
Graph-based Incident Aggregation for Large-Scale
Online Service Systems

Zhuangbin Chen∗, Jinyang Liu∗, Yuxin Su∗†, Hongyu Zhang‡

Xuemin Wen¶, Xiao Ling¶, Yongqiang Yang¶, Michael R. Lyu∗
∗The Chinese University of Hong Kong, Hong Kong, China, {zbchen, jyliu, yxsu, lyu}@cse.cuhk.edu.hk

‡The University of Newcastle, NSW, Australia, hongyu.zhang@newcastle.edu.au
¶Huawei, China, {wenxuemin, lingxiao1, yangyongqiang}@huawei.com

Abstract—As online service systems continue to grow in terms
of complexity and volume, how service incidents are managed will
significantly impact company revenue and user trust. Due to the
cascading effect, cloud failures often come with an overwhelming
number of incidents from dependent services and devices. To
pursue efficient incident management, related incidents should
be quickly aggregated to narrow down the problem scope. To this
end, in this paper, we propose GRLIA, an incident aggregation
framework based on graph representation learning over the cas-
cading graph of cloud failures. A representation vector is learned
for each unique type of incident in an unsupervised and unified
manner, which is able to simultaneously encode the topological
and temporal correlations among incidents. Thus, it can be easily
employed for online incident aggregation. In particular, to learn
the correlations more accurately, we try to recover the complete
scope of failures’ cascading impact by leveraging fine-grained
system monitoring data, i.e., Key Performance Indicators (KPIs).
The proposed framework is evaluated with real-world incident
data collected from a large-scale online service system of Huawei
Cloud. The experimental results demonstrate that GRLIA is
effective and outperforms existing methods. Furthermore, our
framework has been successfully deployed in industrial practice.

Index Terms—Cloud computing, online service systems, inci-
dent management, graph representation learning

I. INTRODUCTION

In recent years, IT enterprises started to deploy their appli-

cations as online services on cloud, such as Microsoft Azure,

Amazon Web Services, and Google Cloud Platform. These

cloud computing platforms have benefited many enterprises

by taking over the maintenance of IT and infrastructure and

allowing them to improve their core business competence.

However, for large-scale online service systems, failures are

inevitable, which may lead to performance degradation or

service unavailability. Whether or not the service failures are

properly managed will have a great impact on the company’s

revenue and users’ trust. For example, an hour episode of

downtime in Amazon led to a loss of 100+ million dollars [1].

When a failure happens, system monitors will render a large

number of incidents to capture different failure symptoms [2]–

[4], which can help engineers quickly obtain a big picture of

the failure and pinpoint the root cause. For example, “Special

instance cannot be migrated” is a critical network failure in

Virtual Private Cloud (VPC) service, and the incident “Tunnel

†Corresponding author.

bearing network pack loss” is a signal for this network failure,

which is caused by the breakdown of a physical network card

on the tunnel path. Due to the large scale and complexity of

online service systems, the number of incidents is overwhelm-

ing the existing incident management systems [2], [4], [5].

When a service failure occurs, aggregating related incidents

can greatly reduce the number of incidents that need to be

investigated. For example, linking incidents that are caused by

a hardware issue can provide engineers with a clear picture

of the failure, e.g., the type of the hardware error or even

the specific malfunctioning components. Without automated

incident aggregation, engineers may need to go through each

incident to discover the existence of such a problem and collect

all related incidents to understand it. Moreover, incident aggre-

gation can also facilitate failure diagnosis. In cloud systems,

some trivial incidents are being generated continuously, and

multiple (independent) failures can happen at the same time.

Identifying correlated incidents can therefore accelerate the

process of root cause localization.

To aggregate related incidents, one straightforward way is

to measure the text similarity between two incident reports [3],

[4]. For example, incidents that share similar titles are likely

to be related. Besides textual similarity, system topology (e.g.,

service dependency, network IP routing) is also an important

feature to resort to. Due to the dependencies among online

services, failures often have a cascading effect on other inter-

dependent services. A service dependency graph can help track

related incidents caused by such an effect. However, as cloud

systems often possess certain ability of fault tolerance, some

services may not report incidents, impeding the tracking of

failures’ impact (to be explained in Section II). This issue

is ubiquitous in production systems, which has not yet been

properly addressed in existing work. Moreover, the patterns of

incidents are collectively influenced by different factors, such

as their topological and temporal locality. Existing work [3],

[4] combine them by a simple weighted sum, which may not

be able to reveal the latent correlations among incidents.

