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Background: Graphical Model 

• Graphical model 

– undirected graph 

• Markov random field (MRF) 

• Conditional random field (CRF) 

– directed graph 

• Bayesian network 
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In this talk, we don’t 
consider hidden variables 



Markov Random Field 

• X=x1...xn are n binary random variables 

 
 

 

 

– Z is normalization constant 

– aka. “partition function” 

– intractable to evaluate 
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Markov Random Field 

• X=x1...xn are n binary random variables 
 

 

 

• Tasks 
– Inference   

• [given params] for any data X, calculate p(X)  

– Learning 
• [given data X1..Xd] learn the parameters J, h 
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Learning in probabilistic models...

• Want to fit a parametric model to data

data distribution

(0,0)

0

(0,1)

1

(1,0)

2

(1,1)

3

p(0)
i = fraction data

in state i

x =
i =

model distribution

(0,0)

0

(0,1)

1

(1,0)

2

(1,1)

3

p(∞)
i (θ) =

e−Ei(θ)

Z (θ)

x =
i =

Z (θ) =
�

i

e−Ei(θ)

• Adjust θ so the model distribution looks like 
the data distribution
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• Maximum likelihood

model distribution
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• For a 100 bit binary system

Z (θ) =
2100�

i=1

e−Ei(θ)

Learning in probabilistic models...
...is hard

2100 = 1267650600228229401496703205376

KML = −
�

i

p(0)i log p(∞)
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• Numerical integration, Monte Carlo sampling, 
mean field theory, variational bayes, pseudo 
likelihood, Ratio Matching,  Noise Contrastive 
Estimation...

• Contrastive Divergence

• Score Matching

• Minimum Velocity learning

Existing Techniques

We expect that this framework will render some previously intractible models more amenable to
estimation.
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MPF Overview
• Sampling from a distribution:

• Take a set of samples and apply a series of 
stochastic transformations to it until it 
looks like it came from the model 
distribution
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MPF Overview
• Problem with sampling:

• SLOW to converge for large, high-
dimensional data sets
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MPF Overview
• Idea: introduce deterministic dynamics 

interpolating between the data and model 
distributions...
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MPF Overview
• ...and only compare the data distribution to 

the distribution obtained by evolving the 
dynamics for a small time ε!
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Minimum probability flow
Overview
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Master Equation
• Transition rates 

• Master equation conserves probability

• or in matrix form...:

flow into other states j
from state i

flow into state i
from other states j

ṗ(t)
i =

�

j �=i

Γij(θ) p(t)
j −

�

j �=i

Γji(θ) p(t)
i

p(t) = exp (Γt)p(0)

ṗ(t) = Γp(t)

Γij

Γii := −
�

j �=i

Γji
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• Detailed balance

Detailed Balance

Γji p(∞)
i (θ) = Γij p(∞)

j (θ)

Γij

Γji
=

p(∞)
i (θ)

p(∞)
j (θ)

= exp [Ej (θ)− Ei (θ)]

Γij = gij exp

�
1

2
(Ej (θ)− Ei (θ))

�

gij = gji =

�
0 unconnected states
1 connected states

• Choose Γ to converge to model distribution
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Demo Code
• 6 unit Ising model

p(∞)(x;J) =
1

Z(J)
exp



−
�

i,j

Jijxixj





xi ∈ {0, 1}
x =
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

0
0
1
0
1





x
3

x
5

x
2

x
4

x
1

J
13

p(0)

p(∞) (θ)

•      150 samples using random J

•           initialized to another random J

• 2 dimensional random projection of p(t)
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• Minimize                         , for small 

• Minimize initial probability flow from 
data states to non-data states

• No sampling!

