A Linear Combination Software Reliability Modeling Tool
with a Graphically-Oriented User Interface

Allen P. Nikora Michael R. Lyu Thomas M. Antczak
Jet Propulsion Laboratory Electrical and Computer Jet Propulsion Laboratory
California Institute Engineering Department California Institute
of Technology University of Iowa of Technology

Pasadena, CA 91109-8099

Abstract

In our recent work, we have shown that forming linear
combination of model results tends to yield more
accurate predictions of software reliability. Using linear
combinations also simplifies the practitioner’s task of
deciding which model or models to apply 10 a particular
development effort. Currently, no commercially
available tools permit such combinations to be formed
within the environment provided by the tool,

Most software reliability modeling tools also do not
take advantage of the high-resolution displays available
today. Performing actions within the tool may be
awkward, and the output of the tools may be
understandable only to a specialist. We propose a
software reliability modeling tool that allows users to
formulate linear combination models, that can be
operated by non- specialists, and that produces results in
a form undetstandable by software developers and
managements

1: Introduction

Over the past twenty years, many software reliability
models have appeared in the literature [1]. Many of these
models have been shown to be applicable to a
sufficiently large number of failure data sets, so that
development efforts would have some degree of
confidence in using one or more of these models.
Techniques for recalibrating models [31] and combining
the results of models in a linear fashion [2,3,27,28,30]
have been developed that appear to yield more accurate
predictions than a single model. However, these models
have not been used as widely as one might expect. A
principal factor here is that it does not seem possible to
make a priori determinations of which model or models
will be the best suited to a particular development effort
(1,2].

Another difficulty has been the lack of modeling tools
that are easy for the non-specialist to use. For instance,
many of the tools currently available were initially
developed prior to the widespread availability of high-

0-8186-2620-8/92 $3.00 © 1992 IEEE

Iowa City, IA 52242

21

Pasadena, CA 91109-8099

resolution displays, and therefore employ character-
oriented user interfaces [4,5]. This characteristic of the
tools may result in terse and cryptic command sequences,
making it difficult for non-specialists or casual users to
perform modeling actions with the tool. Since the
results of the tools are displayed in a character-oriented
fashion, the results will tend to be expressed in a way
that is not easily understandable to non-specialists (e.g.
model parameter values, tabular displays of interfailure
times as opposed to failure rate curves). Considering the
schedule pressures under which software developers and
managers frequently operate, there is little incentive to
learn how to operate a complicated new tool.

Also, the tools available today do not allow users to
form linear combinations of model results within the
tool environment. In earlier papers [2,3,27,28,30], we
have shown that linear combinations of individual
models can yield more accurate reliability predictions
than the individual models themselves. To form linear
combinations with current tools, the tool must be run
several times to obtain the results from the desired
component models of the combination. These results
must then be combined in an application separate from
the tool. Of course, this consumes more time than
would be required if linear combinations could be formed
within the tool environment.

In this paper we propose an architecture for a software

reliability modeling tool that:

1. Supports the formation of linear combinations
of model results within the tool environment,

2. Allows non-specialists to operate the tool and
easily interpret the model results,

We refer to this tool as a Computer-Aided Software
Reliability Estimation (CASRE) tool.

2: User Analysis

In developing the user interface for CASRE, it was
necessary to identify the types of individuals that would

use this tool as well as their software reliability
knowledge. This knowledge determined the interaction

style chosen for the user interface as well as the types of
user interface objects that to be displayed. The six
following types of users were identified:

1. Project managers

2. Line managers

3 Software development staff (system, software,
and test engineers)

4, Software support staff (configuration

management and product assurance personnel)
S. Consultants
6. Researchers

For each of these user categories, we describe their role
in the software reliability measurement task, and further
classify them according to schemes suggested by
Sutcliffe and Schneiderman in their work on user
interfaces [32,33] and summarized below.

I initi R
User Knowledge
task: Knowledge of software reliability
measurement techniques, rated as
novice, skilled, or expert

computer: Knowledge in use of computers to

accomplish task, rated as novice,

skilled, or expert

Knowledge of syntax of actions

required to accomplish task, rated as

novice, skilled, or expert

Frequency: How often involved in software
reliability measurement task, measured
as hourly, daily, weekly, monthly, or
intermittent

Discretion: Rated as compulsory or optional

Workload: Proportion of time estimated to be
dedicated to software reliability
measurement - rated as low, medium,
high

Interaction: Data entry, low-level functions (e.g.
synthesis of new combination models),
high level functions (e.g. execution of
one or more pre-specified models), all
functions, uses output only.

syntax:

2.1: Project Managers

Project Managers are typically former engineers who
have made the transition to management. As such, they
arc familiar with basic techniques for interpreting
statistical information, but may not be familiar with
details of statistical modeling. These individuals
typically receive reports generated by the support staff
and use them as input to their decision making process.
Consultants may also work with researchers to transfer
academic findings to specific application domains.

