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Abstract—Arc segmentation plays an important role in the process of graphics recognition from scanned images. The GREC arc

segmentation contest shows there is a lot of room for improvement in this area. This paper proposes a multiresolution arc

segmentation method based on our previous seeded circular tracking algorithm which largely depends on the OOPSV model. The

newly-introduced multiresolution paradigm can handle arcs/circles with large radii well. We describe new approaches for arc seed

detection, arc localization, and arc verification, making the proposed method self-contained and more efficient. Moreover, this paper

also brings major improvement to the dynamic adjustment algorithm of circular tracking to make it more robust. A systematic

performance evaluation of the proposed method has been conducted using the third-party evaluation tool and test images obtained

from the GREC arc segmentation contests. The overall performance over various arc angles, arc lengths, line thickness, noises, arc-

arc intersections, and arc-line intersections has been measured. The experimental results and time complexity analyses on real

scanned images are also reported and compared with other approaches. The evaluation result demonstrates the stable performance

and the significant improvement on processing large arcs/circles of the MAS method.

Index Terms—Graphics recognition, arc segmentation, multiresolution, circular tracking, vectorization, performance evaluation.
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1 INTRODUCTION

ARC segmentation is the process of recognizing arcs and
circles from images, especially the scanned images of

engineering drawings. Since arcs/circles are essential
elements of many types of drawings, e.g., construction
drawings, mechanical drawings, and circuit drawings, arc
segmentation has received great attention in the last two
decades [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. From 1995,
the IAPR International Workshop of Graphics Recognition
(GREC) regularly held graphics recognition contest to
examine the state-of-the-art of graphics recognition meth-
ods. The first arc segmentation contest was held in 2001
[23]. According to the contest results [24], the current arc
segmentation solutions are still far from satisfactory,
especially for real scanned images, due to the known
difficulties, including the degradation of arc images and the
presence of other graphical elements, texts, and noises. This
demonstrates that there is a lot of room for improvement in
arc segmentation.

The existing arc segmentation methods can be classified
into two classes: vectorization-based segmentation methods
and direct segmentation methods. The former class first
performs a raster-to-vector conversion on an image, and
then segments arcs/circles from the vectors. The latter class
works directly on the image and segments arcs/circles at
the pixel level. A detailed review of these methods is
provided in Section 2. In our previous research [22], we

proposed a seeded pixel tracking method for arcs/circles;
however, it has three major limitations. In this paper, we
propose new techniques to remove these limitations for
significant performance improvement. The new method has
been tested systematically and exhaustively using the test
images of GREC’01 and GREC’03 arc segmentation contests
and other real images. The comparison result with other
approaches shows that the performance on real images has
been greatly enhanced by our method.

The rest of this paper is organized as follows: Section 2
reviews the existing arc segmentation methods. Section 3
describes the proposed multiresolution arc segmentation
method in detail. Section 4 reports the experimental results
on various test images and the comparison with other
methods. Finally, Section 5 draws our conclusions.

2 RELATED WORK

Vectorization-based segmentation methods all employ
some vectorization approaches as preprocessing to convert
a raster image into raw vectors (usually short segments);
therefore, arc segmentation actually works at the vector
level. Vectorization can be implemented by various meth-
ods [25], [26], [27], [28], [29], but it is not the focus of this
paper. We focus on how to segment arcs/circles from raw
vectors. According to the underlying techniques, these
methods are further divided into arc-fitting methods [1], [3],
[4], [7], [10], [12], [18], [20], [21], circular Hough Transform
(HT) methods [2], [5], [8], [9], and stepwise arc extension
methods [13], [14], [15].

. Arc-fitting methods first collect a group of vectors
which are believed to form an arc or a sequence of
arcs, and then find the fittest arc parameters by some
iterative processes, such as least square computation
[7] and iterative splitting [4]. The major limitation of
these methods is the sensitivity to vector distortions,
leading to localization errors.
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. Circular HT methods globally map the vertices of all
vectors to the circle parameter space, and then detect
the parameters with high accumulative values as
potential arcs and circles. These methods can resist
partial vector distortions; however, the circular HT
requires more computation and memory space
(3D transform space instead of 2D space in the linear
HT), which is not efficient for large arcs/circles.
Moreover, they are in a dilemma of choosing a
proper threshold for both accepting short arcs and
eliminating noises.

. Stepwise arc extension methods are developed from
the Perpendicular Bisector Tracing algorithm [13] to
the Incremental Arc Segmentation algorithm (IAS)
[15]. IAS algorithm first detects a candidate arc, and
then uses the shape and style of the current arc as
constraints to select a new fragment appended to the
current arc. This algorithm has a certain capability in
handling distortions; however, it cannot handle well
the cases when there are big intersections on an arc
or when an arc shares vectors with other graphic
objects.

We note that vectorization-based segmentation methods
share a common disadvantage: Their performance is
affected by the information loss and distortions introduced
by vectorization; that is, the resulting arc may fit the
component vectors well, but it does not necessarily fit its
raster image. This phenomenon is also called “uncontrolled
location errors” [18].

Since such information loss and distortions are the
inherent weaknesses of vectorization, direct segmentation
methods aim at avoiding the disadvantages of vectorization
by segmenting arcs/circles from an image directly. These
methods include statistical methods [11], [17] and pixel
tracking methods [6], [16], [19], [22].

. Statistical methods utilize the symmetric attribute of
circles to detect them. They first scan an image
horizontally (or vertically) to accumulate the times
of each position being the midpoint of two edge
points. Then, they perform linear HT on those
positions with high accumulative values to generate
a group of horizontal (or vertical) symmetrical axes.
The intersections of horizontal and vertical symme-
trical axes become candidate circle centers. Finally,
they collect the contributing edge points to each
circle center to form the subimage of this circle.
These methods are robust for circles, even ellipses;
however, they cannot handle arcs. Moreover, they
are very time-consuming for large images.