In this work, we propose GRLIA (stands for Graph Repre-

sentation Learning-based Incident Aggregation), which is an

incident aggregation framework to assist engineers in failure

understanding and diagnosis. Different from the existing work

of alert storm handling [4] and linked incident identifica-

430

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00046

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

87
46

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

tion [3], we do not rely on incidents’ textual similarity. More-

over, we learn incidents’ topological and temporal correlations

in a unified manner (instead of by a weighted combination).

Traditional applications of graph representation learning often

learn the semantics of a fixed graph. Unlike them, we propose

to learn a feature representation for each unique type of

incident, which can appear in multiple places of the graph.

The representation encodes the historical co-occurrence of

incidents and their topological structure. Thus, they can be

naturally used for incident aggregation in online scenarios. To

track the impact graph of a failure (i.e., the incidents triggered

by the failure), we exploit more fine-grained system signals,

i.e., KPIs, as a piece of auxiliary information to discover the

scope of its cascading effect. KPIs profile the impact of failures

in a more sophisticated way. Therefore, if two services exhibit

similar abnormal behaviors (characterized by incidents and

KPIs), they should be suffering from the same problems even if

no incidents have been reported. Finally, we apply community

detection algorithms to find the scope of different failures.
To sum up, this work makes the following major contribu-

tions:

• We propose to identify service failures’ impact graph,

which consists of the incidents that originate from the

same failures. Such an impact graph helps us obtain a

complete picture of failures’ cascading effect. To this end,

we combine incidents with KPIs to measure the behav-

ioral similarity between services. Community detection

algorithms are then applied to determine the failure-

impact graph of different failures automatically.

• We propose GRLIA, an incident aggregation framework

based on graph representation learning. The embedding

vector for each unique type of incident is learned in

an unsupervised and unified fashion, which encodes its

interactions with other incidents in temporal and topo-

logical dimensions. Online incident aggregation can then

be naturally performed by calculating their distance. The

implementation of GRLIA is available on GitHub [6].

• We conduct experiments with real-world incidents col-

lected from Huawei Cloud, which is a large-scale cloud

service provider. The results demonstrate the effective-

ness of the proposed framework. Furthermore, our frame-

work has been successfully incorporated into the incident

management system of Huawei Cloud. Feedback from

on-site engineers confirms its practical usefulness.

The remainder of this paper is organized as follows. Sec-

tion II introduces the background and problem statement of

this paper. Section III describes the proposed framework.

Section IV shows the experiments and experimental results.

Section V presents our success story and lessons learned

from practice. Section VI discusses the related work. Finally,

Section VII concludes this work.

II. BACKGROUND AND PROBLEM STATEMENT

A. Topology of Large-scale Online Service Systems
Cloud vendors provide a variety of online services to

customers worldwide. In general, there are three main models

Fig. 1. An illustration of service failures’ cascading effect. The irregular
circle in the third subfigure shows the failure-impact graph.

Fig. 2. An example of incomplete failure-impact graph

of cloud-based services, namely, Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service

(IaaS) [7]. Online service systems often possess a hierarchical

topology, i.e., the stack of application, platform, and infrastruc-

ture layers. Each service embodies the integration of code and

data required to execute a complete and discrete functionality.

For example, in the application layer, the services provided to

customers can be a user application, a microservice, or even a

function; in the platform layer, the services can be a container

or a database; in the infrastructure layer, the services can be

a virtual machine or storage. Different services communicate

through virtual networks using protocols such as Hypertext

Transfer Protocol (HTTP) and Remote Procedure Call (RPC).

Such communications among services constitute the complex

topology of large-scale online service systems.

B. Cascading Effect of Service Failures

With such a topology, a failure occurring to one service

tends to have a cascading effect across the entire system.