Knowledge
task: skilled-
computer: skilled-
syntax: novice
Frequency: monthly
Discretion: optional
Workload: low
Interaction: Receives hardcopy reports. Rarely

interacts directly with tool.
2.2: Line Managers

Line Managers are usually also former engineers who
have made the transition to management. As with
Project Managers, these individuals are familiar with the
basic techniques for interpreting statistical information.
Line Managers receive reports from their support staff
and use them as input to their decision process. Since
Line Managers are usually closer to the actual
development effort, they would tend to request reports
more frequently than Project Managers. They may also
use some of the basic tool capabilities (e.g. running pre-
specified models, but not creating new ones).

Knowledge
task: skilled-
computer: skilled-
syntax: novice
Frequency: biweekly
Discretion: optional
Workload: low
Interaction: Receives hardcopy reports.

Occasional use of high-level
functions of tool.

2.3: Development Staff

Users of software reliability measurement techniques
within the development organization include system
engineers, software engineers, programmers, and test
engineers. These individuals typically have degrees in
technical disciplines, extensive software development
experience, and some additional training in the methods
and tools that apply to their assignment. These
individuals use modern software development tools on a
regular basis. They will be familiar with the basics of
probability theory and statistics, and may have advanced
training in statistical modeling techniques. Currently,
however, they rarely have had training in software re-
liability theory, methods, or tools.

Knowledge
task: skilled-
computer: expert
syntax: expert
Frequency: weekly

Discretion: compulsory, subject to Project or

Line management policy
Workload: low
Interaction: Use of high-level functions of tool.
2.4: Support Staff

Users of software reliability measurement techniques
within the support staff include configuration
management specialists and quality assurance personnel.
These individuals include both clerical and technical
personnel. Most of these individuals have extensive
experience in configuration management and quality
assurance activities across a wide range of projects.
Consequently, some support staff members have training
or experience with software reliability measurement
techniques at various levels.

Knowled
task: novice+
computer: skilled
syntax: skilled
Frequency: weekly
Discretion: compulsory, subject to Project or
Line management policy
Workload: low
Interaction: Primarily high-level functions, some
use of low-level functions.
2.5: Consultants

A software reliability consultant typically has an
advanced degree in a technical discipline extensive
background in all aspects of software reliability
measurement, and significant software development
experience. This individual plays a key role in
introducing software reliability
measurement techniques into a

2.6: Researchers

Researchers are typically members of the faculty at a
university who develop or refine reliability models.
Researchers may work with consultants in transferring
knowledge from the academic to environment to specific
applications domains.

Knowledge
task: expert
computer: skilled
syntax: expert
Frequency: daily
Discretion: optional
Waoarkload: high
Interaction: Al functions.
2.7: User Analysis Summary and Rec-

ommendations

Table 1 summarizes the user analysis given above.
We see from Table 1 that the reliability measurement
task is performed within a software development effort
on, at best, a weekly basis (discounting the time that
may have been spent with a consultant in setting up a
reliability measurement program). Also, some of the
users performing the task the most frequently have the
lowest level of reliability measurement knowledge.
Given these factors, the goals of low learning time and
good retention over time were the primary concerns in
designing the CASRE interface. These findings suggest
that a menu-oriented or direct manipulation style of
interaction, or perhaps a combination of the two, is

appropriate.

project at all levels. This User Knowledge
includes assisting the Project N . Dis
: : : ask C ter Synta, enc; iscretion Work- Interacti
and Line Managers in setting ompu yoiax Trequency Disc Loag o«
software reliability goals and Proi . . .) X g
in terpre tin g re sult s, and Ml;’l?‘u skilled- skilled- novice monthly optional low hardcopy
assisting the development and Line er skilled- skilled- novice weekly optional low hardcopy, some high
. . level functions
Slll_)pOl't staffs in selecting and ls)‘:vﬂ‘elopmmt skilled- ecxpent expert weekly compulsory low+ high level functions
using models and support Support Suff novices skilled skilled weekly compulsory lows high level functions,
tools. some low level
functions
Consultant expert- expen expert intrmtnt optional high all functions
Knowled; Rescarcher expert skilled expert daily optional high all functions
task: expert-
computer: expert Table 1 - Summary User Profiles
syntax: expert
Frequency: inter-
mittent .
Discretion: optional While important, good speed of performance was not
Workload: high deemed as critical as the other two goals. When running
Interaction: All functions, a complicated model, such as the Littlewood-Verrall

23

model [19], on a set of failure data, it is to be expected
that results will not be immediately available. We
therefore specified the goal that the throughput of the
modeling section should at least be comparable to that of
some of the more popular tools currently in use.