. Pixel tracking algorithms are based on the geometric
constraints of arcs/circles. Kovalevsky’s algorithm
[6] begins with two tracked straight-line segments,
which give a hint of the arc curvature and construct
a center polygon. If the next tracked straight-line
segment conforms to the center polygon, the arc can
be extended; otherwise, the tracking stops. This
method can track through intersections and is less
noise-sensitive on the condition that the center
polygon is accurate. However, there is no guarantee
to that. Wei’s algorithm [16] proposes to compare the
arc radius with the distances between candidate
pixels and the arc center to select the next tracking
pixel. But, the intensive distance computations slow
down the tracking. Since neither of the above two

algorithms contains adjustment to the initial arc
parameters (center and radius), they cannot track
out an entire arc/circle if the initial arc parameters
are inaccurate. In our previous research [19], [22], we
proposed a Seeded Circular Tracking (SCT) method
with a dynamic adjustment algorithm; therefore, the
fragmentation error rate is significantly decreased.
SCT is also faster than the above two algorithms
because the circular tracking path is generated by
the efficient Bresenham algorithm for circle [30].
However, the SCT method has three major limita-
tions: 1) The seed segments for arcs are detected
from the potential arc positions produced during the
straight-line recognition; therefore, it is not indepen-
dent. 2) It fails to detect too-small or too-large arcs/
circles. Moreover, the dynamic adjustment is not
efficient for too-large arcs/circles. 3) The false
detection removal largely relies on the progressive
simplification of the OOPSV model [22].

The Multiresolution Arc Segmentation (MAS) method
proposed in this paper makes major improvements over the
SCT method by developing new techniques and improving
the dynamic adjustment algorithm, and eliminates the
above-mentioned three limitations. Therefore, the proposed
algorithm is self-contained and is more efficient.

3 MAS ALGORITHMS

At first, we need to analyze the limitations of the SCTmethod
in more detail. Limitations 1) and 3) of the SCT method are
mainly due to its close coupling with other algorithms in the
OOPSV model for the purpose of utilizing the intermediate
results of other algorithms conveniently. However, when we
want to segment only arcs/circles without considering
straight lines, noncircular curves, and texts, the SCT method
cannot accomplish the task independently. The weakness of
detecting too-small arcs is due to the length limit of seed
segments for straight lines, which form potential arc
positions. An arc is detectable when its length is longer than
three seed segments. This length limit misses small arcs. On
the other hand, if the radius of an arc/circle is too large, its
curvature cannot be detected in a limited length, which leads
to theweakness of detecting too-large arcs/circles.Moreover,
with the increasing radius, the rapid growth of circumference
length makes the pixel tracking less efficient. To overcome
these limitations, the proposedMASmethod devises a novel
multiresolution arc segmentation paradigm to handle large
arcs/circles, a sensitive pixel-level arc seed detection algo-
rithm to detect arcs/circles from images directly, and a
confidence-weighted arc verification algorithm to remove
false detections.

3.1 Multiresolution Arc Segmentation Paradigm

The MAS method works not only at the original resolution,
but also at lower resolutions, i.e., smaller images downsized
from the original image. For a big arc which is not
detectable at the original resolution, it may become
detectable in some lower resolution because its radius is
scaled down. The processing time for the arc is reduced as
well. However, multiresolution segmentation also brings up
two critical issues: 1) the repetitive detection of the same
arc/circle at more than one resolution and 2) the localiza-
tion of arcs/circles detected from lower resolution levels in
the original resolution level. Fig. 1 shows the proposed
MAS paradigm which handles these two issues well.
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The MAS paradigm divides the whole processing into
N layers ðN � 1Þ, where each layer corresponds to one
resolution level. In eachLayer½i�, there are two images (called
twin images) with the same size, Work Image½i� and
Bak Image½i�, which are the key to eliminate repetitive
detections. The whole processing starts from Layer½0�, i.e.,
the original resolution. The original image serves as
Bak Image½0� and, initially, Work Image½0� is an identical
copy ofBak Image½0�. First, the pixel-level arc seed detection
is performed in Work Image½0�. A pixel-level arc seed is a
segmentof raster shape showing the circular curvature. Then,
for each detected arc seed, the dynamic circular tracking is
invoked inBak Image½0�. If the tracking succeeds, a new arc/
circle will be segmented. Finally, the pixels corresponding to
the segmented arc/circle are erased fromWork Image½0� and
the arc segmentation in Layer½0� is completed. The twin
images for the next layer are then generated as follows:
Work Image½i� is downsized byhalf in bothwidth andheight
from the current Work Image½i� 1� (where the segmented
arcs/circles are erased), and the Bak Image½i� is always
downsized by 0:5i in both width and height from the original
image (i.e., Bak Image½0�). After the twin images of Layer½i�
are ready, the execution of seed detection, tracking, and
erasing processes is the same as that in Layer½0�. Therefore,
the arcs/circles segmented in a high resolution level will not
be detected in the lower resolution levels.Moreover, since the
tracking works in Bak Image, the possible overerasing at
intersections in Work Image will not affect the tracking.
Before the segmented arcs/circles from each layer are added
to the resulting arcs/circles, they need to first go through a
localization process to obtain their accurate parameters in the
original resolution, and then pass an arc verification process
to eliminate false detections.

The layer number of the multiresolution image pyramid,
i.e., N , is determined as follows:

N ¼ 1þ Log2MAX 1;
MINðwidth; heightÞ

Tsize

� �� �
: ð1Þ

Tsize is the threshold to stop the iterative downsizing.
According to (1), when the minimum of width and height is
less than 2� Tsize, the image will not be downsized any
more. The smaller Tsize is, the larger N is. Usually, Tsize

should be set to be slightly larger than the maximum

detectable radius in the pixel level, denoted by Rmax, which
is derived as follows:

Rmax indicates the top limit of the radius, with which the
curvature of an arc/circle can be detected from an arc
segment with a certain length. Fig. 2 illustrates the way to
calculate Rmax. For an arc with radius (r), its offset (d) from
its tangent line over length (l) is computed as (2).

dðr; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
� r: ð2Þ

We define the term “detectable scope” as the radius of the
maximum circular neighborhood in which the arc seed
detection algorithm searches. Suppose that l acts as the
detectable scope,Rmax is the radius of thepotential arcwhend
is very small but still detectable, as shown in (3), where l
equals 30 in our algorithm, as justified in Section 3.2.

