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Abstract

This paper proposes a heuristic approach to addressing
the software reliability modeling problem. The heuristic
approach is based on a linear combination of three
popular software reliability models. A simple, predeter-
mined combination is suggested by assigning equal
weights to each component model for the final delivery
of the software reliability prediction. In a preliminary
examination, this Equally-Weighted Linear Combination
(ELC) Model is judged to perform well when applied to
three published software failure data sets. We further
present five other sets of software failure data taken
recently from major projects at the Jet Propulsion
Laboratory, and apply the ELC model as well as six
other popular models for a detailed comparison and
evaluation. A number of statistical techniques are used
to determine the applicability of these software reliabil-
ity models. Our evaluation results indicate that the pro-
posed ELC Model not only performs better than all the
other models by a wide margin, but also enjoys favor-
able properities that practitioners would like to see in
their software reliability modeling practices. These pro-
perties include: simplicity, low-risk, ease of application,
and insensitivity to data noise.

1. Introduction

Since publication of the first software reliability model
almost 20 years ago [1][2], over 40 of them are now
known to exist in the literature [3]. It is likely that many
more unpublished models are in use. It has been shown
that there is no best software reliability model for every
case under all circumstances [4]-[6], and the practition-
ers are encouraged to apply as many models as possible.
However, in a realistic situation, there are significant
technical difficulties and managerial resistance associ-
ated with the application of multiple software reliability
models and tracking each model during the cntire
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software life cycle. The large number of available
models presents potential users with a confusing array of
choices. Lacking sufficient guidance to sclect a small
subsct of the available models applicable to their
development efforts, many potential uscrs abandon the
idea of incorporating reliability modeling as a manage-
ment technique. In other words, the users arc left in a
dilemma as to which software rcliability models to
choose, which procedures to apply, and which predic-
tion results to trust, while contending with- varying
software development practices.

The main difficulty in software reliability engincering
practice is to analyzc the particular context in which
reliability measurement is to take place so as to decide
priori which model is likely 10 be trustworthy. No sin-
gle model can guarantee its predictive validity across
various projects. Even if a user knows that past predic-
tions supplied by a model have been close to the actual
behavior of an carly part of a particular data sct, he or
she could not be assured that this particular model will
perform well as development progresses and more infor-
mation is added to the data set.

Another difficulty of modeling and prediction practice is
the lack of published software failure data scts that can
be used to refine and validate models. Most failure data
is classificd as proprictary information, making it very
difficult to obtain. Moreover, since software failure data
reflects the quality of the software development process,
the developing party tends to be reluctant to provide out-
side organizations such revealing information. This
makes it a formidable task to obtain enough data to com-
pare software reliability models and predictions across
various types of softwarc projects.

We shall describe a low-overhead, low-risk, and high-
performance approach to addressing the softwarc rclia-
bility prediction problem, and provide five new scts of
software failure data to validate the proposed approach.



The motivation, formalization, and advantage of this
approach will be presented. For each project contribut-
ing data, the mission and development characteristics
will be described. Finally, the overall evaluations and
observations on the applicability of this empirically-
developed model will be discussed.

2. An Equally-Weighted Linear Combination
Software Reliability Model

In a recent study [5], we have evaluated 15 well-known
software reliability models according to six different
qualitative evaluation criteria: 1) model validity, 2) ease
of measuring parameters, 3) quality of assumptions, 4)
applicability, 5) simplicity, and 6) insensitivity to noise.
As a result, a candidate set of six models was considered
acceptable under the evaluation criteria. These models
include: Jelinski-Moranda Model (JM) [1], Goel-
Okumoto Model(GO) [7], Musa-Okumoto Model (MO)
(8], Duane Model (DU) (9], Littlewood Model (LM)
[10], and Littlewood-Verrall Model (LV) [11]. How-
ever, it was also observed that there was no best model
for all cases. Neither was there a model whose overall
performance was outstanding. A tie among JM, GO,
MO, and LV was observed to make better predictions
than DU and LM for the limited data set.