3: The CASRE Tool - High-Level
Structure and Functionality

This section describes the high-level architecture and
the basic functionality of the CASRE tool. To
implement the recommendations resulting from the user
analysis, it is planned to implement CASRE on top of a
windowing system (e.g. X-Windows/MOTIF, DOS
Windows 3.0). Figure 1 shows the proposed high-level
architecture for CASRE, whose major functional areas
are:

Data Modification

Failure Data Analysis

Modeling and Measurement
Modeling/Measurement Results Display

Much of CASRE's functionality is available in
current software reliability tools [4,5]. However, a
feature unique to CASRE allows users to combine the
results of several models in addition to executing a single
model. Feedback from the Model Evaluation block
assists users in identifying a model or combination of
models best suited to the failure data being analyzed.
Moreover, the 1/O facilities, the user interface, and the
measurement procedures are greatly enhanced in this tool.
3.1: Data Modification

CASRE allows users to create new failure data files,
modify existing files, and perform global operations on
files. Editing CASRE allows users to create or alter
failyre history data files. A simplified spreadsheet-like
user interface allows users to enter time between failures
or test interval lengths and failure counts from the
keyboard. Users are also allowed to invoke a preferred
editor (e.g. emacs or vi).

3.2: Smoothing

Since input data to the models is often fairly noisy,

the following smoothing techniques are proposed:

- Sliding rectangular window

- Hann window

- General polynomial fit

- Cardinal Spline

- Specific cubic-polynomial fits (e.g. B-Spline,
Bezier Curve)

24

Users select smoothing techniques appropriate to the
failure data being analyzed. The smoothed input data can
be plotted, used as input to a reliability model, or written
out to a new file for later use. Summary statistics for
the smoothed data can also be displayed (see "Failure
Data Analysis” below).
3.3: Data Transformation

In some situations, logarithmic, exponential, or linear
transformations of the failure data produce better or more
understandable results. The following operations,
currently available in some tools, allow users to
transform an entire set of failure data in this manner.

- log(a * x(i)) + b); x(i) represents a failure data
item, and a and b are user-selectable scale factors

- expla*x(i)+b)

- x(i)**a

- x(i)+a

- x(@)*a

- User-specified transformations might also be
allowed.

As with smoothing, users select a specific trans-
formation. Users are able to manipulate transformed data
as they would smoothed data.
3.4: Failure Data Analysis

The "Summary Statistics” block in Figure 1 allows
users to display the failure data’s summary statistics,
including the mean and median of the failure data, 25%
and 75% hinge points, skewness, and kurtosis [6].
3.5: Modeling and Measurement - Single
Model Execution

Figure 1 shows two modeling functions. The
"Models" block executes single software reliability
models on a set of failure data. The "Model
Combination" block allows users to execute several
models on the failure data and combine the results of
those models. We include this capability because our
experience in combining the results of more than one
model indicates that such "combination models” may
provide more accurate reliability predictions than single
models [3]. The block labeled "Model Evaluation”
allows users to determine the applicability of a model to
a set of failure data.

Based on our experience in applying software
reliability models, we include the following models in
CASRE:

Bayesian Jelinski-Moranda (BJM) [7,8,9]
Goel-Okumoto Model (GO) [13]
Jelinski-Moranda Model (JM) [14,15]
Keiller-Littlewood Model (KL) [16,17]
Littlewood Model (LM) [18]
Littlewood NHPP Model (LNHPP) [1]
Littlewood-Verrall Model (V) [19]
Musa-Okumoto Model (MO) {20]

9) Generalized Poisson Model (PM) [10]
10) Schneidewind Model (SM) {21]

11) Yamada S-Shaped Model (YM) [22]
12) Geometric Model (GM) [10]

13) Duane Model (DU) [11,12]

