Software Reliability Measurements through Combination Models:
Approaches, Results, and a CASE Tool

Michael R. Lyu
ECE Department
The University of lowa
Iowa City, IA 52242

Abstract

We propose a general combination approach to address
the predictive accuracy problem for software reliability
modeling. Instead of relying on any single model, we
apply several linear combinations of existing software
reliability models, called component models, to form a
series of linear-combination models. In an experimental
investigation with industrial project data, this set of
linear combination models was judged to perform better
than the component models. For the purpose of
automating the procedures in applying existing software
reliability models and the linear-combination models,
we further suggest a computer-aided software engineer-
ing wol, called CASRE, to measure software reliability
systematically. This paper discusses the ideas,
approaches, and experimental results of the combination
models, as well as the high-level design, structure, and
functionality of the CASRE tool.

1. Introduction and Background

The complexity and size of software systems are grow-
ing dramatically. This trend makes the measurement of
software reliability one of the major challenges for
software engineers. Such a measurement presents
important indicators for the quality of software products,
and provides insight into the software design process so
that areas for improvement may be identified. Software
reliability measurement involves a set of techniques that
apply probability theory and statistical analysis to assess
the achieved reliability of work products, both quantita-
tively and objectively. A software reliability model
specifies the general form of the dependence of the
failure process on the principal factors that affect it:
fault introduction, fault manifestation, failure detection
and recovery, fault removal, and operational environ-
ment[1].

Since the publication of the first software reliability

0730/3157/91/0000/0577/$01.00 © 1991 IEEE

Allen Nikora

Jet Propulsion Laboratory

577

California Institute of Technology
Pasadena, CA 91109

model almost 20 years ago[2], over 40 of them are now
known to exist in the literature[3], [1]. It is likely that
many more unpublished models are in use. The primary
focus of these models is to assess current reliability and
forecast future reliability, based on rational assumptions
for the application of statistical inference techniques to
the observed failure data. The main difficulty in
software reliability engineering practice is to analyze the
particular context in which reliability measurement is to
take place so as to decide a priori which model is likely
10 be trustworthy. It has been shown that there is no best
software reliability model for every case under all cir-
cumstances [4], [5]. Practitioners are left in a dilemma
as to which software reliability models to choose, which
procedures to apply, and which prediction results to
trust, while contending with varying software develop-
ment practices.

2. Forming Linear Combination Models

Although the software reliability measurement problem,
by its nature, involves significant uncertainties, we are
motivated to propose a scheme that makes more accu-
rate software reliability predictions, at least in an aver-
age sense, than the traditional approaches. As a result,
we have formalized a general combination modeling
approach that could be applied for more accurate
software reliability measurements as follows:

1. Identify a basic set of models (called component
models) with generally good performance.

2. Select models that tend to cancel out in their biased af
any) predictions.

3. Keep track of the software failure data with all the
component models.

4. Apply certain criteria to weigh the selected com-
ponent models and form one or several linear combi-
nation models for final predictions. The weights
could be either constants or variables which are
dynamically changed with time.

The basic component models are selected from the tradi-
tional software reliability models. As an example to
illustrate this combination approach, we chose Goel-
Okumoto Model(GO)[6], Musa-Okumoto Model(MO)
[7], and Littlewood-Verrall Model(LV) (8] as the three
component models to form a set of linear combination
models. Reasons for choosing these three component
models are:

1. Their predictive validity has been observed in[5] and
they have been widely used.

2. They represent different categories of models: GO
represents the exponential shape non-homogeneous
Poisson process (NHPP), MO represents the loga-
rithmic shape NHPP model, and LV represents the
inverse-polynomial shape Bayesian model.

3. Their predictive biases tend to cancel: GO tends to be
optimistic, LV tends to be pessimistic, and MO might
go either way.

As a result, we formulated a set of four combination
models as follows:

1. Equally-Weighted Linear Combination (ELC) Model
This model is formed by assigning the three com-
ponent models a constant, equal weight[9]. Namely,

ELC = %GO + %MO + %LV. These weightings

remain constant and unchanged throughout the meas-
urement process.