Objective Function
�DKL

�
p(0)||p(�) (θ)

�

θ̂ = argmin
θ

KMPF (θ)

KMPF (θ) = DKL

�
p(0)||p(�) (θ)

�
≈ DKL

�
p(0)||p(t) (θ)

� ���
t=0

+ �
∂DKL

�
p(0)||p(t) (θ)

�

∂t

���
t=0
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�

j /∈data
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�
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Demo Code
• 6 unit Ising model
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Tractability

• Data distribution       highly sparse

• Ignore every column of      for which

•      is highly sparse

• Each state connected to only a small number of 
other states (eg, within Hamming ball)

• Objective function evaluation costs O(number data 
points × number connections per data point)

p(0)

Γij

Γij

p(0)
j = 0

KMPF (θ) = �
�

i/∈data

�

j∈data

Γijp
(0)
j
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Contrastive Divergence

• Markov Chain sampling/rejection step replaced by weighting 
factor

• Objective function!

• Unique global minima when model and data agree

∆θCD ∝ −
�

i/∈data

�

j∈data

p(0)j

�
∂Ej (θ)

∂θ
− ∂Ei (θ)

∂θ

�
[probability of MCMC step from j → i]

∂KMPF (θ)

∂θ
= �

�

i/∈data

�

j∈data

p(0)j

�
∂Ej (θ)

∂θ
− ∂Ei (θ)

∂θ

�
gij exp

�
1

2
(Ej (θ)− Ei (θ))

�
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Continuous State Spaces
• Analogous to sum ➞ integral transition

p(∞)
i (θ) =

exp [−Ei (θ)]

Z (θ)

p(t)i

Γij = gij exp

�
1

2
(Ej (θ)− Ei (θ))

� Γ (xj → xj) =

g (xj → xj) exp

�
1

2
(E (xj ; θ)− E (xi; θ))

�

p(0)i =
fraction data
D in state i

p(∞) (x; θ) =
exp [−E (x; θ)]

Z (θ)

p(t) (x)

p(0) (x) =
1

D
�

xm∈D
δ (x− xm)
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Score Matching

g (xj → xi) = g (xi → xj) =

�
1 ||xj − xi||2 < r
0 otherwise

lim
r→0

KMPF ∝ KSM

=

�
1

2
∇xE (x; θ) ·∇xE (x; θ)−∇2

xE (x; θ)

�

p(0)(x)
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Objective Functions

• Maximum Likelihood

• Minimum Probability flow

• Contrastive Divergence

• Score Matching

p(0)

p(∞) (θ)

p(�) (θ)

t

KML = DKL

�
p(0)||p(∞) (θ)

�

KCD ≈ DKL

�
p(0)||p(∞) (θ)

�
−DKL

�
p(1) (θ) ||p(∞) (θ)

�

KMPF = DKL

�
p(0)||p(�) (θ)

�

KSM =

�
1

2
∇xE (x; θ) ·∇xE (x; θ)−∇2

xE (x; θ)

�

p(0)(x)
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Connectivity
• Discrete space

• Nearest neighbors

gij = gji =

�
1 i, j differ by 1 bit flip
0 otherwise

Comparison of Score Matching and Minimum Probability Flow

A.J.Wegloop

supervisor: J. Sohl-Dickstein

July 29, 2010

Abstract

It is often computationally expensive or even impossible to calculate the normalization factor of probability
density functions. This hinders learning of statistical models.
Minimum Probability Flow and Score Matching are methods in which this normalization factor does not
have to be calculated. These methods are compared in this work. It turns out that the lowest order terms of
the objective functions are equivalent. Considering a Gaussian distribution and a multi-peaked distribution
it is shown that it is not favourable to take the higher order terms of the objective function of the Minimum
Probability Flow method into account.

1 Introduction

Estimation of parameters from probabilistic models is often impaired by intractability of the normalization
factor of probability functions. Several methods have been proposed to deal with this problem, including
Minimum Probability Flow (MPF) [1]. In this method, probability flows from the data distribution to the
model distribution. The parameters of the model are estimated by minimizing this flow. It has been stated
that Score Matching (SM) [2] is a special case of this method [1]. This has been verified and the methods have
been compared quantitatively in this work.
SM deals with continuous models and MPF is formulated for discrete models. In order to compare both methods,
the MPF method is considered in the continuum limit.

