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Feature selection is an important task in pattern recognition. Support Vector Machine
(SVM) and Minimax Probability Machine (MPM) have been successfully used as the15
classification framework for feature selection. However, these paradigms cannot auto-
matically control the balance between prediction accuracy and the number of selected17
features. In addition, the selected feature subsets are also not stable in different data
partitions. Minimum Error Minimax Probability Machine (MEMPM) has been proposed19
for classification recently. In this paper, we outline MEMPM to select the optimal feature
subset with good stability and automatic balance between prediction accuracy and the21
size of feature subset. The experiments against feature selection with SVM and MPM
show the advantages of the proposed MEMPM formulation in stability and automatic23
balance between the feature subset size and the prediction accuracy.

Keywords: Feature selection; classification; minimax probability machine; minimum25
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1. Introduction27

Feature selection has attracted a lot of interest in the machine learning field.3,5,9

The problem of feature selection in this paper is defined as follows: given a data
set D = {(z1, C1), (z2, C2), . . . , (zN , CN )} ∈ R

n+1 where n is the dimension of zi

and Ci ∈ R for 1 ≤ i ≤ N , the objective of feature selection is to find a separating
hyperplane f = wT z− b to discriminate these two classes and to further make the
most of the elements in w to be zeros. Feature selection can be used as a process
to reduce data dimensions for classification by removing nondiscriminant features.
More specifically, this problem can be formulated as the minimization of l1-norma

aIn fact, this should be l0-norm (which is defined as the cardinality of a set), but it will result in
a combinatorial problem, which is too complex for the high dimensional problem. l0-norm of w is
often substituted with l1-norm of w.
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of w subject to some classification framework:

min
w,b

‖w‖1,

s.t. some classification framework. (1)

The above formulation can be categorized as an embedded approach,3 where the1

feature selection process is embedded into the classification framework. For other
categorizations, i.e. the filter approach and the wrapper approach, the readers can3

refer to earlier work7–9,12,15,17,19 for more details.
The objective of feature selection has two folds: one is to select a small feature5

subset and the other is to maintain high classification accuracy. Then a question
appears: how to control the balance between the prediction accuracy and the num-7

ber of selected features? Currently, this problem is still an open problem. The
state-of-the-art classifier Support Vector Machine (SVM)14,16 has been success-9

fully applied in feature selection problem.4,13,18 Bhattacharyya formulates Mini-
max Probability Machine (MPM)10,11 as another classification framework into the11

feature selection problem.1 But in the SVM formulation for feature selection, there
is no explicit worst-case accuracy bound and thus it is hard to control the number13

of selected features as well as the prediction accuracy. In the MPM formulation,1

although it has the explicit accuracy bound, the user needs to handle this problem15

by hand.
In addition, some feature selection systems may require high stability on selected17

features, i.e. selecting similar features in different runs and data partitions. However,
the feature selection algorithms with SVM and MPM do not consider this issue.19

SVM utilizes data points on the boundary (called support vectors) to determine
the separating hyperplane. MPM utilizes the mean and the covariance of each21

class to find a decision hyperplane. Besides, MPM assumes the same worst-case
accuracy bound for each class. Would the bias introduced by different information23

used in the classification frameworks affect the stability of resulted feature selection
algorithms?25

Minimum Error Minimax Probability Machine (MEMPM) was recently pro-
posed for data classification.6 MEMPM includes and extends MPM by assuming27

different worst-case accuracy bounds for different classes, in order to better cap-
ture the data distribution. This paper outlines MEMPM on feature selection to29

attack the above problems. The special properties of the proposed feature selection
algorithm using MEMPM include:31

(1) Controllable Balance. MEMPM is a global learning classifier and it better
captures the data scatter geometrically; thus, it separates the data more rea-33

sonably. The proposed feature selection algorithm with MEMPM has different
explicit worst-case accuracy bounds for different classes. In addition, we pro-35

pose two different criteria to control the balance between the accuracy bounds
and the number of selected features.37
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(2) High Stability. Geometrically, MEMPM tries to find two tangent ellipsoids1

with different radii to include each class of data. The global learning scheme
in MEMPM plus the good capture of data scatter makes MEMPM insensitive3

to different data partitions. On the other hand, SVM tries to find features
to maximize the margin. However, the margin is sensitive to different data5

partitions.