2. Median-Oriented Linear Combination (MLC) Model
Instead of choosing the arithmetic mean for the pred-
iction in ELC, the median value is used. In other
words, each time when a prediction is called for, the
component model whose predicted value is the
median is selected as the output of this model.

3. Unequally-Weighted Linear Combination (ULC)
Model
The weightings are determined similar to Program
Evaluation and Review Technique (PERT), i.e., the

formulation of this model is %0 + %M + %P,

where O represents an optimistic prediction, P
represents a pessimistic prediction, and M represents
the median prediction.

4. Dynamically-Weighted Linear Combination (DLC)
Model
In this model, we use a meta-predictor to form a
lincar combination of several predictions with the
weightings chosen in some optimal way (e.g., poste-
rior probabilities)[4]. A Bayesian interpretation of

“prequential likelihood” as a posteriori could be
dynamically calculated in a long run or in a short time
window to determine the weight assignments. For
this model, the weighting function for each of the
component models varies with time.

3. Project Data Applications and Results

Project data recently taken from the Jet Propulsion
Laboratory (JPL) was investigated for the purpose of
validating the proposed combination modeling
approach[9]. These projects include: The Voyager pro-
ject, the Galileo project, the Galileo Command and Data
Subsystem (CDS), the Magellan project, and the Alaska
SAR project. We have evaluated each model’s perfor-
mance with respect to some measurement criteria and
ranked them across the ensemble of the failure data sets.

3.1 Model Comparison Criteria and Procedures

In order to compare different models objectively and
quantitatively, four formally defined measures have
been adopted(4], [10). These measures - Accuracy,
Bias, Trend, and Noise - represent various quantities for
the quality of software reliability measurement from a
particular model.

We also evaluated 15 possible component models
through six selection criteria, which include[11]: 1)
Model validity; 2) Ease of measuring parameters; 3)
Quality of assumptions; 4) Applicability; 5) Simplicity;
and 6) Insensitivity to noise. Six models were judged to
perform well under these criteria[5]. These models are:
Jelinski-Moranda Model (IM)[2], Goel-Okumoto
Model(GO)[6], Musa-Okumoto Model (MO)[7], Duane
Model (DU)(12], Littlewood Model (LM)[13], and
Littlewood-Verrall Model (LV)(8]. We used these six
models as the reference points against which the results
obtained from the four proposed combinatorial models
were compared. Each of these ten models was applied
to the five JPL data sets and evaluated with respect to
the four criteria mentioned in the preceding paragraph.

3.2 Model Evaluation Results for Each Project

Tables 1 — 5 present results of the four measures against
the ten models for the five investigated projects. In
these tables, numbers in each column represent the com-
puted measure under each criterion, with ranks in
parentheses corresponding to the models in rows. The
last column, "rank”, was determined by equally treating
all the four criteria.

Voyager Flight Software
(133 data points/starting data—2)
modell| accuracy | bias _trend noise || rank
M [[-894.7(10)].2994(9) | .0995(9) [== (9) | (10)
GO |[-573.7(7) |.2849(6) | .0965(7) |13.81(d)|| (7
MO |[|-571.5(6) |.2849(6)| .0957(5) |9.225(3)|| (6)
DU [[-586.6(8) {.2703(5){.2551(10){8.402(D)|| (D)
LM |[|-829.9(9) [.2994(9)| .0994(8) | == () || (9)
LV |1-549.1(2) {.0793(1) | .0876(3) [24.51(8){] (2)
ELC [[-554.0(3) [.2084(3)| .0872(2) {15.15(6)}[(2)
ULC {[-557.8(4) | .2438(4)| .0951(4) | 12.64(5)|| (4
MLC || -570.3(5) [.2849(6) | .0962(6) 19.129()} (5
DLC || -543.1(1) [.2078(2) | .0866(1) |17.47(N)|| (1)