Rmax ¼ Arg
r
½dðr; 30Þ ¼ "�: ð3Þ

Note that " is not set to be 1, but 0.75 to simulate the
quantization error of digital images. Rmax is 600 by
computing (3). Thus, we set Tsize to be 800. Since Rmax is
the limit of each layer, the MAS paradigm can handle arcs/
circles with radii as large as 2N�1 � 600. For example, a
5; 000� 5; 000 image requires three layers and the largest
detectable radius is 2,400.

As the MAS paradigm requires more memory than single
resolution segmentation, we need to study its memory
consumption. Let S denote the size of the original image,
then the total memory requirement for anN-layer segmenta-
tion is
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Fig. 1. Multiresolution arc segmentation paradigm.

Fig. 2. Rmax calculation.
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which is less than 3� S. Considering an A0-sized engineer-
ing drawing scanned with 300dpi, which is the largest
drawing size, in practice, with a fine enough scan
resolution, the size of its binary scanned image is about
12MB. Therefore, the memory required by the MAS
paradigm is less than 36MB, which is certainly affordable
for modern computers.

Sections 3.2-3.5 depict the algorithms for arc seed
detection, dynamic circular tracking, arc localization, and
arc verification, respectively. The algorithm for erasing
segmented arcs/circles is the same as that of [22], therefore,
it is omitted in this paper.

3.2 Arc Seed Detection

Arc seed detection is aimed at locating potential arc
positions in an image. Since it is the first screening process
of arc segmentation and, therefore, is frequently invoked, it
should be acute, accurate, and efficient. The requirement of
both acuity and accuracy demands that the detection
produces positive responses in arc areas and negative ones
in nonarc areas. The requirement of efficiency demands that
the detection should pass through nonarc areas very
quickly. The proposed arc seed detection algorithm satisfies
these requirements well. In the following description, we
assume the foreground color of the image is black, while the
background color is white.

The arc seed detection algorithm scans the image
horizontally every k rows, where kð� 1Þ depends on the
image resolution (Rs), the minimum radii of arcs (Rmin) and
the maximum line thickness (Wmax). Rs, measured by dpi,
can be retrieved from the image header, while Rmin and
Wmax are calculated by Rs multiplying real-life length
limits, which are usually domain-specific. In this algorithm,
the length limits for Rmin and Wmax are set to be 0.04 inches
and 0.05 inches, respectively. Thus, when Rs ¼ 200 dpi,
Rmin ¼ 8, Wmax ¼ 10. k should be selected proportional to
Rs and below the smaller one between Rmin and Wmax. A
large k definitely speeds up the detection, but it also raises
the risk of misses. We set k as 4. When the arc seed detection
meets a black pixel, denoted by p, it first checks whether the
neighborhood of p appears a linear shape by the following
steps:

Step 1. Check the lengths of black runs passing p in four
directions: horizontal, vertical, left diagonal, and right
diagonal, respectively (Fig. 3a). If the length in a direction
(denoted by dir) does not exceed Wmax, go to Step 2. After
all the four directions are processed, go to Step 4. In Fig. 3a,
the vertical (V) direction and the right diagonal (RD)
direction are eligible. Since the purpose of this step is to
detect the potential directions of linear shapes, the tracking
in four candidate directions will stop when the tracked

length exceeds Wmax or a white pixel is encountered. It does
not follow the shapes for vectorization as the Orthogonal
ZigZag tracking (OZZ) [13] does.

Step 2. Translate p for 0.01 inches, i.e., two pixels for
Rs ¼ 200 dpi, along the direction perpendicular to dir, both
positive and negative, to pþ and p� , respectively. If both
pþ and p� are black, go to Step 3; otherwise, go to Step 1
to check the next direction. In Fig. 3a, only the vertical
direction is eligible.

Step 3. Check the lengths of black runs parallel to dir and
passing pþ and p� , respectively (Fig. 3b). If both two
lengths are smaller than Wmax and are similar with the
length of the black run passing p, dir is accepted as a
candidate and the differences among these three lengths are
summed as the linearity error for dir. Otherwise, go to Step
1 to check the next direction. In Fig. 3b, the vertical direction
becomes a candidate.

Step 4. If there is no candidate, return false. Otherwise,
return true and take the midpoint of the black runs in the
candidate direction with the minimum linearity error as the
center of the linear shape, as p0 in Fig. 3b.

This linear shape checking quickly eliminates intersec-
tions, corners, and complex overlapping parts, ensuring that
arc seedswill always be detected at normal linear shapes. If p
passes the linear shape checking, the returned p0 is used as the
new position to detect an arc seed. We use two concentric
circle windows centered at p0 to detect arc seeds. The
algorithm of detecting an arc seed from p0 is explained by
the following C pseudocode, referring to Fig. 4.

ArcSeedDetection(p0) {
Get the intersecting black segments on the inner

window;

Store those segments whose lengths � Wmax in ISinner;

if (the number of black segment in ISinner < 2Þ
return false;

Get the intersecting black segments on the outer

window;
Store those segments whose lengths � Wmax in ISouter;

if (the number of black segment in ISouter < 1Þ
return false;

Calculate the midpoints of the segments in ISinner and

ISouter as candidate positions, i.e., fpig;
Find the best sequence of candidate positions that

connect with p0 in pixel level and form the best circular
curvature, such as p1, p2, p3, and p4 in Fig. 4. Even if the

best sequence contains only one position on the outer

window (i.e., either p3 or p4 is absent), the sequence is

still acceptable;
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if (such sequence exists) {

Compute the arc parameter from the best sequence,

including arc center, radius, starting angle, ending

angle, and line thickness;

The detected arc seed is characterized by the arc
parameter;

return true;

}

else

return false;

}

The reason for using circular windows is to ensure the
isotropy of the detection, i.e., the length of the intersecting
segment between a line and the circular window does not
varywith the direction of the line. The advantages of utilizing
two concentric windows are threefold: 1) to make the
detection more efficient by fast eliminating the areas without
long linear shapes by checking the number of intersecting
segments on the innerwindow, 2) tomake the detectionmore
acute since it can handle the case when there is one
intersecting segment on the outer window, and 3) to make
the accepted arc seed more reliable since a sequence of
candidate positions consists of four or five points, not three
points. We know that any three points determine a circle,
even if some points are distorted.With four or five points, we
candivide them into twogroups of three points and check the
consistency of their circular parameters. The best sequence is
the one with the best consistency between two groups.

