415 (about 15.39% increment), re-
spectively. But for modules 3, 4, 5, 7, and 8, the estimated values
of optimal TE expenditures are about 2.21%, 5.66%, 1.83%,
3.09%, and 4.23% decrement, respectively. Therefore, the vari-
ation in & has the significant influence on the optimal al-
location of TE expenditures. Similarly, from Table VII, we can
also know that if the changes of & are less, the sensitivity
of the optimal testing-resources allocation with respect to the
values of & is low. From Table VIII, it is also shown that
if & are both decreased by 30%, the estimated values of
optimal TE expenditure for modules 1, and 2 are changed from
6254 to 5494 (about 12.2% decrement), and 3826 to 3201 (about
16.3% decrement), respectively. It is also noted that for module
3, 4, 5, 7, and 8, the estimated values of optimal TE expendi-
tures are, respectively, about 2.38%, 6.02%, 1.94%, 3.27%, and
4.49% increment. Based on these observations, we can conclude
that if is changed, it will have much influence on the estimated
values of optimal TE expenditure for module .

TABLE VIII
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN a & a (ALGORITHM 1)

TABLE IX
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN r (ALGORITHM 1)

TABLE X
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN r (ALGORITHM 1)

TABLE XI
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN r & r (ALGORITHM 1)

In fact, we can investigate the sensitivity of fault detection
rate following the similar steps described above. Table IX shows
numerical values of the optimal TE expenditures for the case of
40%, 30%, 20%, and 10% increase to . Table X shows nu-
merical values of the optimal TE expenditures for the cases of
40%, 30%, 20%, and 10% decrease in . Numerical values of
the optimal TE expenditures for the cases of 40%, 30%, 20%,
and 10% increase in & are shown in Table XI. Finally,

HUANG AND LYU: OPTIMAL TESTING RESOURCE ALLOCATION, AND SENSITIVITY ANALYSIS IN SOFTWARE DEVELOPMENT 601

TABLE XII
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN r & r (ALGORITHM 1)

TABLE XIII
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN a (ALGORITHM 2)

Table XII shows numerical values of the optimal TE expendi-
tures for the cases of 40%, 30%, 20%, and 10% decrease in
& .

B. Effect of Variations on Expected Initial Faults & Fault
Detection Rate (Algorithm 2)

Assuming we have obtained the optimal TE expenditures to
each software module, then we can calculate the MTEE con-
cerning the changes of expected number of initial faults for
the specific module . The procedure can be repeated for var-
ious values of . Similarly, we investigate the possible change
of optimal TE expenditures when the expected number of ini-
tial faults is changed. For the data set (Example 1) used in
Section IV, if the expected number of initial faults of module
1 is increased or decreased by 40%, 30%, 20%, or 10%, then
the modified TE expenditures for each software module can be
re-estimated from the algorithms in Section III. First, Table XIII
shows some numerical values of the optimal TE expenditures
for the cases of 40%, 30%, 20%, and 10% increase in . The
result indicates that the estimated values of optimal TE expen-
ditures will be changed when changes.

For example, if is increased by 40%, then the estimated
value of optimal TE expenditure for module 1 is changed from
7700 to 8504, and its RC is 0.104 (about 10% increment). Be-
sides, for modules 3, 4, 6, 7, and 8, the estimated values of op-
timal TE expenditures are about 0.86%, 4.32%, 15.55%, 1.39%,
and 0.798% decrement, respectively. But for modules 2, 5, and
9, the estimated values of optimal TE expenditures are about
0.74%, 0.42%, and 6.79% increment, respectively. Therefore,
from Table XIII, we can know that, if the change of is small,
the sensitivity of the optimal testing-resources allocation with

TABLE XIV
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN a (ALGORITHM 2)

TABLE XV
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN a &a (ALGORITHM 2)

TABLE XVI
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN a & a (ALGORITHM 2)

respect to the value of is low. Next, we show the same com-
parison results in case that is decreased. From Table XIV, it
is shown that, if is decreased by 30%, the estimated value of
optimal TE expenditure for module 1 is changed from 7700 to
6847, and its RC is (about 10.7% decrement).

So far, we have performed an extensive sensitivity analysis
for the expected initial faults as shown above. However, each
is considered in isolation. Again we study the effects of simul-
taneous changes of & . If we let & both be
increased by 40%, then the estimated values of optimal TE ex-
penditure for modules 1, and 2 are changed from 7700 to 8504
(about 10.4% increment), and 4976 to 5674 (about 14.0% incre-
ment), respectively. From Table XV, we can find that the varia-
tion in & may have the most significant influence on the
optimal allocation of TE expenditures.