To screen,
printer, or disk

associated with the observed interfailure times
or failure frequencies

- u-plots and y-plots [1,34] indicating bias and
trends in the bias of the model

Users can display these quantities on-screen or write
them to disk.
3.6: Combination Models
CASRE allows users to combine the results of several
models according to the Equally-Weighted Linear
Combination (ELC), Median- Oriented Linear
Combination (MLC), Unequally-Weighted Linear
Combination (ULC), or
Dynamically-Weighted Linear
Combination (DLC) schemes
described in [3,27]. Users may
also be allowed to define their

own weighting schemes. The
o Model . . .
=] Summary —ra resulting combination models
~— could be further used as the
component models to form
_,_I g Mocel Ll Predicior another combination model.
R 3.7: Model Evaluation
4 ; ! w CASRE includes the
! rrver following statistical methods to
- ! Sraluten help users determine the
:—H'W& applicability of a model
\ B (including "combination
Component Models, = ~ 1 J fas (u;) models") to a specific failure data
Weighting Schemes To screen, Trend (y;) set:
printer, or disk - Computation of

(*) PL = Prequential Likelihood, AIC = Akaike Information Criterion

Figure 1:

The models should be implemented to allow input to
be in the form of interfailure times or failure frequencies.
CASRE allows users to choose the parameter estimation
method (maximum likelihood, least squares, or method
of moments). Model outputs include:

- Current estimates of failure rate or inter-failure
time

- Curent estimates of reliability

- Model parameter values, including high and low
parameter values for a user-selectable confidence
bound

- Current values of the probability density
function and cumulative density function

High-Level Architecture for CASRE

25

prequential likelihood
(PL) function (the
"Accuracy” criterion).

- Determination of the
probability integral
transform u; [1,34], (plotted as the u-plot - the
"Bias" criterion).

- Computation of the normalized logarithmic
transform of uj, yj [1,34], to produce the y-plot
(the "Trend" criterion).

- Noisiness of model predictions (the "Noise"
criterion).

- The Akaike Information Criterion (AIC) [23],
similar in concept to prequential likelihood,
could also be implemented.

This model evaluation function would also compute
goodness-of-fit measures (e.g. Chi-Square test). The PL
and AIC outputs are used as input to "Model
Combination" to determine the relative contribution of

individual models if the user has specified a combination
model.
3.8: Display of Results

CASRE graphically displays model results in the
following forms:

- Interfailure times/failure frequencies, actual and
estimated

- Cumulative failures, actual and estimated

- Reliability growth, actual and estimated

Actual and estimated quantities
are available on the same plot.
Plots include user-specified confi-
dence limits. Users are able to

selecting the "Open” option in the File menu, a dialogue
box for selecting a file appears on the screen. The
current directory appears in the editable text window at
the top of the dialogue box. The failure history files in
that directory are listed in the scrolling text window.
The user selects a file by highlighting its name
(scrolling the file name window if necessary) and then
pressing the "Open” button. To change the current
directory, the user enters the name of the new directory in
the "Current Directory” window and presses the "Change
Directory” button. Pressing the "Cancel” button
removes the dialogue box from the screen.

control the range of data to be

plotted as well as the usual

cosmetic aspects of the plot (e.g.
X and Y scaling, titles). In a
windowing environment,
multiple plots could be
simultaneously displayed.
CASRE allows users to save
plots displayed on-screen as a
disk file or to print them. One
public-domain tool, version IV
of SMERFS [4], can write the
data used to produce a plot to a
file that can be imported by a
spreadsheet, a DBMS, or a statis-
tics package for further analysis.
CASRE also includes this
capability. The plotting function
also produces u-plots and y-plots
from Model Evaluation's uj and
yi outputs. These plots indicate
the degree and direction of model bias and the way in
which the bias changes over time.

4:

name is highlighted

Application Procedure

Figures 2-8 show a series of screen dumps for the
described CASRE tool, using simulated failure data. It
can be seen that the application of models to failure data
is a straightforward process. The user is also given a
considerable amount of choice in the models to be ap-
plied, making it easy to identify an appropriate model for
a particular development.