The radii of the inner window and the outer window,
denoted by Rinner and Router, respectively, are determined as
follows: The upper bound of Rinner is Rmin, while that of
Router is 2�Rmin � 1. This is to ensure a small circle whose
radius is Rmin can still intersect the outer window. The
lower bound of Rinner is Wmax=2þ 1, while that of Router is
Rinner þ 1. Note that although Rinner and Router can be set
lower, it is not recommended since this will diminish the
first advantage mentioned above. This algorithm sets them
at their upper bounds. According to the previous setting of
Rmin, Rinner, and Router are 8 pixels and 15 pixels,
respectively. Therefore, the detectable scope is the diameter
of the outer window, i.e., 30 pixels, and the arc seed
detection algorithm can detect an arc as short as 23 (i.e.,
15þ 8) pixels long. In conclusion, the largest detectable
radius is 600, as discussed in Section 3.1, while the smallest
detectable radius is 8.

Note that the arc seed detectionworks in theWork Image,
and the corresponding pixels of a segmented arc/circle in the
Work Image are erased immediately after it is segmented.
Therefore, the segmented arcs/circles will not be detected
again.

3.3 Dynamic Circular Tracking

After obtaining an arc seed, the dynamic circular tracking
begins to segment the entire arc/circle. Our tracking
algorithm is an improved version of the SCT (seeded
circular tracking) algorithm proposed in [22]. For complete-
ness, we briefly review the SCT algorithm here.

The SCT algorithm employs the Bresenham algorithm for
circles to generate the circular tracking path points; there-
fore, it is much faster than computing distances. As
depicted in Fig. 5, tracking begins from an arc seed,
parameterized by O, P1, and P2 (Fig. 5a), and extends it
from P2 along the circular direction P1 ! P2. During the
tracking, the dynamic adjustment is performed when
tracking out of black areas to extend the tracking as long
as possible. For example, P is adjusted to Pa in Fig. 5a. If
successful, the tracking yields an extended arc with
updated O and P2. If it returns a circle, the tracking
finishes; otherwise, the SCT algorithm interchanges P1 and
P2 and tracks in the other direction again. After the tracking
finishes, it either returns a failure flag indicating no arc/
circle is segmented, or returns a success flag with the
parameter of segmented arc/circle. The parameter of a
circle includes center, radius, and line thickness. The
parameter of an arc includes center, radius, line thickness,
starting angle, and ending angle. Finally, we remove all the
pixels covered by the newly segmented arc/circle from the
image.

The improvement focuses on the dynamic adjustment
when tracking out of black areas. It includes three aspects:
the adjustment position selection strategy, the validity
measure of an adjustable position, and the precision of
adjustment. This improvement makes the dynamic circular
tracking more robust, as follows:

1. The SCT algorithm selects the adjustment position
using a first-found strategy, which first checks
backward and then checks forward for adjustable
positions (Fig. 5b), and uses the first-found valid
position for adjustment. This strategy is simple, but
the first-found position may not be the best one. This
paper improves it to a best-of-all strategy, which first
checks both backward and forward to form a
collection of candidate positions, and then selects
the best one for adjustment by the validity measure.

2. The SCT algorithm measures the validity of an
adjustable position, denoted by Pa, only by checking
the matching extent between the black area and the
testing arc generated by P1, P2, and Pa (the solid arc
in Fig. 5c). However, it does not check the
extensibility of Pa. This paper improves it by
including the extensibility in the validity measure.
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The testing arc is extended forward for a few steps
(the dashed arc in Fig. 5c), and the extensible length
in black area is recorded. Therefore, the final validity
measure is a weighted sum of the matching extent
and the extensible length.

3. The adjustment precision of the SCT algorithm is 1
pixel. For example (cf. Fig. 5d), when the midpoint of
AB is the adjustment position, the SCT algorithmwill
use either C orD because the line width is even. This
may cause a few offsets of the adjusted arc. In this
paper, the adjustment position can be of real coordi-
nates; therefore, the adjustment precision is improved
to half a pixel. For the case in Fig. 5d,C,D, and the real
midpoint E are all accepted as candidates to compete
for the best adjustment position.

3.4 Arc Localization

For the arcs/circles segmented in Layer½i�, where i > 0, we
must localize their accurate parameters in Layer½0�, i.e., the
original resolution. This process is called arc localization,
which focuses on localizing center and radius, since other
parameters (including line thickness, starting angle, and
ending angle) can be easily measured after the center and
radius have been determined. Considering an arc in
Layer½i� with parameter ðx; y; rÞ, where x and y are center
coordinates and r is radius, its accurate parameter in
Layer½0� will be one point in the space

SP ¼fðx0; y0; r0Þjx� 2i � x0 < ðxþ 1Þ � 2i;

y� 2i � y0 < ðyþ 1Þ � 2i;

r� 2i � r0 < ðrþ 1Þ � 2ig:

The dimension of SP is 2i � 2i � 2i, i.e., 8i. Since the same
process is performed for each possible parameter, the
computation complexity of arc localization is Oð8iÞ, which
is high when i > 1.

Apparently, localizing downsized arcs/circles directly to
the original resolution is not efficient. Therefore, we
propose a layer-by-layer localization algorithm. Since the
MAS paradigm stores the Bak Image array of all layers,
which contains information as complete as the original
image, we can perform a stepwise localization from the
current layer to the original resolution, as shown in Fig. 6.
Suppose the current layer is iði > 0Þ and the parameter is
ðx; y; rÞ. First, the constructed SP contains eight possible
parameters in Layer½L� 1�. Then, each parameter is tested
in Bak Image½L� 1� to obtain a score. Finally, ðx; y; rÞ is
updated with the parameter with the best score, and the
current layer is set to the upper layer. The above process
repeats until the current layer reaches 0. With this
algorithm, the computation complexity of arc localization

decreases to be Oð8iÞ, which is significantly less than Oð8iÞ
when i > 1.