Given that no single reliability model’s performance
was outstanding, and that we did not have enough
resources to keep track of all the existing software relia-
bility models, we developed the following heuristic
algorithm as a practical approach to form a simple, low-
risk, high-performance linear combination model:

a. Identify a candidate set of models (called component
models)

b. Select models that tend to cancel out in their biased (if
any) predictions.

c. Keep track of the software failure data with all the
component models.

d.Equally weight the selected component models to
form a linear combination model

¢. Each time when a prediction is called for, apply the
arithmetic average (mean value) of the predictions
from the component models, or select their middle
prediction value (median value), for the final predic-
tion.

We further recommend GO, MO, and LV as the three
component models to form an Equally-Weighted Linear
Combination (ELC) Model. The arithmetic average of
each component model’s prediction is taken as the ELC
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prediction. in other words,
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ELC = 3 3

1
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3

There are good reasons for choosing these component
models:

a. Their prediction validity has been observed in our
recent investigation [S] [6]. In fact, they are judged to
perform well by many practitioners, and they have
been widely used.

b. They represent different categories of models: GO
(similar to JM and LM) represents the the exponential
shape non-homogeneous Poisson process (NHPP),
MO represents the logarithmic shape NHPP model,
and LV represents the inverse-polynomial shape
Bayesian model.

c. Their predictive biases tend to cancel: GO tends to be
optimistic, LV tends to be pessimistic, and MO might
go either way.

It has been proposed in [4] that rather than predicting
software reliability by using only one model, a meta-
predictor could be formed to take a linear combination
of two (or more) predictions with the weights chosen in
some optimal way (e.g., posterior probabilities). A
Bayesian interpretation of "prequential likelihood" as a
posteriori was suggested, which was dynamically calcu-
lated in a short time window to determine the weight
assignments.

The approach we propose here is a similar but simpler
one: the weight assignments are constant and equal for
all component models. The motivation of this approach
is to reduce the risks of relying on any particular model,
while preserving the simplicity of the prediction process.
It was observed that good performance of a model in a
project for a period of time does not guarantee good
prediction of the model for a later time in the same pro-
ject {4]-[6], and switching among models was suggested
when changes of data behaviors were detected. How-
ever, we are concerned that the detection of data
behavior changes to guide model sclection is itsclf a
priori, which implies another level of uncertainty and
complexity. Therefore, a more straightforward
approach suggested by the ELC Model is to take a static
and equal weight for the selected models, rather than to
dynamically change the weights of each component
model for the linear combination. The main theme of
our approach is a combination of prediction and model-
ing: get more accurate predictions while keeping the
model simple.



3. Model Evaluation Criteria and
Preliminary Results

3.1 Evaluation Criteria for Model Performance

In order to compare different models objectively and
quantitatively, four formally defined measures have
been adopted. These measures, including Accuracy,
Bias, Trend, and Noise, represent various quantities for
the quality of software reliability measurement from a
particular model. For detailed discussion of each meas-
ure, refer to [4] [12] [13] and [14].

® Accuracy:

Defined as prequential likelihood (PL) function in [12]
as follows. Let the observed data be a sequence of times
between successive failures, denoted by ¢4, t5, ..., t;_;.
The objective is to use the data to predict the future
unobserveg T;. More precisely, we want a good esti-
mate of Fy(t), defined as P(T;<t), i.e., the probability
that T; is less than a variable t. The predictive distribu-
tion F;(r) for T; based on ¢y, t,, ... , t;_; will be assumed
to have a pdf (probability density function)

fi) = % Fi(0).

For such one-step-ahead predictions of Tj,q, ...