RECOMMENDED MODELS: 1.DLC 2.ELC 2.LV
Table 1: Voyager Data Application Results

Galileo Flight Software
(224 data points/starting data-24)
modell accuracy | _ bias trend nois¢ || rank |
IM_|[-1074(5) | .3378(6) | .4952(6) | 2.607(4) || (5) |
GO [[-1075(7) [.3378(6) | 4954(7) | 2.593(3) || (7)
MO [[-1078(9) | .3379(9) [.5041(10)| 2.395(1) || (10
DU |-1098(10)] .1944(1) | 4618(5) | 4.541(6) || (6)
LM |[-1074(5) |.3382(10)] .4954(7) | 2.624(5) || (9
LV [[-1051(4) | .2592(5) | .1082(1) { 23.33(9) || (4)
ELC ||-1019(2) [.1991(2) | .2781(3) | 17.728) || (1)
ULC [[-1035(3) | .2569(4) [.3271(4) [13.80(1) || (3
MLC |[-1077(8) | .3378(6) | .5017(9) | 2.584(2) || (8

DLC |-984.7(1) | .2159(3) | .2484(2) |23.96(10)

()]

RECOMMENDED MODELS: 1. ELC 2.DLC 3. ULC

Table 2: Galileo Flight Data Application Resl

ults

Galileo CDS Flight Software
(358 data points/starting data—152)

modell| accuracy bias trend noise |} rank
IM [1-643.0(6) | .1783(6) | .3450(6) | 4.042(8) || (8
GO {[-639.3(5) | .1783(6) | .3408(5) | 3.908(7) || (6
MO ||-681.1(8) | .1700(2) | .4262(9) | 2.673(4) || (6
DU [-728.5(10){ .1748(5) [.4282(10)| 2.287(1) || (8
LM ||-643.0(6) | .1784(8) | .3450(6) | 4.042(8) || (10
LV 11-612.3(2) |.2581(10)| .2426(1) | 2.564(2) || (1)
ELC [|-618.7(3) | .1732(4) | .2855(3) | 2.853(%) || (D
ULC || -626.9(4) | .1599(1) | .3072(4) | 2.958(6) || (1D
MLC I -681.1(8) | .1700(2) | .4261(8) | 2.672(3) || (B
DLC {-606.1(1) | .1845(9) | .2618(2) {11.19(10)]| (5

RECOMMENDED MODELS: 1.LV 1.ELC 1.ULC
Table 3: Galileo CDS Data Application Results

579

Magellan Flight Software
(197 data points/starting data—50)
modelijacc bias trend noise || rank
M ||-627.1(6)| .2968(6) [.2399(6)| 1.007(1) | (5
GO [[-627.1(6)| .2968(6) |.2399(6)| 1.007(D) {| (5
MO [[-627.1(6){ .2969(8) {.2399(6)| 1.007(1) || (8)
DU [|-616.0(2)] .1858(1) |.2180(5)| 2.003(6) || (1)
LM [-627.1(6)| .2969(8) |.2399(6)| 1.009(5) || 9
LV [-622.9(5)].3483(10){.1429(2)[5.563(10)] (10
ELC [-619.1(3)] .2140(2) [.1400(1){ 4.260(8) || (1)
ULC [-622.3(4)| .2461(4) |.1871(4)| 3.363(N || 5
MLC [|-627.1(6)| .2968(5) 1.2399(6)| 1.007(1) || (4)
DLC [[-609.2(1){ .2396(3) {.1049(3)| 4.982(9) || 3)

RECOMMENDED MODELS: 1.ELC 1.DU 3.DLC
Table 4: Magellan Data Application Results

Alaska SAR Ground Software
(367 data points/starting data—67)

modell| accuracy bias trend noise _|} rank
IM_ [[-915.7(2) | .3023(1) | .0606(4) | 1.587(4) || (1

GO [[-915.8(6) | .3023(1) | .0615(6) | 1.540(3) I| (5)