The paper is organized as follows. In Sec. 2, related feature selection algorithms7

are discussed. In Sec. 3, the feature selection algorithm with MEMPM is proposed.
In Sec. 4, we analyze the experimental results of different algorithms for feature9

selection. Section 5 concludes the paper and lists future directions.

2. Related Feature Selection Methods11

Regarded as two important classification techniques, SVM and MPM are used as
the classification framework for feature selection. In the following subsections, we13

examine, in detail, the characteristics of these frameworks and their correspondent
feature selection algorithms.15

2.1. l1-SVM for feature selection

The l1-SVM formulation is employed as a linear programming framework for fea-
ture selection in Ref. 4. The difference from the feature selection formulation
to the original l1-SVM formulation is that w is written as w = u − v where
u = (u1, . . . , uN ) ∈ R

N , v = (v1, . . . , vN ) ∈ R
N , and all elements in u and v

are non-negative. Besides, the l1-norm of w is replaced by (u + v)T e where e is a
column vector with each element being one. More specifically, the l1-SVM formu-
lation can be stated as the following linear programming problem:

min
u,v,b

(u + v)T e + C

Nx+Ny∑
i=1

ξi/(Nx + Ny)

s.t. (u − v)T xi − b ≥ 1 − ξi, 1 ≤ i ≤ Nx,

−(u− v)T yj + b ≥ 1 − ξj , 1 ≤ i ≤ Ny,

ui ≥ 0, vi ≥ 0, ξi ≥ 0, 1 ≤ i ≤ N, (2)

where x and y denote samples that belong to the positive class and the negative17

class, respectively. Nx and Ny are the cardinality of x and y. ξ ∈ R
N is introduced

as a slack variable to represent the margin error in the nonseparable case.19

The above formulation is a linear programming problem. One notable advantage
of the feature selection algorithm with l1-SVM is its efficiency.21
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2.2. MPM formulation for feature selection1

Different from SVM, where the hyperplane is determined by the support vectors,
MPM11 uses the first two moments, i.e. the means and the covariance matrices,
to bound the classification accuracy of each class under the worst-case scenario.
We use x̄ and ȳ to note the mean of the class x and that of the class y, respec-
tively. Their relevant covariance matrices are represented as Σx and Σy accordingly.
The objective of MPM is to minimize the worst-case misclassification probability
of future data points. The authors formulate the classification problem with the
Chebychev inequality to the following expression:

max
α,w,b

κ(α) (3)

s.t. wT x̄− b ≥ κ(α)
√

wT Σxw,

−wT ȳ + b ≥ κ(α)
√

wT Σyw,

where α is the worst-case misclassification probability and κ(α) =
√

α
1−α .

The advantages of MPM are that it makes no assumption on data distribution3

and it has an explicit lower bound on the worst-case prediction accuracy. The
disadvantage is mainly that the performance depends on the estimation of means5

and covariance matrices. When there are not enough examples, the estimation may
not be very accurate.7

Motivated by the formulas of MPM, Bhattacharyya1 used the above two inequal-
ities to constrain the feature selection problem. The objective is changed to mini-
mize the 1-norm of w for a given α. The formulation can be stated as follows:

min
u,v,b

(u + v)T e (4)

s.t. (u − v)T x̄− b ≥ κ(α)
√

(u− v)T Σx(u − v),

−(u − v)T ȳ + b ≥ κ(α)
√

(u − v)T Σy(u − v),

(u − v)T − b ≥ 1,

−(u − v)T + b ≥ 1,

ui ≥ 0, vi ≥ 0, 1 ≤ i ≤ N,

where (u − v)T − b ≥ 1 and −(u− v)T + b ≥ 1 are introduced to reduce the extra
free degree of the variables.9