2 Minimum probability flow

The purpose of SM and MPF is to find the parameters of a probabilistic model which lead to the best fit for a
set of observations. In the MPF method, this is achieved by minimizing the flow from the data distribution to
the model distribution.
As an example, consider a simple two-bit binary system to be observed. The possible configurations are (0,0),
(0,1), (1,0) and (1,1). For a particular set of observations, the data, a probability distribution is given for
these configurations. The goal is to match the model distribution to this probability distribution. To achieve
this, probability is allowed to flow from the model distribution to the data distribution. If only flow between
neighbouring states (i.e. states differing in at most one bit-flip) is considered, the flow diagram can be presented
as:

00 01

10 11

Figure 1: Flow diagram of a binary system in which only nearest neighbours are connected.

Note that also other flows can be allowed and that the number of states can be much larger. Generally it is
possible to write the equation which governs the flow, as:

ṗ(t)i (θ) =
�

j �=i

Γij(θ)p
(t)
j (θ)−

�

j �=i

Γji(θ)p
(t)
i (θ) (1)

1
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Connectivity
• Continuous space

• Hamiltonian dynamics (similar to hybrid Monte 
Carlo)

‣Extend distribution to include auxiliary momentum 
variables q

p(∞) (x; θ)

H (x,q; θ) = E (x; θ) +
1

2
||q||22

p(∞) (x,q; θ) = p(∞) (x; θ) p(∞) (q) =
e−H(x,q;θ)

ZH (θ)
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Connectivity
• Continuous space

‣Allow connectivity between momenta, and between 
states separated by leapfrog dynamics

p(∞) (x; θ)

H (x,q; θ) = E (x; θ) +
1

2
||q||22

p(∞) (x,q; θ) = p(∞) (x; θ) p(∞) (q) =
e−H(x,q;θ)

ZH (θ)

g ({xj ,qj} → {xi,qi}) = g ({xi,qi} → {xj ,qj})

=






1 xi = xj

1 {xi,qi} = leapfrog ({xj ,qj} ;φ)
0 otherwise

(transitions where only q changes don’t effect objective)
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Connectivity
• Continuous space

‣Alternate between updating ϕ and minimizing KMPF

p(∞) (x; θ)

H (x,q; θ) = E (x; θ) +
1

2
||q||22

p(∞) (x,q; θ) = p(∞) (x; θ) p(∞) (q) =
e−H(x,q;θ)

ZH (θ)

g ({xj ,qj} → {xi,qi}) = g ({xi,qi} → {xj ,qj})

=






1 xi = xj

1 {xi,qi} = leapfrog ({xj ,qj} ;φ)
0 otherwise

1.  Set 
2.  Set 

3.  Repeat

φ = θ

θ = argmin
θ

KMPF (θ;φ)
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• Maximum entropy distribution over binary variables 
consistent with pairwise statistics

• > 2 orders of magnitude improvement in learning time

Examples - Ising

p(∞)(x;J) =
1

Z(J)
exp



−
�

i,j

Jijxixj





xi ∈ {0, 1}
x =





0
0
1
0
1





x
3

x
5

x
2

x
4

x
1

J
13

We expect that this framework will render some previously intractible models more amenable to
estimation.
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and Hessian

∂2K

∂θm∂θn
=

1
4

�

i∈D

�

j∈Dc

Γij

�
∂Ej

∂θm
− ∂Ei

∂θm

� �
∂Ej

∂θn
− ∂Ei

∂θn

�
p(0)

i (B-4)

+
1
2

�

i∈D

�

j∈Dc

Γij

�
∂2Ej

∂θm∂θn
− ∂2Ei

∂θm∂θn

�
p(0)

i . (B-5)

The first term is a weighted sum of outer products, with non-negative weights 1
4Γijp

(0)
i , and is thus

positive semidefinite. The second term is 0 for models in the exponential family (those with energy
functions linear in their parameters).

Parameter estimation for models in the exponential family is therefore convex using minimum prob-
ability flow learning, in the commonly satisfied limit that Γ does not directly connect any two data
points.
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• MPF recovers Ising model parameters (100 units, 
100,000 samples, J std. dev. 0.04)

Examples - Ising
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• Explicitly evaluate log likelihood on 20 visible unit, 20 hidden unit 
RBM

• random  -21.529931 bits

• MPF 	

 	

 -9.044596 bits

• CD1 	

 	

 -15.822924 bits

• CD10 	

 -38.011133 bits (!!!) (continuing to increase!)