The score of a parameter is measured as the percentage
of the pixels covered by the arc/circle with the parameter
being black in the Bak Image. After the parameter in the
upper layer has been selected and before proceeding to the
next iteration, the line thickness is recalculated by voting
along the circular path, and the starting and ending angles
(for arcs only) are also refined by extending two extremities
of the arc.

3.5 Arc Verification

The last step of the MAS paradigm is arc verification, which
evaluates the confidence of segmented arcs to minimize
false detections. Actually, not all arcs need verification since
the confidence of a big and long arc is already high;
therefore, only small or short arcs should be verified, where
“small” means the radius is small and “short” means the
length of arc is short. The known difficulty of this task is
how to distinguish misdetected arcs (cf. Figs. 7a and 7b)
from true arcs in complex environment, e.g., arcs touching
or intersecting other objects (Figs. 7c and 7d). Failures in
distinguishing them will lead to suppressing false detec-
tions at the cost of raising miss rate. To handle this problem
properly, this paper proposes an image-based confidence-
weighted arc verification protocol.

This verification protocol divides an arc into a sequence
of continuous black or white segments according to the
pixel color on the medial line of the arc. Let Siði ¼ 1::kÞ
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denote the sequence of segments, L denote the whole length
of the arc, and li denote the length of Si. The confidence of
the arc (C) is calculated by (4), (5), (6), (7), and (8):

C ¼ 1

L
�
Xk
i¼1

WS
i ; 0 � C � 1:0; ð4Þ

WS
i ¼

WC
i �

Pli
j¼1

WT
j ; Si is black

Pli
j¼1

WD
j ; Si is white;

8>>><
>>>:

ð5Þ

WC
i ¼

li � PN; Si is not linear

li � PL; Si is linear;

�
ð6Þ

WT
j ¼

0; Tj � T
�� �� �
MAXð1; T=4Þ

MINðPT ; Tj � T
�� ��� P�T Þ; otherwise;

8><
>: ð7Þ

WD
j ¼ MAX½0; PD � ðDj � 1Þ � P�D�: ð8Þ

According to (4), C is the weighted sum of the confidence
of all segments, where the confidence of a segment Si,
denoted byWS

i , is computed by (5). If Si is black,W
S
i equals

the curvature confidence minus the sum of abnormal-
thickness confidence of all black points; otherwise (i.e., Si is
white), WS

i is the sum of distance-to-black confidence of all
white points. The reasons for the definition of WS

i are
described as follows: For a black segment, its curvature
certainly increases the confidence, while the abnormal line
thickness at some points lowers the confidence. For a white
segment, no matter a real gap or just a degraded part, it
should carry low confidence. However, the confidence of a
white point ought to be related to its perpendicular distance
to the black areas.

The curvature confidence of Si, denoted by WC
i , is

calculated by (6). The curvature check is performed as
shown in Fig. 8. For the endpoints E, F , and the midpoint
M of the black segment, we locate their axis points on the
image, i.e., E0, F 0, and M 0 in Fig. 8. If E0, F 0, and M 0 are not
linear, it means the curvature of this segment is apparent.
WC

i is the product of li and a probabilistic constant (PN or
PL), which indicates the probability of a nonlinear or linear
segment being on a real arc.

The abnormal-thickness confidence of the jth point in a
black segment, denoted by WT

j , is calculated by (7), where
Tj is the line thickness at the jth point and T is the line
thickness of the current arc. If Tj and T are similar, WT

j is
zero, which means no deduction from WS

i ; otherwise, the
more the difference between Tj and T is, the bigger WT

j is,
which consequently causes more deduction from WS

i . The
statistical result confirms that WT

j is positively related, but
not linearly, to the difference between Tj and T . To
accelerate computation, (7) uses an approximated linear

function, where PT is the upper bound of deduction and
P�T is the increment of deduction.

The distance-to-black confidence of the jth point in a
white segment, denoted by WD

j , is calculated by (8), where
DjðDj � 1Þ is the minimal distance between the jth point
and its neighboring black pixels. Zero-valued WD

j indicates
a complete gap. The statistical result shows that WD

j is
negatively related, but not linearly, to Dj. To accelerate
computation, (8) uses an approximated linear function,
where PD is the upper bound of confidence and P�D is the
decrement of confidence.

The values of above-mentioned probabilities PN , PL, PT ,
P�T , PD, and P�D are determined by the statistical study of
80 test images, including both synthetic images and
scanned images of mechanical drawings and construction
drawings. We first perform the MAS method without
verification on each image, then manually delete false
positives and, finally, use the measuring approaches of
verification to obtain the following quantities of small or
short arcs for each image:

1. NBS: the number of black segments,
2. NBSL: the number of linear black segments,
3. NBP: the number of black pixels on median lines of

arcs,
4. NWP: the number of white pixels on median lines of

arcs,
5. HT ½1 � 10�: the histogram of jTj � T j (7) for black

pixels on median lines, and
6. HD½1 � 10�: the histogram of Dj (8) for white pixels

on median lines.

Note that all values larger than 10 contribute to HT ½10� or
HD½10�, respectively. After summing up these six quantities
of all images, we can calculate the probabilities as follows:

1. PL ¼ NBSL=NBS ,
2. PN ¼ 1� PL,
3. PT ¼ HT ½1�=NBP ,
4. P�T is obtained by linear fitting of HT ½1 � 10�,
5. PD ¼ HD½1�=NWP , and
6. P�D is obtained by linear fitting of HD½1 � 10�.
The values of PN , PL, PT , P�T , PD, and P�D determined

by the statistical study are 0.85, 0.19, 0.62, 0.09, 0.23, and
0.06, respectively. According to (4) and (5), the upper bound
of C is PN ; therefore, these six weights are scaled by the
same factor in our algorithm to be 1.0, 0.22, 0.53, 0.11, 0.27,
and 0.07, respectively. Note that PT is inversely scaled. A
confidence threshold, denoted by Cmin, is set to be 0.75
accordingly. With (4), (5), (6), (7), and (8), we can obtain the
overall confidence of an arc. An arc with C � Cmin is added
to the final result; otherwise, it is discarded. The proposed
arc verification protocol is quite robust, as shown in the
experimental results in Section 4, since it relies on the
original image and evaluates the curvature, gaps, and line
thickness simultaneously.