MO [[-915.7(2) | .3023(1) | .0620(7) | 1.395(1) |} (1)

DU [-925.5(10)(.4249(10)| .0918(9) | 1.650(6) || (9)

LM [-915.7(2) | .3023(1) | .0606(4) | 1.589(5) || (3

LV_ [|-920.5(9) | .3672(9) .-1009(10) 3.189(10)ji (10

ELC [|-916.2(8) | .3434(7) | .0586(2) | 2.220(9) ii (8)
ULC {[-915.9(7) | .3209(6) | .0528(1) | 1.853(D || (7
MLC [[-915.7¢2) | .3023(1) | .0620(7) | 1413(2) || (3)

DLC [[-914.8(1) | .3468(8) | .0569(3) | 1.949(8) || (6

RECOMMENDED MODELS: 1.JM 1.MO
Table 5: Alaska SAR Data Application Results

3.3 Overall Assessment

Tables 6 and 7 list the performance comparisons for all
the above five data sets. The overall comparison is done
by using all four measures in Table 6, or by using the
prequential likelihood measure (the "Accuracy” cri-
terion) alone in Table 7, since it was judged to be the
most important one. In general, we consider a model as
being satisfactory if and only if it is ranked 4 or better
out of the 10 models for a particular project. To extend
this idea, we define a "handicap" value, which is calcu-
lated by subtracting 4 (the "par” value) from the rank of
a model for each data set before its ranks being summed
up in the overall evaluation. (Or subtract 20 from the
"Sum of Rank" row in Tables 6 and 7.) A non-positive
handicap value represents satisfactory overall prefor-
mangce for the five data sets.

Summary of Model Ranking for Each Data
by All Four Criteria
data sets handi-
mochl 1 2 3 2 s]sum | total
M QO G |1 G| M 29 49 || ©)
GO I M| D|®| GG 30] +10]1 @
MO 6) 1 A0)] 6) | | | (M)l 311 +11 { 8
DU M1 G |1 ® L O] Ol 31] +#11] 8
LM D1 @®1a®| O] 31 40 | +20 | A0
LV Q1 @ | M [1Aap] a0 27 +7 | (5)
ELICI Q| O Ol O] ®F13¢ -7) @D
UC|I @O A M| | @®My20| 0 | Q)
MICI B | @[B[B | 324 H4 | @)
DLCIl DO @ |] B3] ®] 17 -3 2)
Table 6: Overall Assessment by All Criteria
Summary of Model Ranking for Each Data
by the Accuracy Measure Alone
data sets handi-
modcl" 1 5 3 2 5 || sum cap total
M Q)| <1 G 1®i @] 29 +9 6)
GO | D1 |G |®] 6 31| +11] &)
MO 6| | ® 16| @] 31| +11 | (8
DU @B 1 0| 0|)] A0y +40] +20 | (10
IM I D] G| ®]O6] @] 28 +8 || (5
LV Q[@D ADLBG] O 22 +2 || (3) |
EIC[A | D! 3|1 3| @ 19 -1 2)
UCI W1 Al @@l D] 22 +2 || 3)
MILC) @[B 1®6!] 29 +9 6)
DLC| Ol M| MOIO] M 5 -15 [(1)

Table 7: Overall Assessment by Accuracy

There are several important points that we can observe
from these summary tables:

1.In general, the set of combination models perform
better than the sct of single models. The best four
models, when considering all four measuring criteria
(Table 6), are exactly the four lincar combination
models. When considering the Accuracy criterion
alone (Table 7), the best three models, DLC, ELC,
ULC, also belong to the combination model set.

2.The DLC, ELC, and ULC Models perform well
across all data sets except the last one (Alaska SAR).
By evaluating the handicap value, it is noted that
these three models are the only three models con-
sidered satisfactory for Table 6 for a non-positive
handicap value. In Table 7, only DLC and ELC are
considered satisfactory. Moreover, these two models

580

beat the other single models by a significant number
of "strokes.”