Similarly, we can also know that, if the changes of & are
less, the sensitivity of the optimal testing-resources allocation
with respect to the values of & is low. From Table XVI,
we can see that, if & are both decreased by 30%, the es-
timated values of optimal TE expenditure for modules 1, and 2
are changed from 7700 to 6847 (about 11.1% decrement), and

602 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 4, DECEMBER 2005

TABLE XVII
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN r (ALGORITHM 2)

TABLE XVIII
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN r (ALGORITHM 2)

TABLE XIX
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% INCREASE IN r & r (ALGORITHM 2)

TABLE XX
SOME NUMERICAL VALUES OF THE OPTIMAL TE EXPENDITURES FOR THE

CASES OF 40%, 30%, 20%, AND 10% DECREASE IN r & r (ALGORITHM 2)

4976 to 4313 (about 13.3% decrement), respectively. Similarly,
we can investigate the sensitivity of fault detection rate for Algo-
rithm 2 following the similar steps described above. Table XVII
shows numerical values of the optimal TE expenditures for the
cases of 40%, 30%, 20%, and 10% increase in . Table XVIII
shows Numerical Values of the Optimal TE Expenditures for the

Cases of 40%, 30%, 20%, and 10% Decrease in . Moreover,
numerical values of the optimal TE expenditures for the cases
of 40%, 30%, 20%, and 10% increase in & are shown in
Table XIX. Finally, Table XX Shows Numerical Values of the
Optimal TE Expenditures for the Cases of 40%, 30%, 20%, and
10% Decrease in & .

REFERENCES

[1] M. R. Lyu, Handbook of Software Reliability Engineering: McGraw
Hill, 1996.

[2] J. D. Musa, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, New York: McGraw-Hill, 1999.

[3] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 6/e:
McGraw-Hill, 2005.

[4] P. Kubat and H. S. Koch, “Managing test-procedure to achieve reliable
software,” IEEE Trans. Rel., vol. 32, no. 3, pp. 299–303, 1983.

[5] P. Kubat, “Assessing reliability of modular software,” Operation Re-
search Letters, vol. 8, no. 1, pp. 35–41, 1989.

[6] B. Littlewood, “Software reliability model for modular program struc-
ture,” IEEE Trans. Rel., vol. 28, no. 3, pp. 241–4246, 1979.

[7] Y. W. Leung, “Software reliability growth model with debugging ef-
forts,” Microelectronics and Reliability, vol. 32, no. 5, pp. 699–704,
1992.

[8] , “Dynamic resource allocation for software module testing,” The
J. Sys. Softw., vol. 37, no. 2, pp. 129–139, May 1997.

[9] , “Software reliability allocation under uncertain operational pro-
files,” Journal of the Operational Research Society, vol. 48, no. 4, pp.
401–411, Apr. 1997.

[10] R. H. Huo, S. Y. Kuo, and Y. P. Chang, “Needed resources for soft-
ware module test, using the hyper-geometric software reliability growth
model,” IEEE Trans. Rel., vol. 45, no. 4, pp. 541–549, Dec. 1996.

[11] H. Ohtera and S. Yamada, “Optimal allocation and control problems
for software-testing resources,” IEEE Trans. Rel., vol. 39, no. 2, pp.
171–176, 1990.

[12] S. Yamada, T. Ichimori, and M. Nishiwaki, “Optimal allocation policies
for testing resource based on a software reliability growth model,” In-
ternational Journal of Mathematical and Computer Modeling, vol. 22,
pp. 295–301, 1995.

[13] M. Nishiwaki, S. Yamada, and T. Ichimori, “Testing-resource allocation
policies based on an optimal software release problem,” Mathematica
Japonica, vol. 43, no. 1, pp. 91–97, 1996.

[14] T. Ichimori, H. Masuyama, and S. Yamada, “A two-resource allocation
problem according to an exponential objective: Optimum distribution of
searching effort,” International Journal of Reliability, Quality and Safety
Engineering, vol. 1, no. 2, pp. 135–146, 1994.

[15] T. Ichimori, “Discrete testing resource allocation in module testing,” In-
ternational Journal of Reliability, Quality and Safety Engineering, vol.
6, no. 1, pp. 57–64, 1999.