Representative service failures include slow response, request

timeout, service unavailability, etc., which could be caused by

capacity issues, configuration errors, software bugs, hardware

faults, etc. To quickly understand failure symptoms, a large

number of monitors are configured to monitor the states of

different services in a cloud system [2]. A monitor will render

an incident when certain predefined conditions (e.g., “CPU

utilization rate exceeds 80%”) are met. Typical configurations

of monitors include setting thresholds for specific metrics

(e.g., RPC latency, error counter), checking service/device

availability or status, etc. When a failure happens, the monitors

often render a large number of incidents. These incidents are

triggered by the common root cause and describe the failure

from different aspects. Thus, they can be aggregated to help

engineers understand and diagnose the failure.

In this paper, we model the set of incidents triggered by a

failure as its impact graph (or failure-impact graph), as illus-

431

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXAMPLES OF INCIDENT AGGREGATION

trated by Fig. 1. Specifically, service A encounters a failure,

and the impact propagates to other services along the system

topology. The circled area indicates the impact graph of the

failure, where irrelevant incidents (in blue) in service D and G
are excluded. In general, the system topology can have many

different forms, such as the dependencies of services [8], the

configured IP routing of a cloud network [9], etc. Intuitively,

it might seem that the impact graph can be easily constructed

by tracing incidents along the system topology. However, our

industrial practices reveal that they are usually incomplete. An

example is given in Fig. 2, where service B occasionally fails

to report any incident during the failure. Existing approaches

may perceive it as two separate failures, which is undesirable.

We have summarized the following two main reasons for the

missing incidents:

• System monitors that report incidents are configured with

rules predefined by engineers. Due to the diversity of

cloud services and user behaviors, the impact of a failure

may not meet the rules of some monitors. For example,

if an application triggers an incident when its CPU usage

rate exceeds 80%, then any value below the threshold will

be unqualified. As a consequence, the monitors will not

report any incident, and thus, the tracking of the failure’s

impact is blocked.

• To ensure the continuity of online services, cloud systems

are designed to have a certain fault tolerance capability. In

this case, service systems can bear some abnormal condi-

tions, and thus, no incidents will be reported. Therefore,

the impact of a failure may not manifest itself completely

over the system topology.

Recent studies on cloud incident management [2], [10] have

demonstrated the incompleteness and imperfection of monitor

design and distribution in online service systems. Thus, along

the service dependency chain, some services in the middle

may remain silent (i.e., report no incident), which impedes

the tracking of failure’s cascading effect. Therefore, although

online service systems generate many incidents, they are often

scattered.

C. Problem Statement

This work aims to assist engineers in failure understanding

and diagnosis with online incident aggregation, which is to

aggregate incidents caused by the common failure. When

services encounter failures, incidents that capture different

failure symptoms constitute an essential source for engineers

to conduct a diagnosis. However, it is time-consuming and

tedious for engineers to manually examine each incident for

failure investigation when faced with such an overwhelming

number of incidents. Online incident aggregation is to cluster

relevant incidents when they come in a streaming manner (i.e.,

continuously reported by the system). Examples are presented

in Table I, where items in blue and gray belong to two groups

of aggregated incidents. Particularly, the first group shows a

virtual network failure. Note that only the No.3 and No.4

incidents share some words in common, while the others do

not. Meanwhile, the second group describes a hardware failure,

and more specifically, a storage disk error. Engineers can

benefit from such incident aggregation as the problem scope

is narrowed down to each incident cluster.

However, accurately aggregating incidents for online service

systems is challenging. We have identified three main reasons.

Background noise. Although related incidents are indeed

generated around the same time, many other cloud components

are also constantly rendering incidents. These incidents are

mostly trivial issues and therefore become background noise.

Incident aggregation based on temporal similarity would suffer

from a high rate of false positives.

Dissimilar textual description. Text (e.g., incident title

and summary) similarity is an essential metric for incident

correlation, which has been widely used in existing work [3],

[4]. However, in reality, related incidents, especially the critical

ones, do not necessarily have similar titles. Failing to correlate

such critical incidents greatly hinders root cause diagnosis.

Unclear failure-impact graph. To correlate incidents ac-

curately, we need to estimate the impact graph of service

failures. As discussed in Section II-B, this task is challenging.

Incidents alone are insufficient to completely reflect the impact

432

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The overall framework of GRLIA

of failures on the entire system. Therefore, we need to utilize

more fine-grained information of the failures.

