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Abstract Setup: Matrix Completion

r == M;; known for black cells
M = M;; unknown for white cells

Rows index movies
Columns index users

e How do you fill in the missing data?
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Model System Controller
Reduction Identification Design

Constraints involving the rank of the Hankel Operator, Matrix,
or Singular Values



Affine Rank Minimization

e PROBLEM: Find the matrix of lowest rank that
satisfies/approximates the underdetermined linear

system

d(X)=y  P:RF*" - R™

minimize rank(X)
subject to ®(X) =y

e NP-HARD:
— Reduce to MAXCUT
- Hard to approximate
— Exact algorithms are awful



Heuristic: Gradient Descent
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e Just run gradient descent

e )\ determines tradeoff between satisfying constraints and
the size of the factors



Mixture of
hundreds of
models, including
gradient descent

)

Gradient descent
on low-rank
parameterization
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Low-rank Matrix Completion

e PROBLEM: Find the matrix of lowest rank has the
specified entries

minimize  rank(X)

subject to X;; = M 5 Yihg) ey

e When is this problem easy?
- Which algorithms?
— Which sampling sets?

— Which low-rank matrices?



Compressed Sensing

e Model: most of the energy is in few wavelet coefficients

e Use the fact that the image is sparse in wavelet basis to
reduce number of measurements required for signal

acquisition.
e decode using I, minimization



Cardinality Minimization

e PROBLEM: Find the vector of lowest cardinality that
satisfies/approximates the underdetermined linear

system

dr =y o :R" - R™

e NP-HARD:
— Reduce to EXACT-COVER [Natarajan 1995]

— Hard to approximate
— Known exact algorithms require enumeration

e HEURISTIC: Replace cardinality with | norm

e Compressed Sensing



Sparsity

e 1-sparse vectors of
Euclidean norm 1

e Convex hull is the
unit ball of the I; norm

szl < 13




minimize ||x||
subject to Px =y

Compressed Sensing: Candes, Romberg, Tao,
Donoho, Tanner, Etc...



Rank

e 2X2 matrices
e plotted in 3d

NSRS
N

— rank 1
X? + 2% + 2y2 =1

Convex hull:

X[ X < 1)
X = > ai(X)



Which Algorithm?

Affine Rank Minimization:
minimize rank(X)
subject to P(X) =y

- =

Convex Relaxation:
minimize || X/, = S:f  0i(X)
subject to P(X) =y

U

e Nuclear Norm Heursistic. Proposed by Fazel (2002).
e Nuclear norm is the "numerical rank” in numerical analysis
e The “trace heuristic” from controls if X is p.s.d.



e 2X2 matrices
e plotted in 3d

Ly <1
Yy 2l
| X || = Z%’(X)

Nuclear Norm Heuristic




e 2X2 matrices
e plotted in 3d
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e Projection onto x-z

plane is |; ball



Nuclear Norm minimization /

minimize || X|, = 3¢, 0:(X)
subject to P(X) =y

Low-rank parameterization X =UXV"
. e _ 1/2
minimize  1(|ZI|% + [|R[3) L=UsY
subject to ®(LR*) =1y R— yYl/2
Method of Multipliers “The Blog Heuristic”

k
minimize > > L? +> > +)\H(I> LR*) —yll3

1=1 a=1 17=1a=1




First theory result
d(X)=y  &:R>" S R™

o If m > cyr(k+n-r)log(kn), the heuristic succeeds for most

maps O.
Recht, Fazel, and Parrilo. 2007.

e Number of measurements c; r(k+n-r) log(kn)

constant in%insic mient

; ; dimension
dimension

e Approach: Show that a random ® is nearly an isometry
on the manifold of low-rank matrices.

e Stable to noise in measurement vector y and returns as
good an answer as a truncated SVD of the true X.



Low-rank Matrix Completion
r == M;; known for black cells
M = M;; unknown for white cells

e How do you fill in the missing data?
minimize  rank(X)
subject to X;;=M;; V (3,7) € Q




Which Sampling Sets?
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e Row-column graph
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columns

— Vertices: indexed by rows and columns

- Edge if that entry is in Q



Which Sampling Sets?

_ _ FOWS columns

O x 0 0 »

0 0 0

e Row-column graph: all vertices must be observed

e M = xy™. If you miss row 4, cannot determine Xx,.
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e Row-column graph: must be connected
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Which Sampling Sets?
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columns

e If M = xy™, cannot distinguish between
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Which Sampling Sets?
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e Row-column graph: must have at least r(n+k-r)
edges

e The dimension of the manifold of rank r, k X n matrices
is r(n+Kk-r)



If we can choose the samples...