4.1: Opening a Failure Data File

The screen is shown in Figure 2. To choose a set of
failure data on which a reliability model will be run, the
user selects the "File" menu with the mouse. After

Press to open file whose

Press to change to directory
identified in "Current Directory”
window above

Editable text
window - enter
new directory
name here

Highlight
file name by
clicking and
dragging

Press to cancel operation

Figure 2 - Failure Data Selection

4.2: Preliminary Failure Data Analysis

The screen is shown in Figure 3. After opening a
failure history file, the contents of the file are displayed
in tabular and graphic forms. The tabular representation
resembles a spreadsheet, and the user can perform similar
types of operations (e.g. selecting a range of data,
deleting one or more rows of data). All of the fields can
be changed by the user except for the "Interval Number"”
field (or "Error Number" field if the data ic interfailure
times). In this example, the selected data set is in the
form of test interval lengths and number of failures per
test interval. The user can scroll up and down through
this tabular representation and resize it as per the MOTIF
or DOS Windows conventions. The large graphics
window displays the same data as the worksheet. If the
failure data set is interfailure times, the initial graphical
display is interfailure times. If, as in this example, the

failure data set is test interval lengths and failure counts,
the initial graphical display is the number of failures per
test interval. The display type can be changed by
selecting one of the items from the "Display Type"
menu associated with the graph-
ics window. The user can move
forward and backward through the
data set by pressing the right
arrow or left arrow buttons at the

The graphics display will change to include only the
highlighted data range. All other observations will be
removed from the graphics display.

Press to invoke

bottom of the graphics window. help system
Finally, the iconified window at Displays contents
the lower left comer of the screen of graphic display
lists the summary statistics for in tabular form
the data. To open this window,
the user clicks on the icon. The Displays a new
following information is then copy of the graphic
displayed in a separate window: display on screen

- Number of observations

in this data set Graphic display of
- Type of observations failure data shown
in worksheet window

made (interfailure times
or test interval lengths
and failure counts)
- Mean value of the ob-
servations
- Minimum and maxi-
mum values
- Median
- 25% and 75% hinges
- Standard deviation and variance
- Skewness and Kurtosis
4.3: Failure Data Selection and Editing
The screen is shown in Figure 4. The user will
frequently use only a portion of the data set to estimate
the current reliability of the software. This is because
testing methods may change during the testing effort, or
different portions of the data set may represent failures in
different portions of the software. To use only a subset
of the selected data set, the user may simply "click and
drag” on the tabular representation of the data set to
highlight a specific range of observations. The user may
also select previously-defined data ranges. To do this,
the user chooses the "Select Range" option of the Edit
menu. This brings up a dialogue box containing a
scrolling text window in which the names of previously-
defined data ranges and the points they represent are
listed. To select a particular range, the user highlights
the name of the range in the scrolling text window and
presses the "OK" button. Pressing the "Cancel” button
removes the dialogue box and the Edit menu from the
screen. Once a range has been selected, all future model-
ing operations will be only for that range. The selected
data range is highlighted in the tabular representation.

27

Editable worksheet-like failure data display

iconified display of failure data summary statistics.
Comes up in iconified form to minimize screen clutter.

Figure 3 - Initial Failure Data Display

4.4: Data Filtering

The screen is shown in Figure 5. After selecting a data
range, the user may wish to transform the file or smooth
the data. Software failure data is frequently very noisy;
smoothing the data or otherwise transforming it may im-
prove the modeling results. To do this, the user selects
one of the options in the "Filter" menu. There are five
affine transformations which the user may apply to the
data, and six types of smoothing. Transformations and
smoothing operations may be pipelined - for example,
the user could select the "In(A * X(i) + B)" transforma-
tion followed by the B-spline smoothing operation. The
number of filters that may be pipelined is limited only
by the amount of available memory. The tabular
representation of the failure is changed to reflect the
filter, as is the graphical display of the data. The type of
filter applied to the data is listed at the right hand edge of
the graphics display window. In this example, we have
applied a B spline to the data. Once a series of filters has
been applied to the data, the user may remove the effect
of the most recent filter by selecting the "Undo" option
of the Filter menu. To remove the effect of the entire
series of filters, the user selects the "Undo All Filters”
option of the Filter menu.

£ Main Menu o

Press to select high-
lighted range

Press to cancel
operation

Figure 4 - Subsetting Failure Data this is a

4.5: Applying Software Reliability Models

The screen is shown in Figure 6. After the user has
opencd a file, selected a data range, and done any
smoothing or other transformation of the data, a software
reliability model can be run on the data. In the Model
menu, the user has the choice of 13 individual models or
a set of models which combine the results of two or
more of the individual models. The user may also
choose the method of parameter estimation (maximum
likelihood, least squarcs, or mcthod of moments), the
confidence bounds that will be calculated for the selected
model, and the interval of time aver which predictions of
future failure behavior will be
made.

on which 13 individual models
are listed, as well as a "Choose
Best" option. The user selects
the "Choose Best"” option, which
results in a "Selection Criteria"
dialogue box being displayed.
The user moves the four sliders
in this dialogue box back and
forth to establish the relative
priorities of the four criteria.
Numerical values of the priorities
are displayed in the text boxes on
the right side of the dialogue
box. Once the priorities have
been established, the user presses
the "OK" button. CASRE then
proceeds to run all of the
individual models against the data
set, first warning the user that
time-consuming

operation and allowing
cancellation of the operation. If the user continues,
CASRE provides the opportunity for cancellation at any
time if the user decides that the operation is taking too
much time.