III. METHODOLOGY

A. Overview

In cloud systems, a large number of monitors are config-

ured to continuously monitor the states of its services from

different aspects. Many incidents rendered by the monitors

tend to co-occur due to their underlying dependencies. For

example, some failure symptoms often appear together, and

some incidents may develop causal relationship. Our main idea

is to capture the co-occurrences among incidents by learning

from historical failures. In online scenarios, such correlations

can be leveraged to distinguish correlated incidents that are

generated in streams.

The overall framework of GRLIA is illustrated in Fig. 3,

which consists of four phases, i.e., service failure detection,

failure-impact graph completion, graph representation learn-
ing, and online incident aggregation. The first phase tries

to identify the occurrence of service failures and retrieves

different types of monitoring data, including incidents, KPI

time series, and service system topology. In the second phase,

we try to identify the incidents that are triggered by each

individual failure detected above. More often than not, it

is hard to precisely identify the impact scope of failures

(as discussed in Section II-B), which hinders the learning

of incidents’ correlations. Therefore, we utilize the trends

observed in KPI curves to auto-complete the failure-impact

graphs. After obtaining the set of incidents associated with

each failure, in the third phase, an embedding vector is learned

for different types of incidents by leveraging existing graph

representation learning models [11], [12]. Such representation

encodes not only the temporal locality of incidents, but also

their topological relationship. In the final phase, the learned

incident representation will be employed for online incident

aggregation by considering their cosine similarity and topo-

logical distance. In particular, we do not explicitly consider

the dynamic change of a system topology because the changes

often happen to a small area of the topology, e.g., container

creation or kill. GRLIA essentially learns the correlations

among incidents, which are also applicable to the changed

portion of the topology. Nevertheless, when the system topol-

ogy goes through a significant alteration, our framework is

efficient enough to support quick model retraining.

B. Service Failure Detection

Due to the cascading effect, when service failures occur,

a large number of incidents are often reported in a short

period of time. Thus, setting a fixed threshold for the average

number of reported incidents (e.g., #incidents/min>50) could

be a reasonable criterion to detect failures. However, such a

design suffers from a trade-off between false positives and

false negatives due to online service systems’ complex and

ever-changing nature [4]. For example, different services have

distinct sensitivity to the number of incidents, and continuous

system evolution/feature upgrades could change the threshold.

Thus, a self-adaptive algorithm is more desirable.

For time-series data, anomalies often manifest themselves as

having a large magnitude of upward/downward changes. Ex-

treme Value Theory (EVT) [13] is a popular statistical tool to

identify data points with extreme deviations from the median

of a probability distribution. It has been applied to predicting

unusual events, e.g., severe floods and tornado outbreaks [14],

by finding the law of extreme values that usually reside at

the tail of a distribution. Moreover, it requires no hand-set

thresholds and makes no assumptions on data distribution. In

this work, we follow [4], [13] to detect bursts in time series of

the number of incidents per minute. As a typical time series

anomaly detection problem, other approaches (e.g., [15], [16])

in this field are also applicable. The bursts are regarded as the

occurrence of service failures. This algorithm can automati-

cally learn the normality of the data in a dynamic environment

and adapt the detection method accordingly. Fig. 3 (phase

one) presents an example of service failure detection, where

all abnormal spikes are successfully found by the decision

boundary (the orange dashed line). For consecutive bins that

are marked as anomalies, we regard them as one failure

because failures may last for more than one minute. The

next phase will distinguish multiple (independent) failures that

happen simultaneously. Particularly, the detection algorithm is

only required to have a high recall, and the precision is of less

importance. It is because the goal of the follow-up two phases

is to find the correlations between incidents. Such correlation

rules will not be violated even incidents are not appearing

together during actual cloud failures.

433

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

C. Failure-Impact Graph Identification

In the first phase, the number of incidents per minute is

calculated, and incident bursts are regarded as the occurrence

of service failures. For each failure, the incidents collected

from the entire system are not necessarily related to it. This

is because: 1) while some services are suffering from the

failure, others may continuously report incidents (could be

trivial and unrelated issues); and 2) multiple service failures

could happen simultaneously. Therefore, we need to identify

the set of incidents for each individual failure that is generated

due to the cascading effect.