One advantage of the above formulation is that it involves an explicit upper
bound of worst-case misclassification accuracy after selecting a subset of features.11

The user can control the tradeoff between the number of features and worst-case
misclassification accuracy by controlling the bound α.13



1st Reading

October 31, 2007 17:28 WSPC/115-IJPRAI SPI-J068 00595

Feature Selection Based on Minimum Error Minimax Probability Machine 5

3. Proposed Feature Selection Model1

Minimum Error Minimax Probability Machine (MEMPM)6 extends MPM by
assuming different worst-case error bounds and thus minimizes the worst-case Bayes
error rate of future data. MPM assumes the same worst-case misclassification prob-
ability for each class; however, this is unreasonable in real problems. The MEMPM
model is shown in the following:

max
w,b,α,β

θα + (1 − θ)β

s.t. wT x̄ − b ≥ κ(α)
√

wT Σxw,

−wT ȳ + b ≥ κ(β)
√

wT Σyw, (5)

where α and β represent the worst-case lower accuracy bound for classes x and y,
respectively. θ is a constant within [0, 1] to control the balance between α and β.3

3.1. Comparison among SVM, MPM and MEMPM

Before formulating MEMPM to solve the feature selection problem, a comparison5

among these classification frameworks is summarized in Table 1.
We focus on comparing their solving methods and learning schemes. The solu-7

tion of l2-SVM can be achieved by solving a Quadratic Programming (QP) problem,
while the solution of MPM and MEMPM reduces to a Second Order Cone Program-9
ming (SOCP) and Fractional Programming (FP) problem,6,11 respectively. Gener-
ally, solving SVM and MPM reduces to the same time complexity as O(n3+Nn2),1111
where N is the number of data points and n is the dimension of the input space;
while solving MEMPM reduces to a time complexity scaled as O(Ln3 + Nn2),13
where L indicates the steps for linearly searching α. A special property of MPM
and MEMPM is that there is a worst case accuracy bound for future prediction.15
From the perspective of learning, SVM represents the local learning scheme, while
MPM and MEMPM represent the global learning scheme. In the next section, we17
will examine how the learning schemes can affect by experimental results the feature
subset selection.19

Table 1. Comparisons of different classifiers.

Model l2-SVM MPM MEMPM

Generalization — — >MPM
Worst Case Accuracy Bound No Yes Yes
Learning Scheme Local Global Global
Time Complexity O(n3 + Nn2) O(n3 + Nn2) O(Ln3 + Nn2)
Problem Genre QP SOCP Sequential FP
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3.2. MEMPM formulation for feature selection1

For a given worst-case accuracy bound θα+(1− θ)β, the feature selection problem
with MEMPM can be formulated as follows:

min
u,v,b

(u + v)T e (6)

s.t. (u − v)T x̄− b ≥ κ(α)
√

(u− v)T Σx(u − v),

−(u − v)T ȳ + b ≥ κ(β)
√

(u − v)T Σy(u − v),

(u − v)T − b ≥ 1,

−(u − v)T + b ≥ 1,

ui ≥ 0, vi ≥ 0, 1 ≤ i ≤ N,

where κ(α) =
√

α
1−α and κ(β) =

√
β

1−β . Similar to the feature selection algorithm
with MPM, we need to control the feature selection process by specifying the worst3

case accuracy bounds α and β.
The objective of feature selection problem with MEMPM has two folds — one5

is to find a sparse w, the other is to maintain the accuracy bounds α and β as large
as possible. In Ref. 1, the user needs to input the worst-case accuracy bound α for7

the MPM formulation. However, the value of α cannot approach 1 infinitely and its
bound is determined by the moments. To avoid handling this problem manually,9

here we propose two criteria to automatically find the appropriate α and β for the
MEMPM formulation. One is to use an iterative search method to find the maximal11