3.The DLC and ELC Models are rather consistent.

Most other models seem to perform well for a few
data sets but poorly for other data sets, and the
fluctuation in performance is significant. By preserv-
ing good properties from the three famous models
with equal weightings, the ELC model, as expected,
achieve an overall good performance. As to the DLC
model, it is amazing enough to see it consistently pro-
ducing the best accuracy measure for every data set.
This is not surprising, though, since the DLC model is
allowed to dynamically change its weightings accord-
ing to the outcome of the accuracy measure. This
further suggests that, when other measure is decided
to be important, we could use that measure as the
weighting criteria in forming the DLC model to get
the best resulit.

. The poor performance of LV for the last data set
(Alaska SAR) might be the reason why the combina-
tion models do not perform well for this data, since
LV is one of the selected component models. All the
combination models, however, perform better than
LV.

There are at least four potential extensions to the combi-
nation scheme we have just described and evaluated.
These potentials are:

1. We can try to apply models other than GO, MO, LV
as component models. If some models are judged to
perform well in a particular data set, they should be
the candidates for the component models to form a
combination model.

2. We can use more than three models as component
models. It is postulated that the more component
models we apply, the better the prediction we could
expect.

3. We can also apply various weighting schemes for the
combination, subject to project criteria and engineer-
ing judgements. In other words, users should be able
to determine the way a combination model is formed.

4. Finally, the combination models themselves could be
used as component models to form another combina-
tion model.

It is noted that by applying more complicated pro-
cedures for software reliability measurement, the simpli-
city attribute of an individual model might be lost. As a
result, insight into the software reliability engineering
process becomes harder to obtain. However, the main
theme of this approach, as stated before, is the accuracy

of the measurements and predictions. After all, most
software reliability models are statistical inference tech-
niques applied to failure data coming out of a software
"black-box." In that regard, the proposed combination
schemes and their extensions do not degrade any proper-
ties assumed in current software reliability practices.

Nevertheless, given a failure data set, the complexity
required in searching a good combination model and the
resulting computation tasks could become overwhelm-
ing. Due to the tedious computation-intensive tasks that
might be involved in the selection and application of the
component models to form various combination models
for investigation, a computer-aided approach is inevit-
able. For this purpose, we propose a CASE tool, called
Computer-Aided Software Reliability Engineering
(CASRE) system, for an automatic and systematic
approach in measuring software reliability.

To screen, printer, or disk

T

4. The CASRE Tool - Structure and Functionality

Figure 1 shows the proposed high-level architecture for
CASRE, whose major functional areas are:

Data Modification

Failure Data Analysis

Modeling and Measurement
Modeling/Measurement Results Display

Much of CASRE’s functionality is available in current
software reliability tools[14], [15]. However, a feature
unique to CASRE allows users to combine the results of
several models in addition to executing a single model.
Feedback from the Model Evaluation block assists users
in identifying a model or combination of models best
suited to the failure data being analyzed. Moreover, the
i/o facility, the user interface, and the measurement pro-
cedures are greatly enhanced in this tool.

Modet

Component models,
weighting schemes

Edit »| Summary
Statistics
1
Failure Data = Models
(interfailure times,
ailure frequencies, Execution
A L Control
Smoothing b
]
]
]
Data .
™ Transformaton [1 !
1
T
1
1
'
1

Results
Bias (u.l)
Trend (yi)
Model Sensitivity
Evaluation - to Noise
PL, AlC(*)
. \
Model
Combination Yy
Model
Evaluations
; Plotting -
o Bias (u)
Trend (yi)

To screen, printer, or disk

(*) PL -- Prequential Likelihood

AIC - Akaike Information Criterion

Figure 1: CASRE High-Level Architecture

4.1 Data Modification

CASRE allows users to create new failure data files,
modify existing files, and perform global operations on
files.

e Editing

CASRE allows users to create or alter failure history
data files. A simplified spreadsheet-like user interface
allows users to enter time between failures or test inter-
val lengths and failure counts from the keyboard. Users
are also allowed to invoke a preferred editor (e.g. emacs
or vi).