[16] B. Yang and M. Xie, “Testing-Resource allocation for redundant soft-
ware systems,” in Proceedings of 1999 Pacific Rim International Sympo-
sium on Dependable Computing (PRDC’99), Hong Kong, China, Dec.
1999, pp. 78–83.

[17] , “Optimal testing-time allocation for modular systems,” Interna-
tional Journal of Quality and Reliability Management, vol. 18, no. 8,
pp. 854–863, 2001.

[18] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel, “Optimal allocation
of test resources for software reliability growth modeling in software
development,” IEEE Trans. Rel., vol. 51, no. 2, pp. 183–192, Jun. 2002.

[19] S. Ozekici, K. Altinel, and S. Ozcelikyurek, “Testing of software with
an operational profile,” Naval Research Logistics, vol. 47, pp. 620–634,
2000.

[20] O. Berman and N. Ashrafi, “Optimization models for reliability of mod-
ular software systems,” IEEE Trans. Softw. Eng., vol. 19, no. 11, pp.
1119–1123, Nov. 1993.

[21] O. Berman and M. Cutler, “Optimal software implementation consid-
ering reliability and cost,” Computers and Operations Research, vol. 25,
no. 10, pp. 857–868, 1998.

[22] H. W. Jung and B. Choi, “Optimization models for quality and cost of
modular software systems,” European Journal of Operational Research,
pp. 613–619, 1999.

[23] P. K. Kapur, P. C. Jha, and A. K. Bardhan, “Optimal allocation of testing
resource for a modular software,” Asia-Pacific Journal of Operational
Research, vol. 21, no. 3, pp. 333–354, 2004.

HUANG AND LYU: OPTIMAL TESTING RESOURCE ALLOCATION, AND SENSITIVITY ANALYSIS IN SOFTWARE DEVELOPMENT 603

[24] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A unified scheme of some
nonhomogenous poisson process models for software reliability estima-
tion,” IEEE Trans. Softw. Eng., vol. 29, no. 3, pp. 261–269, Mar. 2003.

[25] S. Y. Kuo, C. Y. Huang, and M. R. Lyu, “Framework for modeling soft-
ware reliability, using various testing-efforts and fault-detection rates,”
IEEE Trans. Rel., vol. 50, no. 3, pp. 310–320, Sep. 2001.

[26] C. Y. Huang and S. Y. Kuo, “Analysis and assessment of incorporating
logistic testing effort function into software reliability modeling,” IEEE
Trans. Rel., vol. 51, no. 3, pp. 261–270, Sep. 2002.

[27] C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu, “Optimal allocation
of testing resources for modular software systems,” in Proceedings of
the IEEE 13th International Symposium on Software Reliability Engi-
neering (ISSRE 2002), Annapolis, Maryland, Nov. 2002, pp. 129–138.

[28] , “Software reliability modeling and cost estimation incorporating
testing-effort and efficiency,” in Proceedings of the IEEE 10th Inter-
national Symposium on Software Reliability Engineering (ISSRE’99),
Boca Raton, Florida, Nov. 1999, pp. 62–72.

[29] F. N. Parr, “An alternative to the rayleigh curve for software development
effort,” IEEE Trans. Softw. Eng., vol. SE-6, pp. 291–296, 1980.

[30] T. DeMarco, Controlling Software Projects: Management, Measurement
and Estimation: Prentice-Hall, 1982.

[31] G. L. Nemhauser, A. H. G. R. Kan, and M. J. Todd, Optimization: Hand-
books in Operations Research and Management Science, North-Hol-
land, 1994, vol. 1.

[32] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, 2nd ed: John Wiley & Sons, 1993.

[33] J. H. Lo, S. Y. Kuo, M. R. Lyu, and C. Y. Huang, “Optimal resource al-
location and reliability analysis for component-based software applica-
tions,” in Proceedings of the 26th Annual International Computer Soft-
ware and Applications Conference (COMPSAC 2002), Oxford, England,
Aug. 2002, pp. 7–12.

[34] M. Xie and G. Y. Hong, “A study of the sensitivity of software release
time,” J. Syst. Softw., vol. 44, no. 2, pp. 163–168, 1998.

[35] P. S. F. Yip, X. Liqun, D. Y. T. Fong, and Y. Hayakawa, “Sensitivity-
Analysis and estimating number-of-Faults in removal debugging,” IEEE
Trans. Rel., vol. 48, no. 3, pp. 300–305, 1999.

[36] S. S. Gokhale and K. S. Trivedi, “Reliability prediction and sensitivity
analysis based on software architecture,” in Proceedings of the IEEE
13th International Symposium on Software Reliability Engineering
(ISSRE 2002), Annapolis, Maryland, Nov. 2002, pp. 64–75.