Seiect range
name by clicking
and dragging

on name in
window

4.7: Displaying the Final Results

The screen is shown in Figure 8. Once a model has
been run on the failure data, the results are graphically
displayed. Actual and predicted data points are shown, as
are confidence bounds. The model is identified in the
window's title bar; the percent confidence bounds are
given at the right side of the graphics window. This
concludes one round of software reliability measurcment

4.6: Selecting the Best

CASRE Msin Menu

Model(s)

The screen is shown in Figure
7. There are many models from
which to choose in this tool.
The uscr may not know which
model is most appropriate for the
data set being analyzed. Using
CASRE, the user can request,
"display the results of the
individual model which best
meets the four prioritized criteria
of accuracy (based on prequential
likelikood), biasedness, trend, and
noisiness of prediction." To do
this, the user first selects the
"Individual” option of the Model
menu. A submenu then appears,

]

XM °A

xfi
INA°* X[+8) oy Type] [Evakiations][Scaling]
op(A * X(i) +B)

Sinocothing
B-Spline
Cardinal Spline
Betzier Curve

o]0
mﬂﬂﬁ

Acedemic_Deta Feikwre Counts [=]

x = actusl data

-ttt
0123456789 101112131415
Tnsl‘-.'ﬁ-l[>

Figure 5 - Filtering the Fallure Data

Press to have the tool sslect the modsl that best fits a set

of user-specified criteria.

Figure 6 - Model Application

with CASRE.

5: General Experiences and On-
Going Work

A Hypercard prototype of the CASRE interface was
first presented and demonstrated at the 14th
Minnowbrook Workshop on Software Engineering [30].
Remarkably, there were no suggestions for change that
would have meant any significant re-organization
of the tool. Currently, the Air Force Operational
and Test Center (AFOTEC) is funding the
implementation of this tool for a Microsoft
Windows 3.0 environment. The modeling
capability of CASRE will be based on the
mathematical library of SMERFS version IV. We
decided that this would be the most effective way of
accomplishing the task within the allocated
resources. Rather than writing a new set of
modcling routines, it made more sense to make use
of an already existing modeling library that had
been extensively tested. Implementation of the
linear combination modeling facility will be a
straightforward task, since all that is needed is a
control mechanism to sequence through the selected
models and assign weights to the results of
individual models.

in Figures 6 and 7). Recall from the previous
section that to execute a model, users would choose
a model from a sub-menu of the Model pull-down
menu. This would have resulted in a sub-menu for
individual models and a set of control panels and
sub-menus for the linear combination models. To
run more than one model would be a tedious
cxercise with this type of interaction; users would
have to choose one model, wait for it to complete,
then choose the next model, and so forth.

A discussion with the AFOTEC sponsors
revealed that a more sensible model selection and
execution mechanism would be a checklist, in
which users would indicate all of the models,
individual or combination, to be executed during a
modeling run. Upon completing the checklist,
users would select an item on the checklist that
would start execution of the models. This would
free users to perform other tasks while the models
were executing. As with other applications
involving possibly lengthy computations, users
would be given the option to terminate execution
of the chosen set of models at any time.

This change has led to modifications in the
drawing window in which modeling results are
displayed. As originally conceived, this window
would display the raw data and the results of only one
model. Now that the user will be allowed to execute
more than one model at a time, the drawing window will
change to allow users to specify which models’ results
will be displayed in the window. This will be
accomplished by a checklist similar to that used to
specify models for execution. However, in this "display
selection” checklist, only the models that have been
executed will te listed. This facility will allow users to

To specify the criteria by which a mode! will be judged "best", the user

Since the time of the Minncwbrook moves the slide bars on the "Selection Criteria® control panel at the right
presentation, some changes to the original concept ~ edge of the screen to set the relative weights of four criteria.

have been made. The most significant change is in
the model selection and application arca (illustrated

Figure 7 - Weighting Model Selection Criteria

29

easily compare the outputs, and hence the behavior, of
two or more models.