’ Tj+m
the prequential likelihood is

it

IT £t

i=j+1

PL, =

Since this measure is usually very close to zero, we take
its logarithmic value for comparisons. The resulting
number is always negative. The more negative it gets,
the more inaccurate the prediction it represents.

e Bias:

Defined as the Kolmogorov Distance [15] of the follow-
ing sequence of transformations:

u = F, i()-

Each of which is a probability integral transform of the
observed ¢; using the previously calculated predictor F;
based upon ¢4, t5, ..., 4_;. To identify the direction a
model is biased toward, we use the notation that a posi-
tive number means that the model tends to be optimistic,
while a negative one represents a pessimistic model.
This is achieved by examining u;’s in the u-plot [4] to
see whether they are below (optimistic) or above (pes-
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simistic) the line of unit slope through the origin. In any
case, the smaller the absolute value of the number is, the
less bias the model exhibits.

e Trend:

Defined as the Kolmogorov Distance of the following
sequence of transformations:

xi = -In(1 — w)
This measure represents the consistency of the model’s
bias. A small value means that the model is more adapt-

able to changes in the data behavior, and hence it could
achieve a better performance.

e Noise:

m; = mi

Defined as ¥ , where m; is the

m;-
predicted median of T;.

Again, small values represent less noise in the predictive
behavior of the model, indicating better smoothness.

To compare several models for a data set, we use an
evaluation algorithm that gives the rank of each model
for each measure first, and then equally weighs the ranks
of the four measures by summing them up. The models
with a lower overall sum are judged better than those
with a higher sum. In case there is a tie, the model with
a better accuracy measure is ranked higher since this
measure is considered more important than the other
three measures. It is recognized, however, that different
weights for these measures might be applied. Moreover,
the value of each measure should be examined in case
some "wild" measure might totally disqualify a model in
that measurement. Nevertheless, we decide to use this
simple ranking algorithm without elaborating the details
of each measure, since such elaborations might involve
subjective judgement calls which could be themsclves
biased. We will be using this strategy for model com-
parisons throughout this paper, where the modeling pro-
cedure is facilitated by the SRMP tool [4], and the
SMEREFS tool [16].

3.2 Preliminary Results by Using Three Published
Data Sets

Some approaches in using multiple models for data
application could be found in [17]. In order to obtain
preliminary results for the performance of the proposed
ELC Model, three sets of published data [4] [18] were
applied. The results are presented in Tables 1-3.



Data Set 1
Measure JM GO MO DU LM LV ELC
Accuracy || -764.3(7) | -762.7(6) | -755.4(1) | -759.6(5) | -757.03) | -759.2(4) || -756.3(2)
Bias 1837(7) .1486(4) .0822(2) .1655(6) 1063(3) | -.1493(5) || .0803(1)
Trend .1237(6) 1280(7) .0632(1) .0888(4) 072403) .1060(5) .0646(2)
Noise 8.126(7) 7.233(6) 3.782(3) 3.081(1) 7.180(5) 3.093(2) 4.196(4)
Rank Q)] 6) )] 5) 3) @ )

RECOMMENDED MODELS: 1. MO 2.ELC
Table 1: Model Comparisons for Data Set 1 in [18]

Data Set 2
Measure IM GO MO DU LM LV ELC
Accuracy || -466.3(4) | -466.6(6) | -465.6(2) | 467.6(7) | -466.3(4) | -465.1(1) || -465.6(2)
Bias .1107(2) 1258(3) | -.1632(6) | .2063(7) 1011(1) | -.1608(5) || -.1557(4)
Trend .1109(6) 1153(7) .0825(4) .0524(2) .1091(5) 0497(1) .0804(3)
Noise 4.120(6) 3.870(5) 2.773(3) 1.984(1) 4.662(7) 2.028(2) 2.831(4)
Rank ©) 0 ©)] (5) “) (1) @)

RECOMMENDED MODELS: 1.LV 2.ELC
Table 2: Model Comparisons for Data Set 2 in [18]

