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Optimal Release Time for Software Systems
Considering Cost, Testing-Effort, and Test Efficiency

Chin-Yu Huang, Member, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract—In this paper, we study the impact of software testing
effort & efficiency on the modeling of software reliability, including
the cost for optimal release time. This paper presents two impor-
tant issues in software reliability modeling & software reliability
economics: testing effort, and efficiency. First, we propose a gener-
alized logistic testing-effort function that enjoys the advantage of
relating work profile more directly to the natural flow of software
development, and can be used to describe the possible testing-ef-
fort patterns. Furthermore, we incorporate the generalized logistic
testing-effort function into software reliability modeling, and eval-
uate its fault-prediction capability through several numerical ex-
periments based on real data. Secondly, we address the effects of
new testing techniques or tools for increasing the efficiency of soft-
ware testing. Based on the proposed software reliability model, we
present a software cost model to reflect the effectiveness of intro-
ducing new technologies. Numerical examples & related data an-
alyzes are presented in detail. From the experimental results, we
obtain a software economic policy which provides a comprehen-
sive analysis of software based on cost & test efficiency. Moreover,
the policy can also help project managers determine when to stop
testing for market release at the right time.

Index Terms—Non-homogenous Poisson process, optimal release
time, software cost model, software reliability, testing-effort.

Acronyms?!
NHPP nonhomogeneous Poisson process
MLE maximum likelihood estimation
LSE least squares estimation
SRGM software reliability growth model
Notation
m(t) mean value function, i.e., the expected number of

software failures by time ¢
m; cumulative number of detected faults in a given time
interval (0, ]
current testing-effort estimated by a logistic testing-
effort function
cumulative testing-effort estimated by a logistic
testing-effort function
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IThe singular and plural of an acronym are always spelled the same.

wi (1) current testing-effort estimated by a generalized lo-
gistic testing-effort function

Wk (t) cumulative testing-effort estimated by a generalized
logistic testing-effort function

Wi cumulative testing-effort actually consumed in time
(07 tk]

a expected number of initial faults

M, actual cumulative number of detected faults after the
test

r fault detection rate per unit testing-effort

N total amount of testing-effort eventually consumed

« consumption rate of testing-effort expenditures in
the logistic testing-effort function

A constant parameter in the logistic testing-effort func-
tion

K structuring index whose value is larger for better
structured software development efforts

P additional fraction of faults detected during testing

Tre software life-cycle length

Ts start time of adopting new techniques/methods.

Ch cost of correcting an error during testing

Cs cost of correcting an error during operation, Cy >
(&

Cs cost of testing per unit testing-effort expenditures

Co(t) cost function for acquiring or developing the auto-
mated test tools or new techniques

Co1 nonnegative real number that indicates the basic cost
of adopting new tools or techniques

Co unit new-added test cost

1. INTRODUCTION

S COMPUTER applications permeate our daily life, re-

liability becomes a very important characteristic of the
computer systems. Software reliability is consequently one of
the most important features for a critical software system. Ac-
cording to the ANSI definition [1], software reliability is defined
as the probability of failure-free software operation for a speci-
fied period of time under a specified environment. In practice, it
is very difficult for the project managers to measure software re-
liability & quality. Since the early 1970s, a number of Software
Reliability Growth Models (SRGM) have been proposed for the
estimation of reliability growth of products during software de-
velopment (SD) processes [1]-[3]. Among these models, Goel
and Okumoto [1] used a NHPP as the stochastic process to
describe the fault process. Yamada et al. [4]-[6] modified the
Goel-Okumoto model, and incorporated the concept of testing-
effort (TE) into an NHPP model to get a better description of the
software fault phenomenon. Recently, we [7]-[11] proposed a
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new SRGM with a logistic testing-effort function (TEF). A lo-
gistic TEF is a software development & test effort curve with a
good predictive capability.

In this paper, we generalize the logistic TEF. The generalized
logistic TEF has the advantage of relating a work profile more
directly to the natural structure of the SD. Thus, it can be used
to pertinently describe the resource consumption during the SD
process, and provides a significant improvement in modeling the
distribution of TE expenditures. We will show that the proposed
model is easy to use, implement, and interpret; and it works
quite well in the testing stage.

The more software tests we run, the more confidence we ob-
tain in the measured software reliability. Unfortunately, testing
with ineffective or redundant test cases may lead to excessive
cost. To avoid this phenomenon, we need to know when to stop
testing [12]. One alternative is to restrict the test data such that
testing will stop when the odds of detecting additional faults (es-
timated by SRGM) are very low. But this may not be realistic be-
cause testers typically want to test for all possible failures. It was
shown that we could get the optimal software release time based
on a cost criterion when minimizing the total expected cost [1],
[6]. Recently, many papers have discussed the optimal software
release time problem considering cost & reliability [10], [11],
[13]-[16].