[37] A. Pasquini, A. N. Crespo, and P. Matrella, “Sensitivity of reliability-
growth model to operational profile errors vs. Testing accuracy,” IEEE
Trans. Rel., vol. 45, no. 4, pp. 531–540, 1996.

[38] M. H. Chen, A. P. Mathur, and V. J. Rego, “A case study to investi-
gate sensitivity of reliability estimates to errors in operational profile,” in
Proceedings of the IEEE 5th International Symposium on Software Re-
liability Engineering (ISSRE’94), Monterey, California, Oct. 1994, pp.
276–281.

[39] C. Y. Huang, J. H. Lo, J. W. Lin, C. C. Sue, and C. T. Lin, “Optimal re-
source allocation and sensitivity analysis for software modular testing,”
in Proceedings of the IEEE 5th International Symposium on Multimedia
Software Engineering (ISMSE 2003), Taichung, Taiwan, Dec. 2003, pp.
231–238.

[40] J. H. Lo, C. Y. Huang, S. Y. Kuo, and M. R. Lyu, “Sensitivity analysis of
software reliability for distributed component-based software systems,”
in Proceedings of the 27th Annual International Computer Software and
Applications Conference (COMPSAC 2003), Dallas, Texas, Nov. 2003,
pp. 500–505.

Chin-Yu Huang (Member IEEE) is currently an Assistant Professor in the
Department of Computer Science at National Tsing Hua University, Hsinchu,
Taiwan. He received the M.S. (1994), and the Ph.D. (2000) in Electrical
Engineering from National Taiwan University, Taipei. He was with the Bank
of Taiwan from 1994 to 1999, and was a senior software engineer at Taiwan
Semiconductor Manufacturing Company from 1999 to 2000. Before joining
NTHU in 2003, he was a division chief of the Central Bank of China, Taipei.
His research interests are software reliability engineering, software testing,
software metrics, software testability, fault tree analysis, and system safety
assessment. He is a member of IEEE.

Michael R. Lyu received the B.S. (1981) in electrical engineering from Na-
tional Taiwan University; the M.S. (1985) in computer engineering from Uni-
versity of California, Santa Barbara; and the Ph.D. (1988) in computer science
from University of California, Los Angeles. He is a Professor in the Com-
puter Science and Engineering Department of the Chinese University of Hong
Kong. He worked at the Jet Propulsion Laboratory, Bellcore, and Bell Labs; and
taught at the University of Iowa. His research interests include software relia-
bility engineering, software fault tolerance, distributed systems, image & video
processing, multimedia technologies, and mobile networks. He has published
over 200 papers in these areas. He has participated in more than 30 industrial
projects, and helped to develop many commercial systems & software tools. Pro-
fessor Lyu was frequently invited as a keynote or tutorial speaker to conferences
& workshops in U.S., Europe, and Asia. He initiated the International Sympo-
sium on Software Reliability Engineering (ISSRE), and was Program Chair for
ISSRE’1996, Program Co-Chair for WWW10 & SRDS 2005, and General Chair
for ISSRE 2001 & PRDC 2005. He also received Best Paper Awards in ISSRE
98 and in ISSRE 2003. He is the editor-in-chief for two book volumes: Software
Fault Tolerance (Wiley, 1995), and the Handbook of Software Reliability En-
gineering (IEEE and McGraw-Hill, 1996). He has been an Associate Editor of
IEEE Transactions on Reliability, IEEE Transactions on Knowledge and Data
Engineering, and Journal of Information Science and Engineering. Professor
Lyu is an IEEE Fellow.

	toc
	Optimal Testing Resource Allocation, and Sensitivity Analysis in
	Chin-Yu Huang, Member, IEEE, and Michael R. Lyu, Fellow, IEEE
	I. I NTRODUCTION
	II. SRGM W ITH G ENERALIZED L OGISTIC T ESTING -E FFORT F UNCTIO
	A. Software Reliability Modeling
	B. Methods of Model's Parameter Estimation

	III. T ESTING -R ESOURCE A LLOCATION FOR M ODULE T ESTING
	A. Minimizing the Number of Remaining Faults With a Given Fixed
	Theorem 1: A feasible solution $X _{i} (i =1, 2,\ldots, N)$ of (
	Proof:

	Corollary 1: Let $X _{i}$ be a feasible solution of (13)
	Proof:

