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Problem setting

Let V := {1, . . . ,N}. Consider a probability distribution on N discrete
random variables x = (x1, . . . , xN) that factorizes as follows:

P(x1, . . . , xN) =
1

Z

∏
K∈F

ψK (xK )

where F ⊆ P(V).

Example

A Bayesian network or Markov Random Field.

Objective

Calculate single node marginals

P(xi ) =
1

Z

∑
xV\i

∏
K∈F

ψK (xK )
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Some definitions

Definition

To the probability distribution P ∝
∏

K ψK (xK ) corresponds a factor
graph, a bipartite graph with variable nodes i , j , . . . (circles) and factor
nodes K , L, . . . (rectangles) with an edge between variable i and factor K
iff i ∈ K .

Example

i j

Definition

∂i is the Markov blanket of i , i.e.
all neighboring variables of i .

Definition

∆i := ∂i ∪ {i}.
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Existing solutions for calculating single node marginals

Exact methods (e.g. junction trees)

Sampling methods

“Deterministic” approximate methods, e.g.

Belief Propagation (BP)
Generalized Belief Propagation (GBP)
TreeEP
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Sampling methods

“Deterministic” approximate methods, e.g.

Belief Propagation (BP)
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TreeEP

Belief Propagation

Belief Propagation yields exact results on tree structured factor graphs.
However, if the factor graph contains one or more loops, results are
approximate and typically are worse for denser graphs.
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Existing solutions for calculating single node marginals

Exact methods (e.g. junction trees)

Sampling methods

“Deterministic” approximate methods, e.g.

Belief Propagation (BP)
Generalized Belief Propagation (GBP)
TreeEP

Generalized Belief Propagation

GBP can handle short loops more precisely by combining variables into
clusters that subsume the loops.
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Existing solutions for calculating single node marginals

Exact methods (e.g. junction trees)

Sampling methods

“Deterministic” approximate methods, e.g.

Belief Propagation (BP)
Generalized Belief Propagation (GBP)
TreeEP

TreeEP

TreeEP improves over BP by performing exact inference over a spanning
tree and can handle loops that consist of part of the tree and one
additional factor.
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Presence of strong loops typically results in low quality approximations.

Our solution

We propose a method that corrects BP for the presence of loops in the
factor graph; it typically obtains significant improvements in accuracy.
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Sampling methods

“Deterministic” approximate methods, e.g.
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Generalized Belief Propagation (GBP)
TreeEP

Problem

Presence of strong loops typically results in low quality approximations.

Our solution

We propose a method that corrects BP for the presence of loops in the
factor graph; it typically obtains significant improvements in accuracy.

Related work: Montanari & Rizzo (2005), Parisi & Slanina (2005),
Chertkov & Chernyak (2006)
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Cavity graphs

Definition

The cavity graph of i is the factor
graph obtained by removing
variable i together with all its
neighboring factors.

Example

i j

Definition

The cavity distribution of i is the
marginal of the cavity graph on ∂i :

P\i (x∂i ) :=
1

Z\i

∑
x\∆i

∏
K∈F
i 6∈K

ψK (xK ).

Proposition

P(x∆i ) ∝ P\i (x∂i )Ψi (x∆i )

where

Ψi (x∆i ) :=
∏
K∈F
i∈K

ψK (xK ).
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Cavities and loops
What is the relationship between loops and cavity distributions?

Example

k

l i j

m
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Cavities and loops
What is the relationship between loops and cavity distributions?

Example

k

l i j

m

The loop through xi , xj and xk results
in a dependency between xj and xk in
the cavity distribution P\i of i .

P\i (x∂i ) = P\i (xj , xk)P\i (xl)P
\i (xm).
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LCBP in a nutshell

In practice, exact cavity distributions are unavailable. Instead, we use
approximate cavity distributions Q\i ≈ P\i .

LCBP in a nutshell

1 Calculate initial approximate cavity distributions {Q\i
0 }i∈V ;

2 Cancel out errors in the approximate cavity distributions by
demanding consistency of single node marginals;

3 Calculate final single node marginals from corrected cavity

distributions {Q\i
∞}i∈V .

Joris Mooij et al. (RU Nijmegen) Loop Corrected Belief Propagation AISTATS’07 7 / 18



Consistency of single node marginals

Let i , j be two neighboring variables with common factor K . Define

Ψ
\K
i (x∆i ) :=

Ψi (x∆i )

ψK (xK )
=

∏
L∈F

i∈L,L 6=K

ψL(xL) (and similarly for j).