To detect additional faults during the testing phase, new au-
tomated test tools or methods to create tests & eliminate re-
dundant test cases may be employed. As time progresses, they
can detect additional faults, which reduces the expenses of cor-
recting faults during the operational phase [17], [18]. These
approaches have improved software testing & productivity re-
cently, allowing project managers to improve software relia-
bility. We will further discuss the optimal release problem con-
sidering cost, TE, and efficiency. That is, based on the proposed
SRGM with logistic TEF, we present a software cost model to
incorporate the effectiveness of introducing new technologies.
The methods we propose can help the software test engineers &
software quality assurance engineers in deciding when the soft-
ware is likely to be of adequate quality for release.

The paper is organized as follows. Section II gives an SRGM
with generalized logistic TEF. Some numerical examples are il-
lustrated in Section III. Finally, Section IV introduces the con-
cept of testing efficiency factor obtained by new test tools or
techniques during testing, as well as the associated optimal soft-
ware release problem.

II. SOFTWARE RELIABILITY MODELING, AND TESTING-EFFORT
FuNCTION

In this section, we propose a set of generalized software reli-
ability growth models incorporating TEF. The mathematical re-
lationship between reliability models & TE expenditures is also
described. In addition, numerical results are given to illustrate
the advantages of this new approach.

A. Review of SRGM With Logistic TEF

A basic SRGM is based on the assumptions:
1) The fault removal process follows a NHPP.
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2) The software system is subject to failures at random times
caused by the manifestation of remaining faults in the
system.

3) The mean number of faults detected in the time interval
(t,t + At] by the current TE expenditures is proportional
to the mean number of remaining faults in the system.

4) The proportionality constant is homogenous with respect
to time (i.e., it does not change with time).

5) The time-dependent behavior of TE can be modeled by a
logistic distribution.

6) Each time a failure occurs, the fault that caused it is im-
mediately & correctly removed. Besides, no new faults are
introduced.

7) Correction of errors takes only negligible time, and a de-
tected error is removed with certainty.

Therefore, we first describe the SRGM based on TEF as

follow [8]-[11]:

x—/:rx[a—m(t)]. (1)

Note that (1) includes two components which influence the
number of faults detected: the TE function w(t), and the fault
detection rate r. Solving the above differential equation with
the boundary condition m(t) = 0, we have

m(t) :a(l — exp [— r(W(t) — W(O))})
:a(l —exp[— TW*(I‘)]) 2)

Equation (2) is an NHPP model with mean value function
(MVF) considering the TE consumption. It is noted that W (%)
represents the cumulative TE consumption (such as CPU
time, volume of test cases, human power, and so on) at time ¢
during the testing phase. The consumed TE can indicate how
effectively the faults are detected in the software. Therefore,
this function plays an important role in modeling software
reliability, and it can be described by different distributions.
From the past studies in [4]-[6], [19], several TE expressions,
such as Exponential, Rayleigh, and Weibull-type curves, etc,
can be applied.

Recently, we [7]-[9] proposed a logistic TEF to describe the
possible TE patterns, in which the current TE consumption is
expressed as

N Aa exp[—at] NA«a
U)(t) = 5 = R
(1+ Aexp[—at]) (exp [%] + Aexp [ — “7*])
3)
Because
t
W(t) = /U)(T)dT 4
0
we obtain
N

W(t) 5



HUANG AND LYU: OPTIMAL RELEASE-TIME FOR SOFTWARE SYSTEMS

The current TE w(t) reaches its maximum value at time [7], [8]

1
tmax = — In A. (6)
«

B. A New Generalized Logistic TEF

From previous studies [7]-[9], we know that the logistic TEF
(i.e. the Parr model [20]) can be used to describe the work profile
of SD. In addition, this function can be used to consider & eval-
uate the effects of possible improvements on SD methodology,
such as top-down design, or stepwise refinement. DeMarco [21]
also reported that this function was found to be fairly accurate
by the Yourdon 1978-1980 project survey. If we relax some as-
sumptions in the original Parr model, and take into account the
structured SD effort, we obtain a generalized logistic TEF as

(k+1) )
We(t)=N S R— . 7
®) X (I—I—Aexp[—ant]) M
When k = 1, the above equation becomes
N 2
Wi(t) @)

- 1+ Aexp[—at] X 6

If 3 is viewed as a normalized constant, and 3 = 2, the above
equation is reduced to (5). Similarly, if x = 2, we have

N 3
W(t) = = ©)
1+ Aexp[-2at] || B
Note if we set 5 = k + 1, we get:
We(t) = al (10)
{/1+ Aexp[—art]
and
_ dWi(t)

NeE))

In this case, the current TE wy,(t) reaches its maximum value at
time

b e = —. (12)
ar

Furthermore, an SRGM with a generalized logistic TEF can be
described as

m(t) = a<1 —exp [ = r(Wa(t) - WK(O))D

:a(l —exp[—TW:(t)]). (13)
III. EXPERIMENTAL STUDIES, AND RESULTS
A. Descriptions of Real Data Sets

In this section, we evaluate the performance of SRGM with
generalized logistic TEF by using two sets of software failure
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data. The first set of real data is from a study by [22]. The system
is a PL/I database application software consisting of approxi-
mately 1317000 lines of code. During nineteen weeks, 47.65
CPU hours were consumed, and 328 software faults were re-
moved. The total cumulative number of detected faults after a
long time of testing is 358 [23]. The second data set in this
paper is the System T1 data of the Rome Air Development
Center (RADC) projects in [2], [3]. The system T1 is used for a
real-time command & control application. In this case, the size
of the software is approximately 21 700 object instructions. It
took twenty-one weeks, and nine programmers to complete the
test. During the test phase, about 25.3 CPU hours were con-
sumed, and 136 software faults were removed. The number of
faults removed after 3.5 years of test is 188 [23].