Data Set 3
Measure M GO MO DU LM LV ELC
Accuracy || -811.1(2) | -811.2(4) | -811.1(2) | -814.3(7) | -811.3(5) | -812.7(6) || -810.8(1)
Bias .0835(5) 0761(3) 0586(1) .0994(7) .0829(4) | -.0845(6) || .0640(2)
Trend .0623(4) .0663(6) 0487(2) .0740(7) .0602(3) 0630(5) 0467(1)
Noise 5.384(7) 5.209(5) 4.088(3) 2.426(1) 6.002(7) 3.714(2) 4.224(4)
Rank 3) ) 2 @) (5 6) M

RECOMMENDED MODELS: 1.ELC 2. MO
Table 3: Model Comparisons for Data Set 3 in [18]

It can be seen from these tables that the proposed ELC
Model performs relatively well compared with the other
models. It is ranked either number 1 or 2 for all the
three data sets. In fact, none of the individual measures
obtained from this model is ranked worse than the aver-
age (4). This implies that the model not only performs
well in general, but also behaves satisfactorily in each
individual category of measures. Results from this prel-
iminary investigation gave us enough confidence for
further application of this model. In the following sec-
tions, we incorporate software failure data taken from
five projects at the Jet Propulsion Laboratory (JPL) to
make a more detailed assessment of this model.
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4. Project Descriptions and Development
Characteristics

In this section, we briefly describe the JPL projects from
which software failure data was collected for examina-
tion. Specifically, the following information is given:

a. Project name and brief description of project goals.

b. Functional description of software developed for the
project.

¢c. Size of the software, measured in uncommented

source lines of code, and the type of language in
which the software was developed.



d. Brief description of the software failure reporting
mechanism used during development. The informa-
tion tracked by the reporting system is described as
well as that which is not.

e. Assumptions made about the development effort in
applying the models.

4.1 Voyager

Originally proposed as a grand tour of the outer gas
giants, Voyager was implemented as two identical
spacecraft that were launched within two months of
each other in mid-1977. These spacecraft were designed
to provide close-up views of the Jovian and Saturnian
systems. Voyager 2 would examine in more detail
objects and planetary features identified by Voyager 1 as
meriting greater attention. In addition, there were also
options for Voyager 2 to fly past Uranus and Neptune;
these options were exercised in January 1986 and
August 1989 respectively.

Voyager was one of the first outer planetary spacecraft
in which a significant fraction of the functionality was
provided by software. The software was divided among
three subsystems: the Command and Control Subsystem
(CCS), the Flight Data Subsystem (FDS), and the Atti-
tude and Articulation Control Subsystem (AACS). All

three subsystems can be classified as real-time embed-
ded systems.

These three subsystems were all implemented in assem-
bly language. Among the three subsystems, there are
approximately 14,000 uncommented source lines of
code. There are no failure-history records surviving
from subsystem-level software development that could
have been used in the modeling effort. After
subsystem-level software development, the CCS, FDS,
and AACS were integrated into the spacecraft at the
Spacecraft Assembly Facility (SAF). During the time of
spacecraft system testing, software failures were
reported via the Problem/Failure Reporting (PFR) sys-
tem. Among the items reported by this system are:

a. Time of failure.

b. Failure type (hardware, software, manufacturing flaw,
etc.)

¢. Subsystem in which the failure occurred.
It is important to note that the following items were not

systematically recorded, and were unavailable for use in
the modeling effort:
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a. Execution times between successive failures, or com-
parable information (e.g., total time spent testing dur-
ing a calendar interval).

b. Operational profile information (e.g., functional area
being tested, referenced to requirements or design
documentation; subsystem being tested; points at
which the testing method may have changed.)