4 PERFORMANCE EVALUATION

The proposed MAS method has been implemented in a
graphics recognition system—VHVector, which takes
scanned images as input and produces graphics files. We
utilize the test images with ground-truth graphics files of
the GREC ’01 and GREC ’03 arc segmentation contests [23],
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Fig. 8. Curvature check.



[31] to perform a systematic evaluation of the MAS method.
The performance evaluation tool [32] is the same as the one
used in these contests. It generates a Vector Recovery Index
(VRI) taking into account the localization accuracy, the
endpoint precision, and the line thickness accuracy. V RI is
computed by 0:5�Dv þ 0:5� ð1� FvÞ, where Dv (correct
detection rate) is the length-weighted sum of the fraction of
every ground truth arc being correctly detected, and Fv

(false detection rate) is the length-weighted sum of the
fraction of every detected arc being false. VRI, Dv, and Fv

all range between 0 and 1. A good arc segmentation method
should achieve high Dv, low Fv and, therefore, high V RI.

We first evaluate the detection capability over various arc
angles. The testing images are a group of arcs/circles with
various subtending angles and radii, as shown in the first row
of Fig. 9. The radii of the inner, middle, and outer arcs/circles
are 18, 32, and 50 pixels, respectively. Since the radii are
relatively small, these images also examine the detection
capability over short arc lengths.Thesegmentation results are
shown in the second rowof Fig. 9,wheremost arcs/circles are
correctly detected. The quantitative evaluation result is listed
under each result. TheDvs of Figs. 9a, 9b, 9c, and 9d are very
high and theFvs are low. TheDv of Fig. 9e drops a little due to
missing two short inner arcs, while the longer arcs with the
same subtending angles are correctly detected, which
demonstrates that the cause of missing is not the small
subtending angle, but the short arc length. The Dv of Fig. 9f
drops to 0.238 because only one arc is correctly detected. It
should bementioned that the reason for missing the outmost
arc at the right side and that formissing the other four arcs are
not the same. The outmost arc has firstly been detected and,
finally, been discarded by the arc verification due to lacking
curvature, while the other four arcs have never been detected
since they are too short. This evaluation result shows that the
proposed method works well for the arcs with detectable
curvature, determined by the arc seed detection.

Second, we evaluate the arc segmentation performance
over various line thicknesses. Fig. 10 displays five test
images containing the same group of arcs/circles with
various line thicknesses. The experimental result of each
image is displayed on the right side, demonstrating that the
arc segmentation performance is very robust over a wide
range of line thickness. The Dvs of thin arcs (thickness � 3)
are a little lower than those of thick arcs since the proposed
method, being a pixel tracking method, prefers thick arcs.

However, we also find the Fvs of thick arcs (thickness � 7)
are a little higher than others, since the localization of thick
arcs is less accurate. � is the average difference between the
ground-truth line thickness and the detected one. We can
see that is � very small, far below 1 pixel.

The above two experiments are performed on clean
synthetic images. Next, we evaluate the performance under
noisy environment. Four types of noises are added to the
test images: Gauss noise, hard pencil noise, high frequency
noise, and geometry noise. The noise models and the
algorithms to generate them are described in [32]. As shown
in Fig. 11, the Gauss noise simulates the random noise
introduced during scanning paper drawings, the hard
pencil noise simulates the noise caused by using hard
pencils to paint drawings, the high frequency noise
simulates the abrasion effects during the use of paper
drawings, and the geometry noise simulates the effects of
drawing arcs/circles by hand or the distortion caused by
scanning. Each type of noise is added to the test image in
several levels, where higher levels result in heavier noises.
Fig. 11 shows the four types of noisy images with relatively
high levels.

The numbers of levels of the four types of noisy images
are different. The Gauss noise images contain 10 levels. The
hard pencil noise images contain seven levels. The high
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Fig. 9. Arc segmentation results over various arc angles and lengths.

Fig. 10. Test images of various line thickness.



frequency noise images contain 25 levels. The geometry
noise images contain 15 levels. For all the four types, the
zero-leveled image contains no noise, i.e., it is the same as
the original image. The performance-to-noise-level curves
of the four types of noisy images are plotted in Fig. 12. Note
that some noise levels do not have corresponding data
points since the noisy images of those levels are not
available.

A simple connected-component-based despeckle filter is
placed before the MAS method to simulate the noise
removal effect of the scanning process. This filter alleviates
noises of Gauss, hard pencil, and high frequency types at
lower levels, but it has no effect on geometry noises, which
are not pixel-level noises. With the effect of the filter, the Dv

curve of Gauss noise keeps high when noise level is below
5. After that, it drops gradually. The Dv curve of hard pencil
noise and that of high frequency noise also drop faster after
the level 3 and the level 13, respectively. We observe that
even at high noise levels, the Fv curves of Gauss, hard
pencil, and high frequency noise types always stay very
low, which means that although the arc image is degraded
too much to be detected correctly, the MAS method is still
robust enough to avoid producing many false detections.
The performance curves in Fig. 12d illustrate that the
geometry noise affects the MAS algorithm most. For the test
images containing geometry noise, most arcs/circles are
still segmented; however, since this type of noise distorts
the circular shape of arcs/circles, the parameter of a
segmented arc/circle often offsets from its ground-truth
parameter, which lowers the performance.

The above evaluations focus on isolated arcs/circles.
Next, we evaluate the performance of the MAS method
when an arc is intersecting other arcs or lines. This
experiment includes two parts: arc-arc intersection and
arc-line intersection. The test images of arc-arc intersection

contain five images, where the small circle moves from the
outside of the big circle to the inside gradually, as shown in
Fig. 13. The segmentation results and performance indices
are also shown in Fig. 13. Both circles are successfully
detected in all the five images, demonstrating the MAS
method handles arc-arc intersections well. The centers of
segmented circles, except those in a04.tif, have one-pixel
offsets. Since there are only two circles in an image and the
circles are thin, even one-pixel offset affects the perfor-
mance indexes obviously. The segmented circles in a04.tif
have no offset; therefore, the performance is perfect.