B. Comparison Criteria

Two criteria are used for model comparisons:
1) The Accuracy of Estimation (AE) is defined [4]-[6] as

M, —a
M, |’

(14)

For practical purposes, M, is obtained from software fault
tracking after software testing.

2) Long-term predictions: the Mean Square Error (MSE) is
defined as [8], [9], [24]

n 2
Z [m(ft) — mt]
= (15)
n

In our quantitative comparisons, we use MSE because we
believe that it is easier to understand. A smaller MSE in-
dicates a smaller fitting error, and better overall perfor-

mance.

Besides, to check the performance of the generalized logistic
TEF, and to make a fair comparison with other TEF we also
select some comparison criteria [25]-[28]:

*  Prediction Error (PE;) =

Actual(Observed); — Predicted( E stimated);

« Variation = /(3 (PE; — Bias)?)/(n — 1).

* Bias =Y _(PE;/n).

* Magnitude of Relative Error (MRE)=

Mactual)/Mactual | .

|(Mestimated -

C. Estimation of Model Parameters by Least Square Method

To validate the proposed SRGM with a generalized logistic
TEF in (13), experiments on two real test data sets have been
performed. Two popular estimation techniques are MLE, and
LSE [2]. The maximum likelihood technique estimates param-
eters by solving a set of simultaneous equations. However, the
equation sets may be very complex, and usually must be solved
numerically. The method of least squares minimizes the sum of
squares of the deviations between what we actually observe, and
what we expect. Therefore, we decided to fit the logistic TEF,
and the proposed model directly with the above two data sets,
using the least sum of squares criterion to give a “best fit”. Here
we can easily use MSE to judge the performance of the models.
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The parameters N, A, a, and k of the generalized logistic
TEF in (10); and the parameters a, and r given in (13) can be
estimated by the method of least squares. For the method of
least square sum, the evaluation formula S1(N, A, «, k), and
S2(a,r) are as:

Minimize SIN, A, a,k) = > [Wi, = Wa(t)]? (16)
k=1

[mi —m(t)]. (17)

NE

Minimize S2(a,r) =

=~
Il
-

Differentiating S1(.S2) with respect to N, A, «, and (a, ) re-
spectively, setting the partial derivatives to zero, and rearranging
these terms, we can solve this type of nonlinear least square
problems. For a simple illustration, we only consider the gen-
eralized logistic TEF with k = 1, i.e., (5).

Take the partial derivatives of S1 with respect to N, A, and
a; we get

ST N 1
ON kz_l 2<Wk 1+ Aexp[—at]) 1 + Aexp[—at] =0

B (18)
Thus, the least squares estimator N is given by solving the above
equation, yielding

- Wi
> 2 (HTQ[_M])

- : (19)
2.2 (mf

Next, we have

@:Zz W — N N exp[—at] =0
0A ¢ 1+ Aexp[—at] (1+ Aexp[—at])

=1

and
I N NA -
£:ZZ Wi t exp| at]2:0.
da 1+ Aexp[—at] | (1+ Aexp[—at]) o
(

The other parameters A & o can also be obtained by substituting
the least squares estimator NV into the above two equations.

D. Model Comparison With Real Applications

In this section, we test the predictive power of the proposed
model & other existing SRGM using two sets of software failure
data.

1) DS 1: For the first data set, LSE is used to estimate the
parameters of (10) & (13). The estimated parameter values of
the generalized logistic TEF are listed in Table I(a) for various
values of k. The proposed model estimates x = 2.633 26 for
this data set. The computed bias, Variation, MRE, and
PFEend_of_testing for the generalized logistic TEF; and the
Weibull-type TEF are listed in Table I(b). Fig. 1(a) graphically
illustrates the fitting of the estimated testing effort by using
(5), Weibull, Rayleigh, and exponential functions. Besides,
Fig. 1(b) depicts the fit of the estimated current TE by using
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TABLE 1
(a) PARAMETERS OF GENERALIZED LOGISTIC TEF FOR THE FIRST DATA SET
(b) COMPARISON RESULTS FOR DIFFERENT TEF BASED ON THE FIRST DATA
SET (c) COMPARISON RESULTS FOR THE FIRST DATA SET