It is therefore necessary to assume that the amount of
time spent testing in a unit interval of calendar time was
relatively constant, and that the testing method used dur-
ing spacecraft system test did not vary significantly.
Largely because of the lack of operational profile infor-
mation, we decided to model the reliability of the space-
craft flight software as a whole, rather than attempt to
separately model the reliability of the individual subsys-
tems. It is also assumed that changes to the software
under test that were caused by the imposition of addi-
tional requirements or design changes affected only a
small fraction of the software.

4.2 Galileo

Originally planned as the Jupiter Orbiter Probe (JOP)
follow-on to Voyager, Galileo became a flight project at
the start of fiscal year 1977. Unlike previous outer solar
system missions, Galileo was intended to remain in the
neighborhood of a gas giant for an extended interval,
This would allow observation of time variations in
planctary and satellite features in addition to the single
observation opportunities afforded by Voyager fly-by
type missions. Galileo was launched in October of
1989, and will reach the Jovian system in 1995.

The three flight computers of Voyager were reduced to
two aboard Galileo. The CCS and FDS were combined
into the Command and Data Subsystem (CDS).
Although its functionality was expanded, thc AACS
remained as a single subsystem. The CDS functionality
remained essentially the same as the combined Voyager
CCS and FDS functionality, although more telemetry
rates and modes were added as well as the capability of
having more sequences executing concurrently. As with
Voyager, the flight software can be characterized as
real-time, embedded software.

Originally, it was intended that the Galileo flight
software be written in the high-level language HAL/S.
This goal was partially achicved in that the AACS flight
software, comprising approximately 7000 source lines
of uncommented code, was written in this language.
However, the 15,000 lines of CDS flight software were
written in assembly language. As with Voyager, the



results presented in the paper are from a specific period
during spacecraft system integration and test. Failure
history collection during this period was very similar to
that for Voyager; so were the modeling assumptions.

4.3 Galileo CDS

In addition to the spacecraft system integration data
described above, failure history data during subsystem-
level software integration testing was available for the
Galileo CDS. We were able to collect the following
information for one particular phase of integration test-
ing:

a. Date of failure.
b. Software version in which failure occurred.

Because one of the authors had been involved in CDS
development as a tester, we were also able to reconstruct
some clements of the testing profile which had not been
systematically recoreded. For the CDS integration test-
ing, the number of hours per week during which testing
occurred was nearly constant through this phase. After
testing weck 34, the functional areas of the software
were exccuted roughly the same amount of time every
calendar weck. We therefore decide to use "failures per
week” as the unit of failure intensity in our modeling
activities.

4.4 Magellan

Magellan, a derivative of the Venus Orbiting Imaging
Radar (VOIR) proposed in the early 1980s, was
intended to provide a detailed map of the Cytherian sur-
face. Launched in October of 1989, Magellan achieved
orbit around Venus in August 1990. It is currently car-
rying out its mission as planned.

Magellan was designed with the intention of using flight
spare subsystems and components from Voyager and
Galileo. The flight computers were derivatives of the
Galileo CDS and AACS - in the case of the CDS,
approximately 75% of the Galileo flight software wound
up being reused for Magellan. The AACS, however, was
largely rewritten.

The size of the CDS and AACS software was approxi-
mately the same in Magellan as it was in Galileo. How-
ever, the Magellan AACS was implemented largely in
assembly language. The failure history data collected
for our modeling effort came from spacecraft system
integration and test. The data available to us was very
similar to what was available during this phase for Voy-
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ager and Galileo. Consequently, the same assumptions
about spacecraft integration were made for Magellan as
for Voyager and Galileo.

4.5 Alaska SAR

The Alaska SAR Facility, installed on the Fairbanks
campus of the University of Alaska, is a facility for
tracking and acquiring data from polar-orbiting Earth
resources satellites. The software for the Alaska SAR
facility is written in C, Fortran, EQUEL, and OSL. It
consists of 103,000 uncommented source lines of code,
14,000 lines of which are reused code.