The test images of arc-line intersection contain 15 images,
which emphasize the case that a line is tangent to an arc, as
shown in Fig. 14. This is considered as one of the hardest
problem for vectorization-based arc segmentation methods
since the overlapped part becomes a shared vector of both
the arc and the line after vectorization. Thus, it is difficult to
keep the entirety of both the arc and the line. Moreover, the
distortion of the shared vector may cause offset to the arc’s
parameter. The proposed MAS method is a direct segmen-
tation method without vectorization; therefore, it does not
suffer from this limitation. The arcs in all the fifteen images
are successfully segmented. The performance curves for the
sequence of images are plotted in Fig. 15. We observe that
most VRIs are higher than 0.9. The performance drops a
little at L111, L112, and L113 because the detected line
thickness has one-pixel offset from the ground-truth line
thickness. Overall, the experiments on arc-arc intersection
and arc-line intersection demonstrate that the MAS method
has a good capability in handling intersections.

Next, we show the experimental results on three real
imagesused in theGREC ’01 contest, as shown in the first row
of Fig. 16. P1.tif (707� 590 pixel2) is scanned from a small
drawing with a moderate resolution. P2.tif (503� 500 pixel2)
and P3.tif (2; 125� 2; 113 pixel2) are scanned from the same
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Fig. 11. Four types of noisy images.

Fig. 12. Performance-to-noise-level curves. (a) Gauss noise, (b) hard pencil noise, (c) high frequency noise, and (d) geometry noise.



drawing with a low resolution and a high resolution,
respectively. The quality of P1.tif is satisfactory, but most
circles are not circular enough, resembling the geometry
noise. The quality of the other two images is not good,
especially P2.tif, wheremany arcs are thin and disconnected.
The results of segmented arcs/circles and the performance
evaluation indices are displayed below the images, respec-
tively. The experimental results demonstrate that the MAS
method is robust over different resolutions; however, being a
pixel-tracking method, it prefers a high resolution, which
implies a high signal-to-noise ratio. The correct detection rate
of P2.tif drops to 0.722 because there are two concentric arcs
that are too close to be distinguished; therefore, only the
longer one is successfully detected.

We use the same set of contest images to compare the
proposed MAS method with the other three methods,
including the two methods participating in the GREC ’01
contest [20], [21] and the IAS method [15], which are all
vectorization-based methods. The comparison result is
shown in Table 1, where the performance scores of [20], [21]
are obtained from the contest report [24]. It should be
mentioned that Hilaire’s system crashed on the scanned
image P3.tif and, therefore, obtained a zero score. Table 1
shows that Hilaire’s method and the MAS method have
similar good performance on synthesized images. Hilaire’s
method obtained the highest scores on the synthetic image
with high frequency noise and that with geometry noise,
while our method got the highest scores on the other two
synthetic images. For the average performance on the
synthetic images, ourmethodoutperforms all othermethods.

On the other hand, for the scanned images, the
performance of the other three methods drops dramatically,
especially for large images, while our method always keeps
relatively high scores due to using the MAS paradigm. Note
P1.tif and P2.tif are small so that the arc segmentation only
performs at the original resolution. For P3.tif, two resolution
levels are generated and, therefore, those big arcs (indicated
in Fig. 16) are correctly segmented from the second layer.
Consequently, the average score of our method on scanned
images is significantly higher than those of the other
methods. As a summary, the overall score (V RIall) is
computed as the average of the two averaged scores of
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Fig. 13. Experimental results of arc-arc intersection.

Fig. 14. Test images for arc-line intersection.

Fig. 15. Performance curves of arc-line intersection images.



synthesized images and scanned images. The VRIall of our
method far exceeds those of the other methods.

The GREC ’03 Arc Segmentation Contest [31] introduces
a set of test images emphasizing on the segmentation of
tangent connection of arcs (Fig. 17). The sizes of these
images are small; therefore, the MAS method only works in
the original resolution. The performance comparison
between our method and the other two methods is reported
in Table 2. Overall, our method outperforms Elliman’s
method [20], but lags behind the IAS method [15]. Some
typical failure modes of our method can be seen from
1_n4.tif, 3_100.tif, and 3_n4.tif. For 1_n4.tif, the noise-added
version of 1.tif, our method missegments the arc and the
circle located closely in the center of the image into one
thick circle because they are blurred by noises. For 3_100.tif
and 3_n4.tif, which are the low-resolution version and the
noise-added version of 3.tif, respectively, our method fails
to locate the connection points between tangent arcs
correctly, resulting in inaccurate arc parameters. Another
reason for the V RI performance drop of our method is that
these images contain some small and short arcs, such as the
cross arcs on arrows, which are mostly discarded by the arc
verification.

We also use the large-sized scanned test images of GREC
’99 contest [33] and other real scanned images to test the
proposed MAS method. Fig. 18 shows a real scanned image
named “test1.tif,” which contains many filled areas. The
proposed method segments all circles, including those in

filled areas, correctly from test1.tif. Fig. 18 also shows the
segmentation result of a cloud-shape overlapping lines and
texts. Our method segments four pieces of arcs correctly,
misses two others, and produces three false positives. The
top-center arc is missed due to failure in detecting arc seeds,
while the top-right arc is rejected by the verification. The
false positives are caused by curve strokes in characters. For
the same image, the IAS method breaks three circles into
arcs and produces much more false positives. For these
large images, we employ a goal-directed performance
evaluation protocol proposed by Chhabra and Philips
[34], [35], [36], which estimates the manual editing cost to
correct the mistakes generated by automatic graphics
recognition. They defined the editing cost as follows:

EditingCost ¼ w1 � false alarmsþ w2 �missesþ
w3 � one2manyþ w4 �many2one;

where one2many is the count of one ground truth object
being converted into many objects, and many2one is the
converse. Editing a false alarm (or a miss) needs one
removal (or adding) operation, while the editing costs of
one2many (or many2one) errors are more complex and
depend on the editing tool used. In [34], w1 through w4 are
set to be 1 for simplicity. However, we set w3 and w4 to be 2
in our evaluation since a one2many (or many2one) error
needs at least one removal plus one adding operations.
Table 3 reports the evaluation result of the proposed MAS
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Fig. 16. Experimental results on real scanned images.



method compared with the other two methods, SCT [22]
and IAS [15].