K N A o
1 54.8364 13.0334 0.2263
1.5 52.0072 40.6042 0.1888
2 50.2178 115.228 0.1700
2.63326 48.7768 429.673 0.1580
3.5 48.1693 2188.22 0.1442
4 47.8507 5709.29 0.1399
(@
TEFS BIAS VARIATION MRE PEgND oF
TESTING
Proposed TEF (k=1) -0.1 1.30724 0.022161 1.05597
Proposed TEF (k=1.5) -0.12143 1.43605 0.026402 1.25806
Proposed TEF (k=2) -0.14163 1.54713 0.029944 1.42681
Proposed TEF (k=2.63326) -0.11617 1.67112 0.031977 1.52368
Proposed TEF (k=3.5) -0.2211 1.79064 0.028625 1.36399
Proposed TEF (k=4) -0.24341 1.851 0.027663 1.31815
[Rayleigh Distribution 0.8302 2.169 0.0525 2.5038
[Exponential Distribution -0.3938 1.3685 0.0266 1.2688
Weibull Distribution 0.0342 0.9559 -0.0079 -0.3775
(d)
MODEL A R AE (%) MSE
Proposed Model (k=1) 394.08 | 0.0427223 10.06 118.29
Proposed Model (x=1.5) 384.71 | 0.0450374 7.46 114.32
Proposed Model (k=2) 377.16 | 0.0478156 535 112.41
Proposed Model (k=2.63326) 369.03 [ 0.0509553 3.08 107.73
Proposed Model (x=3.5) 412.87 | 0.0399382 1532 120.76
Proposed Model (k=4) 414.43 | 0.0398619 15.76 189.21
Goel & Okumoto Model 760.00 | 0.0322688 | 112.29 139.82
Delayed S-Shaped Model 374.05 | 0.1976510 14.48 168.67
Inflection S-Shaped Model 389.10 | 0.0935493 8.69 133.53
G-O Model with Weibull TEF 565.35 | 0.0196597 57.91 122.09
IG-O Model with Rayleigh TEF 459.08 | 0.0273367 28.23 268.42
IG-O Model with exponential TEF | 82825 | 0.0117836 | 131.35 140.66

(c)

(10) with different values of . This shows that the peak work
rate occurs when about half of the work on the project has been
done. This phenomenon suggests that, in a well-structured SD
environment, the slope of the TE consumption curve may grow
slowly initially, but a compensating reduction will happen later.
Fig. 1(c) graphically illustrates the comparisons between the
observed data, and the data estimated by the proposed model.
Table I(c) shows the estimated values of parameters a, and r
which minimize MSE for different SRGM. The comparison
criterion AE is also listed. From Tables I(b), (c¢), and Fig. 1(c),
we can see that the proposed model achieves a better good-
ness-of-fit than other SRGM.

2) DS 2: Similarly, the LSE is also applied to estimate the
parameters of (10) & (13). The estimated parameter values of
the generalized logistic TEF are listed in Table II(a). The pro-
posed model estimates x = 1.27171 for this data set. Addi-
tionally, other possible values of « are listed in Table II(a). The
computed bias, Variation, MRE, and PFEend_of_testing fOr
the generalized logistic, Rayleigh, and exponential TEF are il-
lustrated in Table II(b). Fig. 2(a) graphically illustrates the fit-
ting of the estimated TE by using (5), Rayleigh, and exponen-
tial functions. Fig. 2(b) depicts the fit of the estimated current
TE by using different TEF, and Fig. 2(c) graphically shows the
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Testing Effort (CPU Hours)

4

Weibull

~ Rayleigh

~
> i
N
= -
AN
N
Expon. N
3 N

N

Logistic (k=1)
——=Weibull

TABLE 11
(a) PARAMETERS OF GENERALIZED LOGISTIC TEF FOR THE SECOND DATA SET
(b) COMPARISON RESULTS FOR DIFFERENT TEF BASED ON THE SECOND DATA
SET(c) COMPARISON RESULTS FOR THE SECOND DATA SET

//Logistic (k=1)

Observed

Rayleigh
Expon.
e Observed

Time (Weeks)

0 2.5 5 7.5

Testing Effort (CPU Hours)

10 12.5 15 17.5

(@)

4 K=2.63326 K=2
/>-‘~
3 K=1
: /
2 %
K=1
g ——-—K=2
1 oosecsssesesse K=2.63326
K=3.5 —e=: K=3.5
® Observed
Observed .
0 Time (Weeks)
0 2.5 5 7.5 10 12.5 15 17.5