θα+(1− θ)β and the sparse w under the prespecified α and β . The other is to use
a similar search method to find the α, β, and w to make θα+(1−θ)β

NSF (where NSF13

means the number of selected featuresb) maximal. In the first criterion, the maximal
α and β may result in a high prediction accuracy, but does not necessarily assure a15

sparse w. The second criterion considers both the worst-case accuracy bound and
the sparsity of w. For convenience, these two criteria are denoted as Criterion 1 and17

Criterion 2, respectively. The iterative search method for Criterion 1 is described
in Algorithm 1.19

In the case of Criterion 2, the search method is similar except that the objective
is to maximize θα+(1−θ)β

NSF .21

Remark. It is interesting to note that a series of criteria within the range of
the above two criteria can be obtained by setting an adjustment factor t where23

1 ≤ t ≤ NSF. In this way, the resulting criterion is t θα+(1−θ)β
NSF . An example is to

set t = log(NSF) if we want to decrease the effect of NSF.25

bIf a relative measure
|wi|

maxi{|wi|} ≥ ε, then this feature is selected; otherwise, it is not selected.

In this paper, ε = 0.001.
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Algorithm 1 The Feature Selection Algorithm with MEMPM. Input: S = (X, Y ):
the training data; (α0, β0): the initial value of α and β; θ: a weighing constant;
αstep: the iterative step of α; ε: the termination parameter. Output: (w, b)
1: αi = α0

2: while αi ≤ 1 do
3: βn = 1
4: while |β0 − βn| ≤ ε do
5: βj = (β0 + βn)/2
6: Run an SOCP procedure to solve the MEMPM formulation for feature

selection with current (αi, βj)
7: if βj is feasible then
8: β0 = βj

9: else
10: βn = βj

11: end if
12: if both αi and βj are feasible then
13: Calculate θα + (1 − θ)β
14: Keep (αi, βj ,w, b) in memory
15: end if
16: end while
17: α = α + αstep

18: end while
19: Return the optimal (w, b) with the maximal θα + (1 − θ)β.

4. Experiments1

The proposed feature selection algorithm is evaluated in real world data sets. Here
we conduct two experiments. The first experiment is to compare the criteria for3

FS-MEMPM (here and thereafter, we use a prefix “FS-” to represent feature selec-
tion algorithms based on the revelent classification frameworks). The second exper-5

iment is used to compare the performance of different feature selection algorithms.

4.1. Experiment protocol7

The data sets used are Sonar, Ionosphere, Pima and Wdbc from the UCI machine
learning repository.2 These data sets have 60, 34, 8 and 30 features, respectively.9

The experiments are conducted on a PC with Intel Pentium 4 CPU, 3.20GHz and
0.99GB of RAM. The parameters C of SVM is tuned by ten-cross validation to11

maximize the test accuracy. All the experimental results are obtained by averaging
ten trials and each trial is with ten-cross fold validation for each data set.13

In the first experiment, FS-MEMPM and FS-MPM equipped with Criterion 1
and Criterion 2 are compared. We omit the search method of FS-MPM because15

it is similar and even simpler since it has only one control parameter α. In the



1st Reading

October 31, 2007 17:28 WSPC/115-IJPRAI SPI-J068 00595

8 Z. Xu, I. King & M. R. Lyu

second experiment, FS-MEMPM (with Criterion 2) is compared with FS-SVM and1

FS-MPM (with Criterion 2) on the prediction accuracy, the number of selected
features and the stability on selecting similar feature subsets.3

4.2. Experimental results and discussion

4.2.1. Comparison of different criteria5

The prediction accuracy and the number of selected features of FS-MEMPM with
Criterion 1 and Criterion 2 are listed in Table 2. For an easy comparison with7