Cavity graph of i

i j

Cavity graph of j

i j

P\i (x∂i ) P\j(x∂j)
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Consistency of single node marginals
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Cavity graph of i

i j

Cavity graph of j

i j
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x∂i

P\i (x∂i )Ψ
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Correcting the approximate cavity distributions

We modify the initial approximations {Q\i
0 }i∈V by changing single variable

interactions but keeping higher order interactions fixed:

Q\i (x∂i ) := Q
\i
0 (x∂i )

∏
j∈∂i

φ
\i
j (xj),

where the factors φ
\i
j are chosen such that:∑

x∂i

Q\i (x∂i )Ψ
\K
i (∆i) =

∑
x∆j\i

Q\j(x∂j)Ψ
\K
j (∆j) ∀i∈V∀j∈∂i

This can be solved using simple fixed point iteration of the φ
\i
j factors.
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LCBP

1 Calculate initial approximate cavity distributions {Q\i
0 }i∈V

2 Update the approximate cavity distributions:

1: t ← 0
2: repeat
3: for all i , j ∈ V such that i , j ∈ K for some K ∈ F do

4: Q
\j
t+1 ∝ Q

\j
t

∑
x∂i

Q
\i
t Ψ

\K
i∑

x∆j\i
Q
\j
t Ψ

\K
j

5: end for
6: t ← t + 1
7: until convergence

3 Calculate approximate single node marginals qi (xi ) ≈ P(xi ) using:

qi (xi ) ∝
∑
x∂i

Q\i
∞(x∂i )Ψi (x∆i ).
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Possible ways of calculating initial cavity distributions
BP as a special case of LCBP

Take uniform distributions. . .

Theorem

If the initial cavity distributions factorize completely, fixed points of
standard BP are fixed points of the LCBP update algorithm.

This justifies the name “Loop Corrected Belief Propagation”.
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Possible ways of calculating initial cavity distributions
High accuracy

A high accuracy initialization scheme:

1: for all i ∈ V do
2: for all x∂i do
3: calculate F

\i
Bethe(x∂i ), the Bethe free energy corresponding to the

cavity graph of i clamped in state x∂i , using BP
4: end for
5: Q

\i
0 (x∂i )← e−F

\i
Bethe(x∂i )

6: end for

Theorem

Using this initialization, LCBP results will be exact if the factor graph
contains one loop.

In general, this yields high accuracy approximations.
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Experiments on random graphs
with binary variables and random pairwise interactions (fixed degree |∂i | = 5)
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Experiments on periodic grids
with binary variables and random pairwise interactions
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Experiments on the ALARM network
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Method Error Time (s)

BP 0.203 0.00
TreeEP 0.039 0.22
GBP 0.035 161.0
MR n/a n/a
LCBP 0.00054 23.4



Discussion and conclusion

Summary

We proposed a method to correct BP for the influence of loops in the
factor graph, building on the work by Montanari and Rizzo.

We showed that LCBP can significantly outperform other
approximate inference methods in terms of accuracy.

However, computation time is exponential in the cavity size and
application is thus to factor graphs with small cavities.

Future work

I am currently working on alternative update equations and
initialization methods that sacrifice some accuracy in exchange for
speed improvements.

An open question is whether there exists a “free energy” that
corresponds to LCBP. That would allow to also compute a
loop-corrected version of the Bethe free energy.

Joris Mooij et al. (RU Nijmegen) Loop Corrected Belief Propagation AISTATS’07 16 / 18



Thank you!

For more details and experiments, see also [Mooij & Kappen,
cs.AI:0612030].

C++ code for all algorithms is available as free/open source software
(licensed under the GNU Public License) at my homepage
http://www.mbfys.ru.nl/∼jorism/libDAI/

I will graduate in summer and am looking for a post-doc position.
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Improved LCBP updates
if short loops of length 4 are present

1: t ← 0
2: repeat
3: for all i ∈ V do
4: for all K ∈ Ni do

5: Q
\j
t+1 ← Q

\j
t

∏
j∈K\i

 ∑
∆j\(K\i)

Q
\j
t Ψ

\K
j

1/|K\i |

∑
x∆i\(K\i)

Q
\i
t Ψ

\K
i

6: end for
7: end for
8: t ← t + 1
9: until convergence
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