Number of Failures

(®

300

250

200

K N A o
1 29.1095 4624.89 0.4935
1.27171 28.153 20903.9 0.4447
1.5 28.1513 45843.8 0.3974
2 28.1458 260550 0.3330
3 28.0464 3784150 0.2572
@
TEF BIAS |VARIATION| MRE PEiND oF
TESTING
Proposed Model (k=1) 0.055515 | 0.35073 | 0.004002 -0.10125
Proposed Model (k=1.27171) 0.026032 | 0.339497 0.00011 -0.00278
Proposed Model (k=1.5) -0.06972 | 0.359071 | 0.003385 -0.08565
Proposed Model (k=2) -0.19428 | 0.470271 | 0.007307 -0.18488
Proposed Model (k=3) -0.55257 | 0.824229 | 0.003663 -0.09267
Rayleigh Distribution -1.1 3.4579 0.2384 6.0332
Exponential Distribution -17 6.3495 -0.5254 -13.294
(b)
MODEL A R AE (%) | MSE
Proposed Model (k=1) 138.026 0.145098 26.58 62.41
Proposed Model (k=1.27171) 140.013 0.137916 25.52 23.79
Proposed Model (k=1.5) 139.191 0.141159 25.96 25.04
Proposed Model (k=2) 142.505 0.12406 24.19 27.62
Proposed Model (k=3) 147.808 0.103272 21.37 29.17
Goel & Okumoto Model 142.32 0.1246 24.29 | 24383
Exponential Model 137.20 0.156 27.12 | 3019.66
Delayed S-Shaped Model 237.196 | 0.0963446 | 26.16 | 245.25
G-O Model with Rayleigh TEF 866.94 | 0.00962474 | 361.13 | 89.24

150 ’

0 Time (Weeks)

Fig. 1(a) Observed/estimated different TEF vs. time for the first data set.
(b) Observed/estimated TE (by using equation (10) with different values of )
vs. time for the first data set. (c) Estimated MVF vs. time for the first data set.

comparisons between our models with respect to the observed
data. Besides, Table II(c) shows the estimated values of param-
eters by using different SRGM, and the comparison criteria AE
& MSE. As seen from Table II(c), our proposed models have
much lower MSE than their competitors. Finally, because a good
SRGM should be able to predict the behavior of future failures
well, Fig. 2(d) shows a u-plot analysis of predictions from the
selected models on DS2 [1]. It is obvious that the u-plot of the
proposed model is close to the line of unit slope. Altogether,
the proposed model provides a more accurate description of re-
source consumption during the SD phase, and gives a better data
fit for this data set.

IV. OPTIMAL SOFTWARE RELEASE POLICIES

Software reliability growth models can capture the quanti-
tative aspects of the software testing process, and be used to
provide a reasonable software release time. During the software
testing phase, the developers can use the SRGM to determine
when to stop testing. If the reliability goal is achieved, the soft-
ware product is ready for release. Several approaches can be
applied. For example, we can control the modified consumption

(©)

rate of TE expenditures, and detect more faults in a prescribed
time interval [5], [8]. In addition to controlling the TE expendi-
tures, we can achieve a given operational quality at a specified
time by introducing new automated testing tools & techniques
to find those faults not easily exposed during the earlier manual
testing phase [17], [18]. In the following, based on the proposed
SRGM, constructive rules are developed for determining op-
timal software release time.

A. Optimal Software Release Time Problem

To shift the software from the testing phase to the operational
phase, theoretical determination of the release time of software
is a very important problem in terms of economics. In recent
years, the problem of optimal software release time has been
analyzed & discussed by many papers [6], [9]-[16], [29]-[35].
The release time problem is associated with the cost of a soft-
ware system. Okumoto and Goel [29] first discussed the op-
timal software release policy from the cost-benefit viewpoint.
The total cost of TE expenditures at time 7', C'1(T'), can be ex-
pressed as [36]

CU(T) = Cym(T)+Com(Te)—m(T)]+Cs / we(t)dt

(22)
where C is the cost of correcting an error during testing, Cs
is the cost of correcting an error during operation, and Cj is
the cost of testing per unit TE expenditures. From the work by
Boehm [37], [38], we know C' is usually an order of magnitude
greater than Cf.
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Testing Effort (CPUHours)

3.5 Logistic(k=1)
—=—=— Rayleigh
3 ==+ Expon.
® Observed
2.5 -
. Logistic
2 S -
Expon . T~
1.5 4 Rayleigh
1
—
0.5 _
0 . ‘ Time (Weeks)
0 5 10 15 20

()

3.5 —_— K=1
——- K=1.27171
3= = x=2
25 —eo— Observed
2 K=1—>,
15 Observed
1
0.5
0 — . s Time (Weeks)
0 5 10 15 20
(b)
Number of Failures
140
120 K=1 K=1
——=K=1.27171
100 mesmssssssses K=2 K=2
-cems K=3
80 ® Observed K=1.271
60
40
Observed
20
- Time (Weeks)
0 5 10 15 20
(©
1 T
— proposed model with k=1.27171 7
— G-0 model P
03 _. delayed S-Shaped £ 7
0l exponential model o |
: -
07} G-0 model 7 - 1
T
A
06 - 1
47" Proposed model
|
05t ; , R
Iy ’
2, <
04 . 1
i
I \
03 - 'Iﬁelayed S-shaped model 1
o /7
02F . E
b A
0ir g ’ Exponential model ]
0 =

0 01 02 03 04 05 06 07 08 03 1
(d)

Fig. 2 (a) Observed/estimated different TE vs. time for the second data set.
(b) Observed/estimated TE (by using equation (10) with different values of x)
vs. time for the second data set. (¢) Estimated MVF vs. time for the second data
set. (d) u-plot analysis.