Table 3 shows that the false alarms of MAS and IAS are
significantly higher than that of SCT, while the misses of
SCT are significantly higher than the other two. The former
is because the minimum detectable radius of both MAS and
IAS are smaller than that of SCT. The arc verification of the
MAS method greatly reduces false positives compared with
the IAS method. The remaining false positives are mostly
caused by curve strokes of text. Since the current arc
verification algorithm does not consider environmental
evidence, it cannot discover such false positives. The latter
is due to the fact that SCT misses many big arcs/circles and
very small circles. Although SCT enjoys the lowest editing
cost, its subjective performance is lower than that of the
MAS method since big arcs/circles are missing.

Since the proposedMASmethod improves the segmenta-
tion capability by a complex multiresolution mechanism, we
need to analyze its time complexity. The size of the largest
scanned image we tested reaches 16; 215� 11; 856 pixel2,
requiring four resolution levels for the arc segmentation.

Table 4 shows the processing time and its distribution for
large-sized images, which are tested on a PC with P4/2.4G
CPU and 1G RAM.

From Table 4, we find that the processing time spent on
Layer½0� takes on average 66 percent of the total processing
time. The most time-consuming part is the recognition,
including arc seed detection and circular tracking. When
Rmax (the maximum detectable radius) is large, the tracking
is slow. If Rmax is changed from 600 to 300, the total
processing time decreases by 30 percent. The time for
localization is high in Layer½0� where most arcs/circles are
segmented. From Layer½1� to Layer½N �, the time for
localization increases gradually. For large images, the time
for preparation for the next layer, i.e., downsizing images, is
not neglectable. The clearing-up process eliminates over-
lapping arcs caused by the following case: An arc/circle is
segmented incompletely from one seed, and then its
residual in the Work Image forms another seed for a
complete segmentation since the tracking works in the
Bak Image. We can see that the speed of the proposed MAS
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TABLE 1
Performance Comparison of Three Methods with GREC ’01 Contest Test Images

Fig. 17. Part of GREC ’03 contest test images.



method is not fast but still acceptable. We represent the total
processing time as follows:

Tall �
X

i¼0::k�1

½TdtðiÞ þ TtrðiÞ þ TerðiÞ�þX
i¼0::k�2

TdsðiÞ þ Tlc þ Tvr;

where k is the number of layers and Tdt, Ttr, Ter, Tds, Tlc, and
Tvr stand for the time for detection, tracking, erasing,
downsizing, localization, and verification, respectively.
Thus, the order of computational complexity of the MAS
method in terms of accessing pixels can be evaluated as
follows:

OðTallÞ ¼
Xk�1

i¼0

	
O

Nb

4i

� �
þO

Ng

4i

� �
þO

Ng

4i

� �

þ

Xk�2

i¼0

2 �O Np

4i
þ Np

4iþ1
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þ
Xk�1

i¼1

O
8 �Ng

4i

� �
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i¼0
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4i

� �
þO

2 �Ng

4i

� �

þ

Xk�1

i¼1

O
10 �Np

4i

� �
þO

8 �Ng

4i

� �	 

þOðNgÞ;

whereNp,Nb, andNg denote the numbers of all pixels, black

pixels, and ground-truth arc/circle pixels in an image,

respectively. Therefore, the computational complexity de-

pendsmuch onNg. This explainswhy themedian-size image

“2200.tif” takes the longest processing time in Table 4. Note

when k ¼ 1; OðTallÞ ¼ OðNbÞ þOð3 �NgÞ. When k > 1, Np

begins to affect the computational complexity.

Table 5 shows the processing times of the other three

methods on the same set of images. All of them are more

time-efficient than the MAS method. The first two ap-

proaches are vectorization-based approaches, whose false

alarms are more than ours. The SCT approach is a direct

recognition approach, which is fast but does not handle big

arcs/circles well.
Besides the probability parameters in the arc verification,

theMASmethod introducesnineparameters,whose relation-
ship is shown inFig. 19. First,Rmin andWmax are set according
to thedomain-specific knowledge, and thenotherparameters
can be set as Fig. 19, with rules described in Sections 3.1 and
3.2. The parameters directly affecting performance include k,
Rinner,Router, and Tsize. Their influence on performance based
on the experimental results is shown in Table 6, where “þ”
denotes “positively related,” “�” denotes “negatively re-
lated,” and “^” denotes “nonmonotonically related.” The
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TABLE 2
Performance Comparison on GREC ’03 Contest Test Images

Fig. 18. (a) A fraction of test1.tif and (b) a fraction of segementation result.



parameter values reported in Sections 3.1 and 3.2 are set

according to the given rules, and they almost achieve peak

performance in the experiments.

5 CONCLUSION AND FUTURE WORK

This paper proposes a novel multiresolution arc segmenta-

tion method (MAS), which handles arcs/circles with a large

range of radius well by detecting them in multiple

resolution levels. A systematic performance evaluation of

the MAS method has been conducted using the third-party

evaluation tool, test images, and ground truth files obtained

from the GREC arc segmentation contests. The MAS

method demonstrates robust and satisfactory performance

over different arc angles, arc lengths, line thickness, noise

types, noise levels, arc-arc intersections, and arc-line
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intersections. We compare the MAS method with other

methods, including those participating in the GREC arc

segmentation contests, in terms of arc segmentation

performance, editing cost, and time complexity analysis

on both synthetic and real scanned images. The comparison

result confirms the clear advantages of the proposed MAS

method on handling arcs/circles with a large range of

radius, even in complex environments. The experiment

results also show that the MAS method tends to reject short

and nearly flat arcs, and the endpoint precision needs

further improvement.

A known limitation of the MAS method is the high time

complexity, which needs further simplification. Future

work will also develop the capability in segmenting dashed

arcs/circles. The arc seed detection will distinguish curves

from disconnected segments since one single segment of a

dashed arc may not appear curvature. The detectable scope

will be flexible to detect various dashed patterns. The

circular tracking, arc localization, and arc verification will

be improved to tolerate regularly distributed gaps, where

heuristics on dashed patterns should apply.
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