¢ Smoothing

Since input data to the models is often fairly noisy, the
following smoothing techniques are proposed:

- Sliding rectangular window

— Hann window

— Polynomial fit

— Specific cubic-polynomial fits (e.g. B-Spline, Bezier
Curve)

Users select smoothing techniques appropriate to the
failure data being analyzed. The smoothed input data
can be plotted, used as input to a reliability model, or
written out to a new file for later use. Summary statis-
tics for the smoothed data can also be displayed (seec
"Failure Data Analysis” below).

e Data Transformation

In some situations, logarithmic, exponential, or linear
transformations of the failure data produce better results.
The following operations, currently available in some
tools, allow users to transform an entire set of failure
data in this manner.

log(a * x(i)) + b); x(i) represents a failure data item,
and a and b are user-selectable scale factors

exp(a * x(i) + b)

x(i) ** a

- x(1)+a

x(i)*a

user-specified transformation

1

|

As with smoothing, users select a specific transforma-
tion. Users are able to manipulate transformed data as
they would smoothed data.

4.2 Failure Data Analysis

The "Summary Statistics” block in Figure 1 allows users
to display the failure data’s summary statistics, includ-
ing the mean and median of the failure data, 25% and
75% hinge points, skewness, and kurtosis[16].

4.3 Modeling and Measurement

Figure 1 shows two modeling functions. The "Models"
block executes single software reliability models on a
set of failure data. The "Model Combination” block
allows users to execute several models on the failure
data and combine the results of those models. We
include this capability because our experience in com-
bining the resuits of more than one model indicates that
such "combination models” may provide more accurate
reliability predictions than single models. The block
labeled "Model Evaluation” allows users to determine
the applicability of a model to a set of failure data.

o Single Model Execution

Based on our experience in applying software reliability
models, we include the following models in CASRE:

1) Bayesian Jelinski-Moranda Model (BJM) [18]
2) Brooks and Motley Model (BM)[19]

3) Duane Model (DU) [12], [20]

4) Geometric Model (GM) [19]

5) Goel-Okumoto (GO) [6]

6) Jelinski-Moranda (JM) [2], [21]

7) Keiller-Littlewood Model (KL)[22], [23]

8) Littlewood Model (LM) [13]

9) Littlewood non-homogeneous Poisson Process
Model (LNHPP) [4]

10) Littlewood-Verrall (LV) [8]

11) Musa-Okumoto (MO) [7]

12) Generalized Poisson Model (PM)[19]

13) Schneidewind Model (SM)[24]

14) Yamada Delayed S-Shape Model (YM) [25]

The models should accept input in the form of inter-
failure times or failure frequencies.

CASRE allows users to choose the parameter estimation
method (maximum likelihood, least squares, or method
of moments). Model outputs include:

— Current estimates of failure rate/interfailure time

— Current estimates of reliability

— Model parameter values, including high and low

parameter values for a user-selectable confidence
bound

— Current values of the pdf and cdf
— The probability integral transform ;[4]
— The normalized logarithmic transform of u;, y;[4]

Users can display these quantities on-screen or write
them to disk.

e Combination Models

CASRE allows users to combine the results of several
models according to the ELC, MLC, ULC, or DLC
schemes. Users may also be allowed to define their own
weighting schemes. The resulting combination models
could be further used as the component models to form
another combination model.

o Model Evaluation

CASRE includes the following statistical methods to
help users determine the applicability of a model
(including "combination models") to a specific failure
data set:

— Computation of prequential likelihood (PL) function
(the "Accuracy” criterion).

— Determination of the probability integral transform u;,
(plotted as the u-plot - the "Bias" criterion).

— Computation of y; to produce the y-plot (the "Trend"
criterion).

— Noisiness of model predictions (the "Noise" cri-
terion).