Practically, to detect additional faults during testing, the test
engineers may use new automated tools or techniques. The cost
trade-off of these new tools & techniques, therefore, should be
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considered in the software cost model, including their expendi-
tures & benefits. To study the effect of improving test efficiency
on the software cost, a software cost model should take account
of TE & test efficiency. Consequently, the overall software cost
model can be re-formulated as

C2T) = Co(T) + C1(1+ P)m(T)
+ Co[m(Tre) — (14 P)m(1)] + CB/wn(t)dt

0
(23)

where Cy(T) is the cost function for developing & acquiring
the automated test tools or new techniques that can detect an
additional fraction P of faults during testing. That is, if P is
to be increased, it is expected that the extra costs are needed to
engage more experienced testers, or introduce more advanced
testing tools.

We note that the cost for developing & acquiring new tools
or techniques, Cy(7"), does not have to be a constant during the
testing. The testing cost for Cp(7") can be parameterized & esti-
mated from actual data. Furthermore, Cp(T") may have different
forms as time progresses, which depends on the characteristics
of a tool’s performance, TE expenditures, effectiveness, and so
on. Consequently, we can try to formulate this cost function as a
linear function, or a nonlinear function. In general, the longer the
software is tested, the more the testing cost Co(T"). Under the
cost-benefit considerations, the automated tools or techniques
will be preferred if

C1(T) — C2(T) > 0. (24)

From (13), we know
Cym(T)+ Cs [m(TLC) - m(T)]
+ Cg/’w,i(t)dt - Co(T) — C1(1 4+ P)m(T)
0

— Ca[m(Tre) — (1+ P)m(T)]

T
—Cs / wy(t)dt > 0 (25)
0
Rearranging the above equation, we obtain
CO(T) < P x m(T) X (Cz — Cl) (26)

Equation (26) is used to decide whether the new automated
tools or methods are effective or not. If Co(T") is low enough, or
if the new methods are effective in detecting additional faults,
this investment is worthwhile. Usually, appropriate automated
tools or techniques are selected depending on how thoroughly
failure data are collected, and faults are categorized [30], [31].
Sometimes incorporating new automated tools & techniques
into a SD process may introduce excessive cost, i.e., C1(T) —
C2(T) < 0. However, if these tools & techniques can really
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shorten the testing period under the same software reliability
requirements, they are valuable.
By differentiating (23) with respect to the time 7', we have

d d d
02T = —Co(T) + O (14 P)m(T))

d
—Cgﬁ (14 P)ym(T)) + Csw,(T) (27)
If we let (27) be equal to zero, we can get a finite & unique
solution 7 for the optimal software release time problem based
on the new cost criterion. From (27), if we let C'1(1+ P) = Cf,
and C5(1 + P) = C3, then we have

d d L d
L d
-C5 d—Tm(T) + Csw(T). (28)
If the MVF is given in (13), we obtain
d d " "
d—TCZ(T) = d—TCO(T) + Clarw,(T) exp [ — rWi(T))]

— Csarw(T)exp [ — rWi(T))] + Csw,(T).
(29)

Without loss of generality, we consider several possibilities
for Co(T') in order to interpret the possible cost overheads:

1) Co(T) is a constant. For some small projects, it is
just enough for the project managers to purchase only
common types of automated tools, if they want to detect
more faults. Therefore, the extra cost is almost fixed.
On the other hand, some companies may need to create
their own test tools due to certain project requirements.
Sometimes creating these tools is not expensive because
they need to hire some engineers, or consider outsourcing
[39].

2) Co(T) is linearly related to the TE expenditures. Just as
mentioned above, it is enough for the project managers
to simply purchase general automated tools if they want
to detect more faults, and the scale of the projects is not
large. Sometimes test tool vendors offer various types of
support, such as software upgrades, patches, or mainte-
nance supports, etc. with different fees [39]. Therefore,
the cost of introducing these test tools may not be con-
stant, and it can be linearly increasing in part of the total
software cost.

3) Co(T) is exponentially related to the TE expenditures.
Due to the complexity of the software, it may not be easy
for test engineers to detect additional faults if they only
purchase general tools or equipment. Special software ap-
plications, such as distributed systems, enormous rela-
tional databases, and embedded software, are more diffi-
cult to comprehend for test engineers without related ex-
perience. Hence, introducing more advanced or new tools
into companies may lead to the exponential growth in
software development cost. These necessary automated
tools or new techniques are expensive ways to detect more
faults. For larger projects or on-going long-term projects,
they are critical, and sometimes inevitable. Besides, in
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some cases, exponential increases in the volume of test
cases are needed in order to satisfy some criterion during
testing. Thus Cy(T") is exponentially related to the TE ex-
penditures.
Theorem 1: Assume Cy(T') = Cy (constant), Cy > 0, C; >
0,Cy > 0,C3 >0, Cy > Cq; then we have
case ) If (C3 — CF)ar exp[—rW}*(Ts))] > Cs, and (C5 —
CYarexp[—rW(Trc))] < Cs, then there exists a
finite, unique solution Ty = (1/a) x In(A©%/N* —
©7), satisfying (C5 — CT)ar exp[—rW3(T))] = Cs,
and the optimal software release time is 7" = Tj.
case 2) If (C5 — CF)ar exp[—rW*(Ts))] < Cs, then T* =
1.
case 3) If (C5 — C)ar exp[—rW3(Trc))] > Cs, then T* =
TLC-
Proof: 1If Cy(T) is a constant; that is, Co(T") = Cy, T >
Ts; Co(T) = 0, T < Ts. Taking the first derivative of (23) with
respect to the time 7', we obtain