The failure data reported here was obtained from the
development organization’s anomaly reporting system
during software integration and test. The items reported
were quite similar to those reported by previously men-
tioned projects using the PFR system. Since information
regarding both (1) execution time between successive
failures and (2) operational profile information were not
available, it was therefore necessary to assume that the
amount of time spent testing in a unit interval of calen-
dar time was relatively constant, and that the testing
method used during software integration test did not
vary significantly. Largely because of the lack of opera-
tional profile information, we decide to model the relia-
bility of the facility as a whole, rather than attempt to
separately model and reliability of the individual com-
ponents.

5. Final Results of Model Performance

In this section, we compare the applicability of the seven
competing models to the JPL failure data in terms of
predictive quality, biasedness, trend, and sensitivity to
noise. The model’s performance with respect to these
criteria is identified and rated across the ensemble of the
failure data sets.

5.1 Mode! Evaluations Using Project Data

The first data set analyzed came from the Voyager Pro-
ject. In the following modeling exercise, we translated
the original failure count data to time-between-failure
data by assuming failures discovered in a time interval
were equally distributed in that interval. Results of
these four measures against the scven models are
presented in Table 4. Numbers in parenthesis represent
the rank of each model under a certain measure in that
row. It can be seen that for this data set, the ELC Model
and the LV Model are the best models.



Voyager Flight Software (133 data points/starting data—2)

Measure M GO MO DU M LV ELC
Accuracy || -894.7(7) | -573.7(4) | -571.5(3) | -586.6(5) | -829.9(6) | -549.1(1) || -554.0(2)
Bias 2994(6) .2849(4) .2849(4) .2703(3) .2994(6) | -.0793(1) || .2084(2)
Trend .0995(6) 0965(4) .0957(3) 2551(7) .0994(5) .0876(2) .0872(1)
Noise 40.00(7) 13.81(3) 9.225(2) 8.402(1) 30.00(6) 24.51(5) 15.15(4)
Rank Q) @ 3) &) ©) 1) m
RECOMMENDED MODELS: 1.LV 2.ELC
Table 4: Model Comparisons for the Voyager Data
Galileo Flight Software (224 data points/starting data—24)
Measure JM GO MO DU LM LV ELC
Accuracy || -1074(3) | -1075(5) | -1078(6) | -1098(7) | -1074(3) | -1051(2) || -1019(1)
Bias 3378(4) | .3378(4) | .3379(6) | .1944(1) | .3382(7) | -.2592(3) || .1991(2)
Trend 4952(4) 4954(5) | .S041(7) 4618(3) .4954(5) .1082(1) .2781(2)
Noise 2.607(3) | 2.593(2) | 2.395(1) | 4.541(5) | 2.624(4) | 23.33(7) || 17.72(6)
Rank 3) G U] (5) (6) 2 ()]
RECOMMENDED MODELS: 1.ELC 2.LV
Table 5: Model Comparisons for the Galileo Flight Data
Galileo CDS Flight Software (360 data points/starting data—152)
Measure M GO MO DU LM LV ELC
Accuracy | -665.4(4) | -659.5(3) | -681.1(6) | -728.5(7) | -665.4(4) | -641.7(2) || -641.1(1)
Bias 1731(2) 1731(2) .1635(1) .1755(6) 1732(4) | -.2587(7) || .1732(4)
Trend .3505(4) 3425(3) 4683(6) 4687(7) .3505(4) .2613(1) .2855(2)
Noise 5.382(6) 5.143(5) 3.238(4) 2.829(2) 5.382(6) 2.570(1) 2.853(3)
Rank 1GJ) (3 (5) ) (6) 2) 1
RECOMMENDED MODELS: 1.ELC 2.LV
Table 6: Model Comparisons for the Galileo CDS Subsystem
Magellan Flight Software (197 data points/starting data—50)
Measure M GO MO DU LM LV ELC
Accuracy || -627.1(4) | -627.14) | -627.1(4) | -616.0(1) | -627.1(4) | -622.9(3) || -619.1(2)
Bias .2968(3) .2968(3) .2968(3) .1858(1) 2969(5) | -.3483(7) || .2140(2)
Trend .2399(4) .2399(4) .2399(4) .2180(3) 2399(4) .1429(2) .1400(1)
Noise 1.007(1) | 1.007(1) | 1.007(1) | 2.003(5) | 1.009(4) | 5.563(7) || 4.260(6)
Rank (3) (3) 3) 1) ©) Q)] )