Examples - RBM
• Restricted Boltzmann Machine

world

internal

state

x
0

x
1 E (x;W ) = x0T Wx1

p (x;W ) ∝ e−E(x;W )
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• Deep Belief Network is constructed by stacking RBMs

Examples - DBN

MPF 1 step CD
28x28 pixels

200 units

200 units

200 units

200 units

E
�
x0,x1

�
= x0T W01x1
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�

• Train DBN on MNIST digit database
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Examples - Product of 
Student-t distributions

p(∞) (x;J, α) ∝ e−
P

i αi log[1+(Jix)2]

0 50 100
0.5

0.6

0.7

0.8

0.9

1

expert number

!

Saturday, August 14, 2010



MPF Summary
• General method for estimating parameters of 

probabilistic models

• Well defined objective function, which can be minimized 
using many known techniques (eg, l-BFGS, minFunc)

• Handles continuous and discrete systems

• Unique global minimum at Maximum Likelihood 
solution if model can exactly match data

• Convex for E(θ) in exponential family (eg Ising model)

• Reduces to Minimum Velocity learning, Score Matching, 
and (certain forms of) Contrastive Divergence in 
appropriate limits
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Sampling Connectivity

�
Γji p(∞)

i (θ)
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=
�
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• Fitting a highly unstructured 2-dimensional distribution

Examples - Power series

p(∞)(x, y; θ) =
1

Z (θ)
exp

�
−

M�

m,n=0

θmnLm(x)Ln(y)
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data histogram model histogramscatterplot, 100,000 samples

L0 (x) = 1
L1 (x) = x

L2 (x) = 3x2 − 1
L3 (x) = 5x3 − 3x

L4 (x) = 35x4 − 30x2 + 3
L5 (x) = 63x5 − 70x3 + 15x

· · · = · · ·
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• MPF recovers parameters from 10,000 samples of a 
10-dimensional Gaussian distribution

Examples - Gaussian

p(∞)(x;Σ−1) =
1

Z (Σ−1)
exp

�
−1

2
xT Σ−1x

�
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Relationship to CD
KCD ≈ DKL

�
p(0)||p(∞) (θ)
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−DKL

�
p(�) (θ) ||p(∞) (θ)
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Alternative 
view

• Dynamics turn data 
distribution into 
model distribution

• Objective is to 
minimize initial flow 
of probability away 
from data - the 
shaded area

States of the System

p(0)

p(∞) (θ)

p(t) (θ)

ṗ(0) (θ)
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• Takes Broderick et al ~200 seconds on ~100 cores to 
recover parameters for 40 unit Ising model from 20,000 
samples

• Using their J matrix, takes MPF ~15 seconds on 8 cores

• Learning is ~ 2 orders of magnitude faster

Examples - Ising

We expect that this framework will render some previously intractible models more amenable to
estimation.
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Thank you! 



Objective function
Alternate interpretation
• Dynamics turn data 

distribution (a) into 
model distribution (b)

• (c) shows distribution 
at intermediate time

• The objective is to 
minimize the initial flow 
of probability away 
from the data, the 
shaded area in (d).

p(0)

p( ( )

p(1)( )

States  of  the  system

p(0)( ).

a

b

c

d

Saturday, August 14, 2010



data distribution model distributiondynamics

00 01 10 11 00 01 10 1100 01 10 11

ṗ(t)
i =

�

j

Γij (θ) p(t)
j (θ)ṗ(0)

i =
�

j

Γij (θ) p(0)
j

p(0)
i = data p(∞)

i (θ) =
e−Ei(θ)

Z (θ)

ṗ(∞)
i = 0

MPF - Dynamics

• Most Monte Carlo methods implement a 
stochastic version of these dynamics
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Minimum probability flow
Overview

p(0)

p(∞) (θ)

p(�) (θ)

t
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Example: Boltzmann Machine 

Comparison of actual visible state probabilities: 
4 visible, 4 hidden VS. only 4 visible 

Hidden model Visible model 
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