 Generically, first r rows and r columns are sufficient:

A B
C CA'B
« [Frieze, Kannan, Vempala 1998, Drineas, Kannan,

Mahoney 2003, etc.]: sample proportional to norms
of columns. Low-rank matrix approximations.

M =

If we can’t choose the samples...

e Most sets with more than 2rnp log(n) entries have at

least one entry for every row and column, the row-
column graph is connected.

e [Achloptas, McSherry 2004]: random sampling
sufficient to obtain an additive error approximation to




Which matrices?

e Any subset of entries that
misses the (1,1)
component tells you
nothing!

e Still need to see the
entire first row

e Want each entry to

provide nearly the same
amount of information



Incoherence

e Let U be a subspace of R"of dimension r and P be

the orthogonal projection onto U. Then the coherence
of U (with respect to the standard basis e;) is defined

to be

. n 9
nw(U) = >3 | Pye;||”.
e u(l) =21
- e.g., span of r columns of the Fourier transform
e wlU) =n/r
- e.g., any subspace that contains a standard basis element
e w(l) = 0(1)

- sampled from the uniform distribution with r > log n



Incoherence

e Let U be a subspace of R"of dimension r and P be

the orthogonal projection onto U. Then the coherence
of U (with respect to the standard basis e;) is defined

to be
. lr — == TrlaX P 2 =7 | S
p(U) = = max [Pue

t(U) small means leverage scores are uniform.

Pi = HPUeiH2

[Drineas, Mahoney, Muthukrishnan 2006]:
uniform row/column sampling gives exact
reconstruction.




Bounds for Matrix Completion

e Suppose X is k x n (k<n) has rank r and has row and
column spaces with incoherence bounded above by .
Then the nuclear norm heuristic recovers X from most
subsets of entries Q with cardinality at least

Q| > Cun®® r log(n) Candés and Recht. 2008
special case extensions:
Q| > Cu*n r log’(n) Q| > C'nlog(n)
[Candes and Tao 2009] [Keshavan et al, 2009]
stronger assumptions rank = o(1), oi/or bounded

[Gross et al 20009,
Q| > 32ur(n + k) log”(2n) Recht 2009,
Gross2009]




Recent Extensions

e Noise robustness

« C(Candes-Plan, Keshavan et al 2009, Lounici et al,
Neghaban and Wainwright 2010

« Deconvolving Sparse and Low-rank matrices
« Chandrasekaran et al 2009, Wright et al 2009

 Fast algorithms

 First order methods - Cai et al, Ma et al, Toh et al,
Ji et al, etc...

 "“Generalized Blog Heuristic” - Lee et al, Recht and
Re



Linear Inverse Problems

e Find me a solution of
e d mxn, m<n

 Of the infinite collection of solutions, which one
should we pick?

e Leverage structure:

Sparsity Rank Smoothness Symmetry

« How do we design algorithms to solve
underdetermined systems problems with priors?



Parsimonious Models
. —Z—rank

L = Z Wi (]
model

weights atoms

e Search for best linear combination of fewest atoms
e "rank” = fewest atoms needed to describe the model

° ||| 4 = (zifl({) Z wy |



Model Based Compressive Sensing

X has structured sparsity: linear combination of
elements from a set of subspaces {Ug}.

Atomic set: unit norm vectors living in one of the Ug

|z|lg = int Z”ng : ZU:ngv wg € Uy

geC geqG

Proposed by Jacob, Obozinski and Vert (2009).



Permutation Matrices

X a sum of a few permutation matrices

Examples: Multiobject Tracking (Huang et al),
Ranked elections (Jagabathula, Shah)

Convex hull of the permutation matrices: Birkhoff
Polytope of doubly stochastic matrices

Permutahedra: convex hull of permutations of a
fixed vector.

[1121314] —



Atomic Norms

Given a basic set of atoms, A, define the function
|z||4 =inf{t >0 : x € tconv(A)}

When A is centrosymmetric, we get a horm

|zla=inf{) |ca| : 2= coa}

minimize  ||z||4

IDEA: subject to Pz =1y

When does this work?
How do we solve the optimization problem?
A: Chandrasekaran, Recht, Willsky, and Parrilo 2010



Atomic Norm Decompositions

Propose a natural convex heuristic for enforcing
prior information in inverse problems

Bounds for the linear case: heuristic succeeds for
most sufficiently large sets of measurements

Stability without restricted isometries

Standard program for computing these bounds:
distance to normal cones

Approximation schemes for computationally difficult
priors



Extensions...