Asadunic Data Fellre Counts -LY Model Rasults

Dloplay Ppa] [Evaiouions | Seabvg | [CoFV](Talie]

Press 1o evaluate the applicability
of the model to the set of failure data

Figure 8 - Model Results Display

6: Conclusions and Future Work

We have proposed a set of linear-combination models
for more accurate measurement of software reliability.
These models have shown promising results when
compared with the traditional single-model approaches.
To relieve the tedious work involved in applying these
approaches, a CASE tool, called CASRE, is proposed to
automate the software reliability measurement task. For
the purpose of model validation and determining tool
applicability, we need to obtain enough data to compare
software reliability models and predictions across various
types of software projects. Some data sets can be found
in [24], [25], [26], and [29]. In future investigations, we
will apply more data sets to the proposed combination
models for the purpose of validating them, and for
refining the structure and functionality of the CASRE
tool. Interim versions of the CASRE tool will be
prepared and refined; potential users will be identified and
asked to use these interim versions and evaluate them
based on their experience within a software development
effort. These evaluations will be used in refining the
structure and functionality of the tool.

Acknowledgements

The research described in this paper was carried out at
the University of Iowa under a faculty starting fund, and
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aecronautics and Space Administration, through the JPL
Director's Discretionary Fund. Support for the
implementation of the tool described herein is provided

30

by the Air Force Operational and Test Evaluation Center,
under Task Order RE-182, Amendment 655, Proposal
No. 80-3417. Modifications to the SMERFS modeling
library to support the model evaluation methods dis-
cussed in this paper will be accomplished by Dr. W. H.
Farr of the Naval Surface Warfare Center, Dahlgren, VA.

References

1. A. A. Abdel-Ghaly, P. Y. Chan, B. Littlewood, "Evalua-
tion of Competing Software Reliability Predictions,”
IEEE Transactions on Software Engineering, vol. SE-
12, pp.950-967, September, 1986.

2. M. R. Lyu, "Measuring Reliability of Embedded Soft-
ware: An Empirical Study with JPL Project Data," in
Proceedings of the International Conference on
Probabilistic Safety Assessment and Management,
Beverly Hills, California, February, 1991.

3. M. R. Lyu, A. Nikora, "Software Reliability Measure-
ments Through Combination Models: Approaches, Re-
sults, and a Case Tool," in Proceedings of the 15th An-
nual International Computer Software and Applications
Conference (COMPSAC91), Tokyo, Japan, September,
1991.

4. W.H. Farr, O. D. Smith, "Statistical Modeling and Esti-
mation of Reliability Functions for Software (SMERFS)
User's Guide," TR84-373, Revision 1, NavSWC,
December, 1988.

5. B. Littlewood, A. A. Abdel-Ghaly, P. Y. Chan, "Tools
for the Analysis of the Accuracy of Software Reliability
Predictions,” in Software System Design Methods,
Pp-299-335, Springer-Verlag, Heidelberg, 1986.

6. R.V.Hogg, A. T. Craig, Introduction to Mathematical
Statistics, MacMillan, New York, 1978

7. H. Joe, N. Reid, "Estimating the Number of Faults in a
System,” Journal of the American Statistics
Association, vol, 80, pp. 222-226, March, 1985.

8. N. Langberg, N. D. Singpurwalla, "A Unification of
Some Software Reliability Models via the Bayesian
Approach,” Technical Report TM-66571, George
Washington University, 1981.

9. B. Littlewood, A. Sofer, "A Bayesian Modification to
the Jelinski-Moranda Software Reliability Model,"
Software Engineering Journal, vol. 2, pp. 30-41, 1987.

10. W. H. Farr, "A Survey of Software Reliability Modeling
and Estimation," Technical Report 82-171, NavSWC,
1983.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. J. T. Duane, "Learning Curve Approach to Reliability
Modeling," IEEE Transactions on Aerospace, vol. AS-
2, pp. 563- 566, 1984.

L. H. Crow, "Confidence Interval Procedures for
Relaibility Growth Analysis,” Technical Report 197,
U. S. Army Material Systems Analysis Activity,
Aberdeen, Maryland, 1977.

A. L. Goel, K. Okumoto, "Time-Dependent Error-Detec-
tion Rate Model for Software Reliability and Other Per-
formance Measures,” IEEE Transactions on Reliability,
vol. R-28, pp. 206-211, 1979.

