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Go in numbers
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The Rules of Go

Capture Territory



Why is Go hard for computers to play?

Brute force search intractable;

1. Search space is huge

2. “Impossible” for computers
to evaluate who is winning

332

Game tree complexity = b
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Convolutional neural network
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Value network

Evaluation
=

Position

V()



'Q Google DeepMind

Policy network

Move probabilities
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Exhaustive search
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Monte-Carlo rollouts



Reducing depth with value network
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Reducing depth with value network



Reducing breadth with policy network
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Deep reinforcement learning in AlphaGo

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network

’ Bﬁ v‘self = % oe" b o @
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Supervised learning of policy networks

Policy network: 12 layer convolutional neural network %ﬁ

Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

dlogps(als)
oo

Ao

Training time: 4 weeks on 50 GPUs using Google Cloud
Results: 57% accuracy on held out test data (state-of-the art was 44%)

@ Google DeepMind



Reinforcement learning of policy networks

Policy network: 12 layer convolutional neural network %ﬁ

Training data: games of self-play between policy network

Training algorithm: maximise wins z by policy gradient reinforcement learning

AO’ X alogpﬂ'(a’|s)z

do

Training time: 1 week on 50 GPUs using Google Cloud
Results: 80% vs supervised learning. Raw network ~3 amateur dan.
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Reinforcement learning of value networks

Value network: 12 layer convolutional neural network
Training data: 30 million games of self-play

Training algorithm: minimise MSE by stochastic gradient descent

Al x 31);‘;5) (z —vg(s))

Training time: 1 week on 50 GPUs using Google Cloud
Results: First strong position evaluation function - previously thought impossible

'Q Google DeepMind
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Monte-Carlo tree search in AlphaGo: selection

:i:

ma\ Q ar H(P)
P prior probability
m m O action value
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Monte-Carlo tree search in AlphaGo: expansion

E m p, Policy network

P prior probability
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Monte-Carlo tree search in AlphaGo: evaluation
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Monte-Carlo tree search in AlphaGo: rollout

4 adi

v, Value network
r Game scorer
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Monte-Carlo tree search in AlphaGo: backup

1+
: O Action value
| v Value network
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Deep Blue

Handcrafted chess knowledge
Alpha-beta search guided by
heuristic evaluation function

200 million positions / second

o)

AlphaGo

Knowledge learned from expert

games and self-play

Monte-Carlo search guided by

policy and value networks

60,000 positions / second
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i 7 Challenge Match
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can beat a champion Go player pact48s
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Evaluating Nature AlphaGo against computers
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Evaluating Nature AlphaGo against humans

Fan Hui (2p): European Champion 2013 -2016
Match was played in October 2015
AlphaGo won the match 5-0

First program ever to beat a professional

on a full size 19x19 in an even game

b Google DeepMind



Seoul AlphaGo

Deep Reinforcement Learning (as Nature AlphaGo)

e Improved value network

e Improved policy network

e Improved search
o Improved hardware (TPU vs GPU)
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Evaluating Seoul AlphaGo against computers
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Evaluating Seoul AlphaGo against humans

Lee Sedol (9p): winner of 18 world titles
Match was played in Seoul, March 2016

AlphaGo won the match 4-1
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Google DeepMind £03 Alpha
Challenge Match

8-15March 2016
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AlphaGo vs Lee Sedol: Game 1
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AlphaGo vs Lee Sedol: Game 2
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AlphaGo vs Lee Sedol: Game 3
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AlphaGo vs Lee Sedol: Game 4
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AlphaGo vs Lee Sedol: Game 5
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Deep Reinforcement Learning: Beyond AlphaGo

=

‘q Google DeepMind


http://www.youtube.com/watch?v=U_WY2qxUqHQ
http://www.youtube.com/watch?v=nMR5mjCFZCw
http://www.youtube.com/watch?v=0xo1Ldx3L5Q

What's Next?
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