FS-MEMPM, the results of FS-MPM are also listed in Table 3.
In each table, the second row denotes the classification accuracies obtained9

without feature selection on each data set by MEMPM or MPM. Then the next
two rows are the number of selected features and the test accuracy obtained by11
Criterion 1. The last two rows are the number of selected features and the test
accuracy obtained by Criterion 2.13

For the first experiment, we can see that the test accuracy degrades a little
or shows improvement on some data sets after adopting Criterion 1 compared to15
that before feature selection. But it only removes a few nondiscriminant features.
Criterion 1 is recommended in the case that test accuracy is a much more important17
measure. However, the removal of features is very limited and so Criterion 1 is very
conservative. Feature selection algorithm with Criterion 2 discards many irrelevant19
features while the test accuracy does not change much. In the case of Sonar, the test
accuracy even improves slightly. Therefore, it is recommended to adopt Criterion 221
when the dimension reduction is much more important than the test accuracy.
The results can be interpreted as follows: when the worst-case accuracy bound23
θα+(1−θ)β is very large, many features are required to contribute to the covariance

Table 2. Comparison of different selection criteria in FS-MEMPM.

Data Set Sonar Ionosphere Pima Wdbc

Accuracy Before Feature Selection(%) 74.7 88.5 74.5 97.0
NSF(by Criterion 1) 57.97 32.58 7.04 24.66
Test Accuracy(%) 74.9 87.6 76.4 94.6
NSF(by Criterion 2) 13.69 6.5 2.1 1
Test Accuracy(%) 74.8 86.7 73.2 90.7

Table 3. Comparison of different selection criteria in FS-MPM.

Data Set Sonar Ionosphere Pima Wdbc

Accuracy Before Feature Selection(%) 75.3 84.7 75.6 97.0
NSF(by Criterion 1) 56.59 31.5 6.68 24.37
Test Accuracy(%) 75.4 84.8 75.7 97.0
NSF(by Criterion 2) 34.59 9.96 3.3 1
Test Accuracy(%) 74.6 83.6 73.1 90.1
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matrices and thus w is not very sparse. When α and β are not very large, the1

requirement of features’ contribution to the covariance matrices can be slightly
slackened and thus result in a sparse w. Due to the different nature of data and3

the unknown difference between the bound α and β and the real future prediction
accuracy, a slightly smaller α or β does not necessarily result in lower accuracy.5

The difference between the two criteria also suggests that there should exist
an in-between criterion, which selects a few more features than Criterion 2 but7

improves the prediction accuracy. These criteria provide FS-MEMPM a way for
users to control the balance between the prediction accuracy and the number of9

selected features. It can be also similarly analyzed for Criterion 1 and Criterion 2
in FS-MPM.11

4.2.2. Comparison among different feature selection algorithms

Table 4 shows the comparison results for all algorithms on the average number13
of selected features and the prediction accuracy of resulted sparse classifiers. For
the convenience of comparison, we put the classification accuracy without feature15
selection as one row for each data set.

First, looking at the number of selected features, we observe that FS-MEMPM17
always selects the least number of features. Geometrically, FS-MPM uses fewer
features to include these two classes into two tangent ellipsoids with the same19
radius; while FS-MEMPM tries to use fewer features to include the classes into two
tangent ellipsoids with different radii. In fact, these two classes often have different21
distributions; thus ellipsoids with different radii can easily contain the data. Further,
the bounds in MEMPM are much tighter than the bounds in MPM.6 As a result,23
FS-MEMPM is more reasonable than MPM and selects fewer features. Furthermore,

Table 4. Comparisons of experimental results on all data sets.