O OAT) =, (1) x[~(C5 ~ O ar expl—r W (T)] +5].
(30)

Because wy(T) > 0for0 < T < oo, H(T) = 0 if
(€5~ G aresp[AWI(TN] = C5 G

The left-hand side of (31) is a monotonically decreasing func-
tion of 7. There are three cases:

(OHIf(C; — CF) x arexp[—rW}(Ts))] > Cs, and (C§ —
Ct)arexp[—rWk(Trc))] < Cs, there exists a finite,
unique solution 7§ satisfying (31).

AO"

1
To=—x1In <7> minimizes C2(T)

« Nr — OF (32)

?

where © = (1/7)(In(ar(C5 —C5)/C3)))+(N//1+ A
because H(T') < 0 for T, < T < Ty, and H(T) > O for
To< T < Tpe.

Q) If (C3 — CY)arexp[—rWi(Ts))] < Cs, then (C5 —
CY)arexp[—rWi(Tre))] < CsforTs < T < Trc.
Therefore, the optimal software release time 7% = T
because H(T) > OforTs < T < Trc.

QB)If (C5 — CY)ar exp[—rW(TLc))] > Cs, then (C5 —
CHarexp[—rWi(T))] > Csfor T, < T < Trc.
Therefore, the optimal software release time 1™ = Tp¢
because H(T) < OforTs < T < Trc.

The following theorems can be obtained & proved in a similar
manner.

Theorem2: Assume Co(T) = Co1+Co fTTS wy (t)dt, Coy >

0,Cy>0,C1>0,C5>0,C35 >0, Cy > Cq; then we have

case ) If (C5 — CY)ar exp[—rW(Ts))] > C5 + Cy, and
(C5 — CHarexp[—rWi(TLe))] < Cs + Cp, then
there exists a finite, unique solution 7y = (1/«@) X
In(A®%/N* — ©%), with ® = (1/7)(In(ar(C2* —
C1%)/(C3+C0)))+(N/ /1 + A), satisfying (C3 —
CYHarexp[—rW(T))] = Cs + Cy, and the optimal
software release time is 7 = Tj.

case 2) If (C5 — C7)ar exp[—rW(Ts))] < C3 + Cp, then

T =1Ts.
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case 3) If (C5 — CY)ar exp[—rWi(Trc))] > Cs+ Co, then
T = Tre.

Theorem 3: Assume Co(T) = Co1 + (Co fTTS wy(t)dt)™,
Co1>0,Cp>0,C1 >0,Cy >0,C3 >0,Cy > Cq; then we
have

case DIf (C5 — CY)arexp[—rWi(Ts))] >  Cs,

and [(C3 o CHarexp[—rWi(TLe))] -
Comx(Co [, we(t)dt)™™] < Cs, then there
exists a finite, unique solution Ty satisfying [(C5 —
* * T m—
Ct)ar exp[—rWi(T))|—Com(Cy [, we(t)dt)™ ]
= (3, and the optimal software release time

is T* = To.

case 2)If (C} — Cf)ar exp[—r(W,(Ts) — W,.(0))] < Cs,
then 1™ = T5.

case 3) If [(Cs CHar exp[—rWi(TLc))]

—Com(Coy [ we(t)dt)™1] > then
T = Trc.
Theorem 4: Assume Cy(T) = Cp1 + Cp X (f;:s w, (t)dt)™,
Co1>0,Cy>0,C1 >0,C5 >0,C5 >0,Cy > Cq; then we
have

case DIf (C5 — CTarexp[—rWi(Ts))]

Cs,

> (3, and

[ar(C3 Cf) expl—r W (Tre)))~Com
(Jre€ we(t)dt)™™'] < Cs, then there is a fi-

nite, unique solution Ty satisfying [ar(C5
* * T m—
CT) exp[—rW(T))]=Com( [, we(t)dt)" 1] =
C3, and the optimal software release time is 7* = Tj.
case 2)If (C3 — Cf)ar exp[—rW}*(Ts))] < C3, then T* =

Ts.
case 3) If [ar(C5 - CHYexp[—rWi(TLc))]
—Com( [ we(t)dt)™ 1] > C3, then T* = Trc.