	B. Minimizing the Amount of TE Given the Number of Remaining Fau
	Theorem 2: A feasible solution $X _{i} (i =1, 2,\ldots, N)$ of (
	Proof:

	Corollary 2: Let $X _{i}$ be a feasible solution of (42)
	Proof:

	TABLE I T HE E STIMATED V ALUES OF a_{i}, r_{i}, v_{i}, AND $\
	TABLE II T HE O PTIMAL TE E XPENDITURES U SING A LGORITHM 1
	IV. E XPERIMENTAL S TUDIES AND R ESULTS

	TABLE III T HE R EDUCTION IN THE N UMBER OF R EMAINING F AULTS
	TABLE IV T HE O PTIMAL TE E XPENDITURES U SING A LGORITHM 2
	V. S ENSITIVITY A NALYSIS

	Fig. 1. The reduction rate of remaining faults vs. the total TE
	TABLE V S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITURE
	A. Effect of Variations on Expected Initial Faults & Fault Detec

	TABLE VI S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITUR
	TABLE VII S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITU
	TABLE VIII S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDIT
	TABLE IX S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITUR
	TABLE X S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITURE
	TABLE XI S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITUR
	TABLE XII S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITU
	TABLE XIII S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDIT
	B. Effect of Variations on Expected Initial Faults & Fault Detec

	TABLE XIV S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITU
	TABLE XV S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITUR
	TABLE XVI S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITU
	TABLE XVII S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDIT
	TABLE XVIII S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDI
	TABLE XIX S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITU
	TABLE XX S OME N UMERICAL V ALUES OF THE O PTIMAL TE E XPENDITUR
	M. R. Lyu, Handbook of Software Reliability Engineering: McGraw
	J. D. Musa, Software Reliability Engineering: More Reliable Soft
	R. S. Pressman, Software Engineering: A Practitioner's Approach,
	P. Kubat and H. S. Koch, Managing test-procedure to achieve reli
	P. Kubat, Assessing reliability of modular software, Operation R
	B. Littlewood, Software reliability model for modular program st
	Y. W. Leung, Software reliability growth model with debugging ef
	R. H. Huo, S. Y. Kuo, and Y. P. Chang, Needed resources for soft
	H. Ohtera and S. Yamada, Optimal allocation and control problems
	S. Yamada, T. Ichimori, and M. Nishiwaki, Optimal allocation pol
	M. Nishiwaki, S. Yamada, and T. Ichimori, Testing-resource alloc
	T. Ichimori, H. Masuyama, and S. Yamada, A two-resource allocati
	T. Ichimori, Discrete testing resource allocation in module test
	B. Yang and M. Xie, Testing-Resource allocation for redundant so
	M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel, Optimal allo
	S. Ozekici, K. Altinel, and S. Ozcelikyurek, Testing of software
	O. Berman and N. Ashrafi, Optimization models for reliability of
	O. Berman and M. Cutler, Optimal software implementation conside
	H. W. Jung and B. Choi, Optimization models for quality and cost
	P. K. Kapur, P. C. Jha, and A. K. Bardhan, Optimal allocation of
	C. Y. Huang, M. R. Lyu, and S. Y. Kuo, A unified scheme of some
	S. Y. Kuo, C. Y. Huang, and M. R. Lyu, Framework for modeling so
	C. Y. Huang and S. Y. Kuo, Analysis and assessment of incorporat
	C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu, Optimal allocat
	F. N. Parr, An alternative to the rayleigh curve for software de
	T. DeMarco, Controlling Software Projects: Management, Measureme
	G. L. Nemhauser, A. H. G. R. Kan, and M. J. Todd, Optimization:
	M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Progra
	J. H. Lo, S. Y. Kuo, M. R. Lyu, and C. Y. Huang, Optimal resourc
	M. Xie and G. Y. Hong, A study of the sensitivity of software re
	P. S. F. Yip, X. Liqun, D. Y. T. Fong, and Y. Hayakawa, Sensitiv
	S. S. Gokhale and K. S. Trivedi, Reliability prediction and sens
	A. Pasquini, A. N. Crespo, and P. Matrella, Sensitivity of relia
	M. H. Chen, A. P. Mathur, and V. J. Rego, A case study to invest
	C. Y. Huang, J. H. Lo, J. W. Lin, C. C. Sue, and C. T. Lin, Opti
	J. H. Lo, C. Y. Huang, S. Y. Kuo, and M. R. Lyu, Sensitivity ana