RECOMMENDED MODELS: 1. DU 2.ELV

Table 7: Model Comparisons for the Magellan Data
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Alaska SAR Ground Software (367 data points/starting data~67)
Measure M GO MO DU LM LV ELC
Accuracy || -915.7(1) | -915.8(4) | -915.7(1) | -925.5(7) | -915.7(1) | -920.5(6) {| -916.2(5)
Bias .3023(1) .3023(1) .3023(1) A4249(7) 3023(1) | -.3672(6) || -.3434(5)
Trend .0606(2) .0615(4) .0620(5) .0918(6) .0606(2) .1009(7) .0586(1)
Noise 1.587(2) 1.590(4) 1.395(1) 1.650(5) 1.589(3) 3.183(7) || 2.220(6)
Rank 0 @) 3) ©) @ @) ®

RECOMMENDED MODELS: 1.JM 2.LM
Table 8: Model Comparisons for the Alaska SAR Data

Secondly, for the Galileo Project, results of the ELC
Model compared with the other six competing models
are presented in Table S. It can be seen that for this data
set, the ELC Model performs the best.

The next one is Galileo CDS subsystem. Results of the
ELC Model compared with the other six competing
models are presented in Table 6. It can be seen that for
this data set, the ELC Model still performs the best.

The fourth prject is the Magellan spacecraft testing data.
Results of the ELC Model compared with the other six
competing models are presented in Table 7. It can be
seen that for this data set, the ELC Model performs
second only to the DU Model.

Finally, for the Alaska SAR project, results of the ELC
Model compared with the other six competing models
are presented in Table 8. This is the only data set that
the ELC Model does not perform very well. It is to be
noted, however, that the failure data from this project
represents an early stage of software integration testing.
The current failure data may differ from those from a
later stage during which a more stable testing and opera-
tional environment will be set up.

5.2 The Overall Assessment

Tables 9 and 10 list the performance comparisons for all
the eight data sets presented in this paper. The overall
comparison is done by using all four measures in Table
9, or by using the prequential likelihood measure (the
"Accuracy”) alone in Table 10, since it is judged to be
the most important one. In general, we consider a model
as being satisfactory if and only if it is ranked 3 or better
out of the 7 models for a particular project. To extend
this idea, we define a "handicap” value, which is calcu-
lated by subtracting 3 (the "par” value) from the rank of
a model for each data set before its ranks being summed
up in the overall evaluation. (Or subtract 24 from the
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"Sum of Rank" row in Tables 9 and 10.) A negative
handicap value represents good overall performance.

Summary of Model Ranking Using All Four Measures
Data Set JM | GO [ MO | DU | LM | LV || ELC
Table 1 M|l | O ]6 ] @G| @
Table 2 ONECEROREOCERONRON )
Table 3 A @ || |6 |6 0
Voyager D@3 |G |6 O] 0N
Galileo OERCEECEEORECEECREY)
CDS @ |G| |0
Magellan ORNOBROREOREORRYANS
ASAR @& |6 | D] 6)
Sum 34 35 27 41 38 30 15
"Handicap” || +10 | +11 +3 +17 | +14 | +6 -9
TowlRank || (4) | &) | @ | (O | ©& | O | B