Feature Selection Algorithms FS-SVM FS-MPM FS-MEMPM

Data Set Sonar
Accuracy Before Feature Selection (%) 76.0 75.3 74.7
The Number of Selected Features 16.3 34.59 13.69
Test Accuracy (%) 74.3 74.6 74.8

Data Set Ionosphere
Accuracy Before Feature Selection(%) 87.3 84.8 88.5
The Number of Selected Features 18.01 9.96 6.5
Test Accuracy (%) 87.5 83.6 86.7

Data Set Pima
Accuracy Before Feature Selection(%) 77.1 75.7 74.5
The Number of Selected Features 3.95 3.3 2.1
Test Accuracy (%) 75.9 73.1 73.2

Data set Wdbc
Accuracy Before Feature Selection(%) 97.4 97.0 97.0
the Number of Selected Features 4 1 1
Test Accuracy (%) 95.2 90.0 90.7
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the statistics on selected feature subset shows that the feature set of FS-MEMPM is1

almost the subset of FS-MPM. FS-SVM tries to project the data to a low dimension
space to separate two classes of data as much as possible. Comparing with FS-SVM,3

the good performance of FS-MEMPM benefits from the automatic balance between
the accuracy bound and the size of feature subset.5

Second, looking at the test accuracy, FS-SVM shows improvements on Iono-
sphere; while FS-MPM and FS-MEMPM improves on Sonar. Generally FS-SVM7

has higher prediction accuracy but at the cost of more selected features. It is impor-
tant to notice that our proposed algorithm obtains a good balance between the9

prediction accuracy and the number of selected features. One typical example is
text classification, where the bags-of-words representation scheme produces a high11

dimension in the scale of thousands or millions. Effectively reducing the number
of dimensionality will greatly decrease the response time and reduce the memory13

requirement.
Figure 1 describes the frequencies of features being selected by these three fea-15

ture selection algorithms. With the limited space, only results from Ionospere and
Sonar are listed. Similar results can be observed on Pima. Because of easy sepa-17

rability of data itself, three algorithms always find the same features on Wdbc in
all runs and all divisions. It is observed that the algorithms differ much on consis-19

tently selecting same features in different runs and partitions. The features selected
by FS-SVM and FS-MPM are very different in different runs and partitions of these21

data sets, since the frequencies of features being selected are further away from 0
or 1. However, FS-MEMPM selects more similar features in all partitions, which23

can be observed from points approximating to the floor and the ceiling. This shows
that global classifiers which accurately describe the distributions of data can have25

a more stable performance than local classifiers in the feature selection task.

5. Conclusion and Future Work27

A feature selection algorithm based on MEMPM, noted as FS-MEMPM, is pro-
posed in this paper. Two criteria to control the balance between the number of29

selected features and the prediction accuracy are proposed for FS-MEMPM. The
experimental results show that in Criterion 1, generally the algorithm does not lose31

prediction accuracy but removes only a few features; while in Criterion 2, the fea-
ture selection algorithm selects the least number of features and at the same time33

maintains quite high prediction accuracy. These criteria make FS-MEMPM con-
trollable in balancing between the prediction accuracy and the feature subset size.35

The experiment among the proposed FS-MEMPM and other two feature selection
algorithms FS-SVM and FS-MPM shows that FS-MEMPM is more likely to select37

the least number of features and is more stable in selecting similar feature subsets
in different runs and data partitions.39

A future work is to find an optimal criteria for FS-MEMPM to explore the opti-
mal tradeoff between the lower bound of the prediction accuracy and the number41
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Fig. 1. The scatter plot of the probability of features being selected by FS-SVM, FS-MPM and
FS-MEMPM on data set Ionosphere and Sonar. The algorithm is thought as more stable when
the probability is closer to 0 or 1. In this graph, (a) and (b) are the results observed on Ionoshere
and Sonar, respectively.
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of selected features. Another future work is to extend the current feature selection1

algorithm to a nonlinearly separable case by using the kernel trick. Besides, we plan
to apply the proposed algorithm in gene selection from microarray data and text3

categorization, where the dimension is usually very large. We believe the balance
between the prediction accuracy and the number of selected features provided by5

our algorithm will benefit the feature selection process.
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