Width Calculations for more general structures

Recovery bounds for structured measurement
matrices (application specific)

Incorporating stochastic noise models

Understanding of the loss due to convex relaxation
and norm approximation

Scaling generalized shrinkage algorithms to massive
data sets
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Tangent Cones

e Set of directions that decrease the norm from x
form a cone:
Ta(x) ={d : ||z + ad||a < ||x||4 for some o > 0}

minimize  ||z||4
subject to Pz =y

{z : llzlla < llzlla}

« X is the unigue minimizer if the intersection of this
cone with the null space of ® equals {0}



Gaussian Widths

« When does a random subspace, U, intersect a
convex cone C at the origin?

e Gordon 88: with high probability if
codim(U) > w(C)?

e Where w(C) =) max 1<x, g> is the
Gaussian width zeCnsS" T
( g is a normal Gaussian random vector.)

« Corollary: For inverse problems: if ® is a random )
Gaussian matrix with m rows, need m > w(74(x))
for recovery of x.



Robust Recovery

 Suppose we observe Yy = Pz 4+ w |wllo <6

minimize z|| 4
subject to ||[Pz —y| <6

20

- If T is an optimal solution, then ||z — Z|| < —

provided that S
: _ cow(Ta(x))’

N = (1 —€)?

[Pz —y| <6

{z : ||z]|la < |x||la}



AN

Duality

('™ is the polar cone.

magc(v,g} C*={w : (w,2) <0Vze(C}
vE
[v]|=1

- - Ta(z)" = Na(x)

N 4(x) is the normal
I?Eag( <U7 g> cone. Equal to the cone

lv]|<1 induced by the
- o = subdifferential of the
atomic norm at x.

min

ucC* I UH




Re-derivations

Hypercube: m > n/2
Sparse Vectors, n vector, sparsity s<0.25n

mEZs(log(n_S>+1>
S

Block sparse, M groups (possibly overlapping),
maximum group size B, k active groups

m > 2k (log (M — k) + B) + k

Low-rank matrices: ni1 x nz, (n1<n2), rank r
m > 3r(ny +no — 1)




General Cones

Theorem: Let C be a nonempty cone with polar
cone C*, Suppose C* subtends normalized solid

angle u. Then
4
w(C) < 3\/log (;)

Proof Idea: The expected distance to C* can be
bounded by the expected distance to a spherical cap

Isoperimetry: Out of all subsets of the sphere with
the same measure, the one with the smallest
neighborhood is the spherical cap

The rest is just integrals...



Symmetric Polytopes

Corollary: For a vertex-transitive (i.e.,
“symmetric”) polytope with p vertices, O(log p)
Gaussian measurements are sufficient to recover a
vertex via convex optimization.

For n X n permutation matrix: m = O(n log n)
For n x n cut matrix: m = O(n)

 (Semidefinite relaxation also gives m = O(n))



 Naturally amenable to projected grac

residual

“shrinkage”

 Similar algorithm for atomic norm constraint

Algorithms

minimize, ||®z — yl||5 + ul/z]|4

Rk+1 = Hnu(zk — NP )

r, = Pzp —y

Il-(2) = arg mm

5

z—u||2

ient algorithm:

7|[ull.4

« Same basic ingredients for ALM, ADM, Bregman,

Mirror Prox, etc...

how to compute the shrinkage?



Relaxations

> P
Jol% = max(v, o)

« Dual norm is efficiently computable if the set of
atoms is polyhedral or semidefinite representable

A1 C Ay = 2l < llzlll, and [[z]la, < |z,

« Convex relaxations of atoms yield approximations to
the norm

NB! tangent cone
gets wider

 Hierarchy of relaxations based on 6-Bodies yield
progressively tighter bounds on the atomic norm



Theta Bodies

« Suppose A is an algebraic variety

A={x : f(x)=0Vf eI}

ol = max(v,a) < 7

q=h+g
Y\
h(x) >0Vxe gel

positive vanishes on
everywhere atoms

 Relaxation: restrict h to be sum of squares.
« Gives a lower bound on atomic norm

« Solvable by semidefinite programming (Gouveia,
Parrilo, and Thomas, 2010)





