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Booming Age of
Heterogeneous Informatlon Networks
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Hybrid Collaborative Filtering with Networks

e Utilizing network relationship information can
enhance the recommendation quality

* However, most of the previous studies only use
single type of relationship between users or items
(e.g., social network nawspawril, trust relationship
Ester, KDD’10, service membership Yuan, RecSys'11)




The Heterogeneous Information
Network View of Recom ner System
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Relationship heterogeneity alleviates data sparsity
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* Heterogeneous relationships complement each other
e Users and 1items with mited feedback can be connected to the
network by dilferent types ol paths

Connect new users or items (cold start) 1n the mmformation
network



Relationship heterogeneity based personalized
recommendation models

Q Two levels of personalization
%?g/ James Cameron fan Data level
—~ * Most recommendation methods use
Q one model for all users and rely on
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Preference Propagation-Based Latent Features
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Recommendation Models

Observation 1: Different meta-paths may have different importance

Global Recommendation Model

ranking score
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the g-th meta-path

features for user i and itemj

Observation 2: Different users may require different models

Personalized Recommendation Model

user-cluster similarity
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Parameter Estimation

* Bayesian personalized ranking (Rendle UAT'09)

. objective function sigmoid function g (x) = 1+é—1'

. . R A
min — ) | Y [no(f(uieq) —F(uiep)) + EIIBIE (3)
© ui€l|(ea>ep)ER;
for each correctly ranked item pair
i.e., u; gave feedback to e, but not ¢,

Generate
For each user

Soft cluster users personalized model
cluster, learn one

for each user on the
fly with Eq. (2)

with NMF + k-means
model with Eq. (3)

Learning Personalized Recommendation Model



Experiment Setup

* Datasets
Name Hltems | #Users | #Ratings | #FEntities | #Links
IM100K 043 1360 89,626 60,905 146,013
Yelp 11,537 43,873 229,907 285,317 570,634

* Comparison methods:
* Popularity: recommend the most popular items to users
* Co-click: conditional probabilities between items

* NMF: non-negative matrix factorization on
feedback

* Hybrid-SVM: use Rank-SVM with plain features (utilize
both user feedback and information network)

user
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Performance Comparison

Method IMIOOK _ Yelp
Precl Precd Precl10 MRR Precl Precb Precl0 MRR
Popularity 0.0731 0.0513 | 0.0489 0.1923 || 0.00747 | 0.00825 | 0.00780 | 0.0228
Co-Chck 0.0668 0.0558 | 0.0538 0.2041 0.0147 0.0126 | 0.01132 | 0.0371
NMF 0.2064 0.1661 0.1491 0.4938 0.0162 0.0131 0.0110 0.0382
Hybrid-SVM | 0.2087 | 0.1441 0.1241 0.4493 0.0122 0.0121 0.0110 0.0337
HeteRec-g 0.2094 0.1791 0.1614 0.5249 0.0165 0.0144 0.0129 0.0422
HeteRec-1 0.2121 | 0.1932 | 0.1681 | 0.5530 || 0.0213 | 0.0171 | 0.0150 | 0.0513

HeteRec personalized recommendation (HeteRec-p)
provides the best recommendation results
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Performance under Different Scenarios
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HeteRec—p consistently outperform other methods in different scenarios
better recommendation results if users provide more feedback
better recommendation for users who like less popular items
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Contributions

* Propose latent representations for users and items
by propagating user preferences along different
meta-paths

* Employ Bayesian ranking optimization technique to
correctly evaluate recommendation models

* Further improve recommendation quality by
considering user differences at model level and
define personalized recommendation models

* Two levels of personalization
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