Z. Jelinski, P. B. Moranda, "Software Reliability Re-
search,” in Statistical Computer Performance
Evaluation, ed. W. Freiberber, pp. 465-484, Academic
Press, New York, 1972.

M. Shooman, "Operational Testing and Software Relia-
bility During Program Development,” in Proceedings
of the 1973 Symposium on Computer Software
Reliability, pp. 51-57, New York, April, 1973.

P. A. Keiller, B. Littlewood, D. R. Miller, A. Sofer,
"Comparison of Software Reliability Predictions,” in
Proceedings of the 13th International Symposium on
Fault-Tolerant Computing, pp. 128-134, 1983,

P. A. Keiller, B. Littlewood, D. R. Miller, A. Sofer, "On
the Quality of Software Reliability Predictions," in Pro-
ceedings of the NATO ASI Electronic Systems
Effectiveness and Life Cycle Costing, pp. 441-460,
Berlin, Springer, Norwich, England, 1983.

B. Littlewood, "Stochastic Reliability Growth: A
Model for Fault-Removal in Computer Programs and
Hardware Designs," IEEE Transactions on Reliability,
vol. R-30, pp.313-320, October, 1981.

B. Littlewood, J. J. Verrall, "A Bayesian Reliability
Growth Model for Computer Software,” Journal of the
Royal Statistics Society C, vol. 22, pp. 332-346,
1973.

J. D. Musa, K. Okumoto, "A Logarithmic Poisson
Execution Time Model for Software Reliability
Measurement,” in Proceedings of the Seventh
International Conference on Software Engineering, pp.
230-238, Orlando, Florida, 1984.

N. F. Schneidewind, "Analysis of Error Processes in
Computer Software,” in Proceedings of the
International Conference on Reliable Software, pp.
337-346, Los Angeles, 1975.

S. Yamada, M. Ohba, S. Osaki, "S-Shaped Reliabiltiy
Growth Modeling for Software Error Detection,” IEEE
Transactions on Reliability, vol. R-32, pp. 475-478,
December, 1983.

23.

24,

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

31

H. Akaike, "A New Look at Statistical Model Identifica-
tion," IEEE Transactions on Automatic Control, vol.
AC-19, pp. 716-723, 1974.

R. Troy, Y. Romain, "A Statistical Methodology for
the Study of the Software Failure Process and its
Application to the ARGOS Center," IEEE Transactions
on Software Engineering, vol SE-12, no. 9, pp. 968-
978, September, 1986.

W. Erlich, J. Stampfel, J. Wu, "Application of Software
Reliabiltiy Modeling to the Product Quality and Test
Process,” in Proceedings of the 12th International Con-
ference on Software Engineering, Nice France, March,
1990.

K. C. Zinnel, "Using Software Reliability Growth Mod-
els to Guide Release Decisions," in Proceedings of the
1990 Internation Symposium on Software Reliability
Engineering, Washington, DC, April, 1990.

M. R. Lyu, A. Nikora, “A Heuristic Approach for Soft-
ware Reliability Prediction: the Equally-Weighted
Linear Combination Model," Proceedings of the 1991
International Symposium on Software Reliability
Engineering, pp. 172-181, Austin, Texas, May, 1991.

M. R. Lyu, A. Nikora, "An Empirical Approach for
Software Reliability Measurement by Linear
Combination Models,” submitted to Special Issue of
IEEE Software, July, 1992.

J. D. Musa, "Software Reliability Data," RADC Techni-
cal Report, 173 pp., DACS, Rome Air Development
Center, 1980.

A. P. Nikora, M. R. Lyu, T. M. Antczak, W. H. Farr,
"Linear Combination Software Reliability Models and a
Proposed Reliability Modeling Tool," 14th Minnow-
brook Workshop on Software Engineering, Blue Moun-
tain Lake, New York, July, 1991.

S. Brocklehurst, P. Y. Chan, B. Littlewood, J. Snell,
"Recalibrating Software Reliability Models," IEEE
Transactions on Software Engineering, vol, SE-16, no.
4, pp. 458-470, April, 1990.

A. Sutcliffe, Human-Computer Interface Design,
Springer-Verlag, 1989.

B. Shneiderman, Designing the User Interface,
Addison-Wesley, 1987.

J. D. Musa, A. lannino, K. Okumoto, Software Reliabil-

ity: Measurement, Prediction, Application, McGraw-
Hill Book Company, New York, New York, 1987.