The Akaike Information Criterion (AIC)[26], similar in

concept to prequential likelihood, could also be imple-

mented. This model evaluation function would also

compute goodness-of-fit measures (e.g. Chi-Square test).

The PL and AIC outputs are used as input to "Model

Combination” to determine the relative contribution of

individual models if the user has specified a combination
model.

4.4 Display of Results

CASRE graphically displays model results in the follow-

ing forms:

— Interfailure times/failure frequencies, actual and
estimated

— Cumulative failures, actual and estimated

— Reliability growth, actual and estimated

Actual and estimated quantities are available on the
same plot. Plots include user-specified confidence lim-
its. Users are able to control the range of data to be plot-
ted as well as the usual cosmetic aspects of the plot (e.g.

583

X and Y scaling, titles). In a windowing environment,
multiple plots could be simultancously displayed.
CASRE allows users to save plots displayed on-screen
as a disk file or to print them. One public-domain tool,
SMERFS [14] version 4, can write the data used to pro-
duce a plot to a file that can be imported by a
spreadsheet, a DBMS, or a statistics package for further
analysis. CASRE includes this capability.

The plotting function also produces u-plots and y-plots
from Model Evaluation’s u; and y; outputs. These plots
indicate the degree and direction of model bias and the
way in which the bias changes over time.

5. Conclusions and Future Work

We have proposed a set of linear-combination models
for more accurate measurement of software reliability.
These models have shown promising results when com-
pared with the traditional single-model approaches. To
relieve the tedious work involved in applying these
approaches, a CASE tool (CASRE) is proposed to fully
automate the software reliability measurement task. For
the purpose of model validation and determining tool
applicability, we need to obtain enough data to compare
software reliability models and predictions across vari-
ous types of software projects. In future investigations,
we will apply more data sets to the proposed combina-
tion models for the purpose of validating them, and for
refining the structure and functionality of the CASRE
tool.

Acknowledgement

The research described in this paper was carried out at
the University of Iowa under a faculty starting fund, and
at the Jet Propulsion Laboratory, Califomia Institute of
Technology, through the Director’s Discretionary Fund.

References

1. J. D. Musa, A. Iannino, and K. Okumoto,
Software Reliability — Measurement, Prediction,
Application, McGraw-Hill Book Company, New
York, New York, 1987.

2. Z.Jelinski and P.B. Moranda, *‘Software Reliabil-
ity Research,”” in Statistical Computer Perfor-
mance Evaluation, ed. W. Freiberber, pp. 465-
484, Academic, New York, 1972.

3. M.L. Shooman, ‘‘Software Reliability: A Histori-
cal Perspective,”” IEEE Transactions on Reliabil-
ity, vol. R-33, no. 1, pp. 48-55, 1984.

10.

11.

12.

13.

14.

A.A. Abdel-Ghaly, P.Y. Chan, and B. Littlewood,
‘‘Evaluation of Competing Software Reliability
Predictions,”” JEEE Transactions on Software
Engineering, vol. SE-12, pp. 950-967, September
1986.

MR. Lyu, ‘“Measuring Reliability of Embedded
Software: An Empirical Study with JPL Project
Data,”’ in Proceedings International Conference
on Probabilistic Safety Assessment and Manage-
ment, Beverly Hills, California, February 1991.

AL. Goel and K. Okumoto, ‘‘Time-Dependent
Error-Detection Rate Model for Software Relia-
bility and Other Performance Measures,”” /EEE
Transactions on Reliability, vol. R-28, pp. 206-
211, 1979.

JD. Musa and K. Okumoto, ‘“‘A Logarithmic
Poisson Execution Time Model for Software Reli-
ability Measurement,”’ in Proceedings Seventh
International Conference on Software Engineer-
ing, pp. 230-238, Orlando, Florida, 1984.

B. Littlewood and J.L. Verrall, ‘“A Bayesian Reli-
ability Growth Model for Computer Software,’”
Journal Royal Statistics Society C, vol. 22, pp.
332-346, 1973.