Theorem 5: Assume Co(T) = Co1 + Cy X
(exp[m [ wy(t)dt] — 1), Co1 > 0, Cy > 0, Cy > 0, Cy >0,
C3 > 0, Cy > (C1; then we have

case ) If (C5 — CY)arexp[—rW}:(Ts))] — Com > Cs,

and (Cs — CY)ar exp[—rW2(TLc))]
—Com explm ';:SLC wy(t)dt] < O3, then there
exists a finite, unique solution 7 satisfying (Cy —

C})ar exp[—rWi(T))]—Com exp[m fqi wy (t)dt] =

C3, and the optimal software release time
isT* = T().

case 2) If (C5 — CY)ar exp[—rW(Ts))] — Com < Cs, then
T = Ts.

case 3) If (Cs — CHar exp[—rW, (Trc))]
—Cymexp[m fTTfC w (t)dt] > C5, then
T = Trc.

B. Numerical Examples

We have considered several different cases of minimizing the
software cost in which the new automated tools & techniques
are introduced during testing. As an illustration, we choose (10)
(i.e., the generalized logistic TEF) as the TE function. In addi-
tion to the estimated parameters for the first data set, we further
assume Cy; = $1000, C; = $10 per error, Co = $50 per error,
C3 = $100 per unit TE expenditures, and Tpc = 100 weeks.
Due to the limitation of space, here we only consider the fol-
lowing two types of cost function Cy(7"). Similar conclusions
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TABLE III
RELATIONSHIP BETWEEN THE COST OPTIMAL RELEASE TIME T, C'(T*), AND
P, BASED ON THE COST FUNCTION Co(T') = 1000 + 10 X ff; w,(t)dt

Optimal Release | Total Expected Optimal Release | Total Expected

P Time T* Cost C(T*) P Time T* Cost C(T*)
0.01 19.7381 5574.05 0.07 21.8541 4613.69
0.02 20.0016 5414.50 0.08 22.4464 4452.94
0.03 20.2887 5254.74 0.09 23.2027 4292.02
0.04 20.6072 5094.77 0.10 24.2839 413091
0.05 20.9650 4934.60 0.11 26.1106 3969.62
0.06 21.9747 4774.24

TABLE IV
RELATIONSHIP BETWEEN THE COST OPTIMAL RELEASE TIME
T+, C(T*), AND P, BASED ON THE COST FUNCTION
Co(T) = 1000+ 5 X (exp[1.2 X [ w, (t)dt] — 1)
P Optimal Release | Total Expected P Optimal Release | Total Expected

Time T* Cost C(T*) Time T* Cost C(T*)
0.01 19.5450 5573.23 0.07 19.9397 4616.49
0.02 19.6152 5413.91 0.08 20.0002 4456.85
0.03 19.6834 5254.54 0.09 20.0594 4297.17
0.04 19.7499 5095.11 0.10 20.1175 4137.45
0.05 19.8147 4935.62 0.11 20.1745 3977.68
0.06 19.8779 4776.08

are also obtained from the other cost functions. The selected
cases are:

(i)  Co(T) = Cor + (Co x [ wy(t)dt)™, and

(i)  Co(T) = Co1 + Co x (exp[m [ w.(t)dt] —1).

First, suppose Co = $10, Ts = 19, and m = 1; thus
Co(T) = 1000410 x ffg wy(t)dt. Applying Theorem 2, the re-
lationship of the optimal release time & P is given in Table III.
From Table III, we see that if the value of P is larger, the op-
timal release time is larger, and the total expected software cost
is smaller. This indicates that when we have better testing perfor-
mance, we can detect more latent faults through additional tech-
niques & methods. Compared with (22) where T = 24.2828,
C1(T*) = 4719.66, we can see that in Table III, almost the
same optimal release time is achieved when P = 0.10 (i.e.,
T* = 24.2839); then C2(T*) = 4130.91. This means that the
C2(T) is smaller than C'1(T') with the equal optimal release
time; that is, the assumption C'1(T") — C2(T) > 0 is satisfied.
Besides, the reliability is increased from 0.89 to 0.98 (here the
reliability is defined as R(t) = m(t)/a). Similarly, the relation-
ship of the optimal release time with various P values based
on another cost function Co(7T)) = 1000 + 5 x (exp[l.2 X
ff; wy(t)dt] — 1) is also shown in Table TV.

From the examples illustrated in Tables III Tables IV, we can
conclude the following facts:

1) When P is relatively small (such as 0.01, 0.02, 0.03, .. .,
to 0.00), the total expected cost is larger than the expected
value of (22): C'1(T*) = 4719.66. This is due to the basic
cost of adopting new automated techniques or tools.

2) As P increases, the optimal release time 7™ increases,
but the total expected software cost decreases. This is be-
cause we can detect more faults, and reduce the cost of
correcting faults during the operational phase.

3) Under the same P value, and with different cost functions,
the larger the cost function, the smaller the optimal release
time.
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The above analyses will greatly aid software personnel in
choosing the best software economic policy based on cost,
testing-effort, and test efficiency.
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