Table 9: Overall Model Comparisons Using All Four Measures

Summary of Model Ranking Using the Accuracy Measure
Data Set JM | GO | MO | DU | LM | LV || EILC
Table 1 URROBEOCEEOEEORROR )
Table2 @G|l || O|@ | OO
Table 3 ENOEECEECEEORECON NS
Voyager M@ |G |G |6 |O)] O
Galileo |G| |06 0
CDS @6 |0 @@ n
Magellan OO EOEROREON )
ASAR OIEONNOERORROREORINO)
Sum 32 36 25 46 30 25 16
"Handicap” || +8 | +12 | +1 422 | +6 | +1 -8
Total Rank {i (5) [ (6) (2) M@ 1@ ()

Table 10: Overall Model Comparisons by the Accuracy Measure



There are several interesting and important points that
we can observe from these summary tables:

a. As can be seen, there is a strong correlation between
these two comparison strategies. In either case, the
ELC Model is considered better than any other sin-
gle model.

b. The ELC Model is superior for all the data set except
the last one (Alaska SAR). By evaluating the handi-
cap value, it is noted that the ELC Model performs
extremely well across different category of data. In
fact, it is the only model which can achieve a nega-
tive "handicap” in the overall evaluation for both
evaluation schemes. Moreover, it beats all other
models by a significant number of "strokes.”

c. By averaging the predictions of the three famous
models, the ELC Model appears to be less sensitive
to potential data noise than its component models or
any other single model. It not only performs well in
the cpu-time based failure data (the first three sets),
but also behaves well in the non-cpu-time based
failure data (the last five sets).

d. The ELC Model is rather consistent. Most other
models seem to perform well for a few data sets but
poorly for other data sets, and the fluctuation in per-
formance is significant. The ELC Model predicts
consistently well, and it usually outperforms its com-
ponent models.

e. In parallel experiments, we have also applied a
linear combination of four models (including JM),
and linear combinations of two models (picking two
from GO, MO, LV). Although all the combined
models do show improvement over their component
models, none of them performs better than the ELC
Model proposed in this paper.

6. Conclusions

It is clear that there is no "best" model for all cases. A
number of models should be applied to each project.
However, if we really want to select the "best” model
within a number of models, the ELC model or a similar
approach would be a recommended candidate. The ELC
Model performs significantly better over the entire
ensemble of data sets than do the individual models.
This model is composed of three credible software relia-
bility models. We feel that this combination is appropri-
ate to development efforts having the same process
characteristics as those described in our modeling prac-
tice. We believe one of the factors contributing to the
improved performance of the ELC Model is the fact that
onc of the models chosen tends to be biased toward
optimistic predictions, while another model is biased
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toward pessimistic predictions. These biases tend to
cancel one another as the individual models are com-
bined.

This model also maintains the characteristic of being
simple: it applies an equal weight over its component
models for the final prediction. We certainly can apply
a more complicated approach by dynamically changing
such weights during model application, but it is our
opinion that unless a significant improvement has been
identified to justify this more complicated approach, the
ELC Model is an attractive choice due to its simplicity
as well as fairness in treating the component models. A
variation of the ELC Model can be generated by select-
ing the median value from the component models rather
than using their averages. This could prevent a "wild"
prediction from one of the component model to dom-
inate the average. On the other hand, such a "wild"
prediction could prove to be valid. In any case, we are
currently exploring these alternative approaches.

We have to agree that the JPL project data presented in
this paper contain a lot of noise irrelevant to the model-
ing concem for software reliability. However, since no
other project information about the usage of the software
is available, we prefer to present the data scis in the
form in which they were collected instead of trying to
make an (inevitably) artificial effort to smooth them.
Nevertheless, since the data was collected from a formal
data collection mechanism, we do belicve they are a
valid representation (at least in the statistical sense) of
software testing and operation activilies for these pro-
jects. In that sense, model comparisons based on these
data should be considered meaningful regarding the
predictive validity of each modecl. The evaluation
results of the proposed ELC Model using our project
data should provide a high enough merits for its further
application and investigation.
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