MR. Lyu and A. Nikora, ‘‘A Heuristic Approach
for Software Reliability Prediction: The Equally-
Weighted Linear Combination Model,”” in
Proceedings 1991 International Symposium on
Software Reliability Engineering, Austin, Texas,
May 1991.

AP. Dawid, ‘‘Statistical Theory: The Prequential

Approach,” Journal Royal Statistics Society A,
vol. 147, pp. 278-292, 1984.

A. Iannino, J.D. Musa, K. Okumoto, and B. Little-
wood, ‘‘Criteria for Software Reliability Model
Comparisons,”” IEEE Transactions on Software
Engineering, vol. SE-10, no. 11, pp. 687-691,
November 1984.

J.T. Duane, ‘‘Learning Curve Approach to Relia-
bility Monitoring,”” IEEE Transactions on
Aerospace, vol. AS-2, pp. 563-566, 1964.

B. Littlewood, ‘‘Stochastic Reliability Growth: A
Model for Fault-Removal in Computer Programs
and Hardware Designs,”” IEEE Transactions on
Reliability, vol. R-30, pp. 313-320, October 1981.

W.H. Farr and O.D. Smith, *‘Statistical Modeling
and Estimation of Reliability Functions for
Software (SMERFS) User’s Guide,”’ TR 84-373,
Revision 1, NSWC, December 1988.

584

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

B. Littlewood, A.A. Abdel-Ghaly, and P.Y. Chan,
“Tools for the Analysis of the Accuracy of
Software Reliability Predictions,” in Software
System Design Methods, pp. 299-335, Springer-
Verlag, Heidelberg, 1986.

R.V. Hogg and A.T. Craig, Introduction to
Mathematical Statistics, MacMillan, New York,
1978.

H. Joe and N. Reid, ‘‘Estimating the Number of
Faults in a System,”” Journal American Statistics
Association, vol. 80, pp. 222-226, March 1985.

B. Littlewood and A. Sofer, ‘‘A Bayesian
Modificatin to the Jelinski-Moranda Software
Reliability Model,”” Software Engineering Jour-
nal, vol. 2, pp. 3041, 1987 .

W.H. Farr, “A Survey of Software Reliability
Modeling and Estimation,”” Technical Report 82-
171, NSWC, 1983.

L.H. Crow, ‘‘Confidence Interval Procedures for
Reliability Growth Analysis,”” Technical Report
197, U.S. Army Material Systems Analyusis
Activity, Aberdeen, Maryland, 1977.

M. Shooman, ¢‘Operational Testing and Software
Reliability During Program Development,” in
Proceedings 1973 IEEE Symposium on Computer
Software Reliability, pp. 51-57, New York, April
1973.

P.A. Keiller, B. Littlewood, D.R. Miller, and A.
Sofer, ‘‘Comparison of Software Reliability Pred-
ictions,”” in Proceedings 13th International Sym-
posium on Fault-Tolerant Computing, pp. 128-
134, 1983.

P.A. Keiller, B. Littlewood, D.R. Miller, and A.
Sofer, ““On the Quality of Software Reliability
Predictions,”” in Proceedings NATO ASI Elec-
tronic Systems Effectiveness and Life Cycle Cost-
ing, pp. 441-460, Berlin: Springer, Norwich, Eng-
land, 1983.

NF. Schneidewind, ‘‘Analysis of Error Pro-
cessesin Computer Software,”” in Proceedings
International Conference on Reliable Software,
pp. 337-346, Los Angeles, 1975.

S. Yamada, M. Ohba, and S. Osaki, ‘‘S-Shaped
Reliability Growth Modeling for Software Error
Detection,”” IEEE Transactions on Reliability,
vol. R-32, pp. 475-478, December 1983.

H. Akaike, ““A New Look at Statistical Model
Identification,”” IEEE Transactions on Automatic
Control, vol. AC-19, pp. 716-723, 1974.