To this end, the concept of community detection is ex-

ploited. Community detection algorithms aim to group the

vertices of a graph into distinct sets, or communities, such

that there exist dense connections within a community and

sparse connections between communities. Each community

represents a collection of incidents rendered by the common

service failure, in which the correlations among incidents can

be explored. A comparative review of different community

detection algorithms is available in [17]. In this work, we em-

ploy the well-known Louvain algorithm [18], which is based

upon modularity maximization. The modularity of a graph

partition measures the density of links inside communities

compared to links between communities. For weighted graphs,

the modularity can be calculated as follows [18]:

M =
1

2m

∑
i,j

[Wi,j −
kikj
2m

]δ(ci, cj) (1)

where Wij is the weight of the link between node i and j,

ki =
∑

j Wij sums the weights of the links associated with

node i, ci is the community to which node i is assigned to,

m = 1
2

∑
ij Wij , and the δ(u, v) = 1 if u = v and 0 otherwise.

To better understand the identification of failure-impact

graph using community detection, an illustrating example is

depicted in Fig. 3 (phase two). In this case, except for nodes

B and F , other nodes all report incidents. By conducting

community detection, we obtain two communities: {A,B,C}
and {C,E, F,G}, which are regarded as the complete impact

graph of their respective failure. The weight between nodes is

provided with their link. We can see that intra-community links

all have a relatively large weight. Such partition can achieve

the best modularity score for this example. Particularly, node

H is excluded from the second community due to the small

weight of its connection to node F .

To apply community detection, the weight between two

nodes should be defined. Inspired by [19], we combine KPIs

with incidents to calculate the behavioral similarity between

two nodes and use the similarity value as the weight. Specif-

ically, the weight is composed of two parts, i.e., incident

similarity and KPI trend similarity.

1) Incident similarity: Incident similarity is to compare

the incidents reported by two nodes. Typically, if two nodes

encounter similar errors, they will render similar types of in-

cidents. Jaccard index is employed to quantify such similarity,

Fig. 4. CPU usage curve of four servers

which is defined as the size of the intersection divided by the

size of the union of two incident sets:

Jaccard(i, j) =
|inc(i) ∩ inc(j)|
|inc(i) ∪ inc(j)| (2)

where inc(i) is the incidents reported by node i. In particular,

we allow duplicate types of incidents in each set by assigning

them a unique number. This is because the distribution of

incident types also characterizes the failure symptoms.

2) KPI trend similarity: As discussed in Section II, some

services may remain silent when failures happen, hindering

the tracking of related incidents. To bridge this gap, we resort

to KPIs, which are more sophisticated monitoring signals.

Intuitively, the KPI trend similarity measures the underlying

consistency of cloud components’ abnormal behaviors, which

cannot be captured by incidents alone. An example is shown

in Fig. 4, which records the CPU utilization of four servers.

Clearly, the curve of the first three servers exhibits a highly

similar trend, while such a trend cannot be observed in server

four. The implication is that the first three servers are likely

to be suffering from the same issue and thus should belong

to the same community. We adopt dynamic time warping

(DTW) [20] to measure the similarity between two temporal

sequences with varying speeds. We observe the issue of

temporal drift between two time series, which is common as

different cloud components may not be affected by a failure

simultaneously during its propagation. Therefore, DTW fits

our scenario.

The remaining problem is which KPIs should be utilized for

similarity evaluation. Normal KPIs which record the system’s

normal status should be excluded as they provide trivial and

noisy information. Therefore, EVT introduced in phase one

is utilized again to detect anomalies for each KPI. Only the

abnormal KPIs shared by two connected cloud components

will be compared. Particularly, when there exists more than

one type of abnormal KPIs, we use the average similarity score

calculated as follows:

DTW (i, j) =
1

K

K∑
k=1

dtw(tik, t
j
k) (3)

where K is the number of KPIs to compare for node i and

j, tik is the kth KPI of node i, and dtw(u, v) measures the

434

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

DTW similarity between two KPI time series u and v, which

is normalized for path length. The weight Wij between node

i and j is computed by taking the weighted sum of the two

types of similarities as follows:

Wij = α× Jaccard(i, j) + (1− α)×DTW (i, j) (4)

where the balance weight α is a hyper-parameter. In our

experiments, if two nodes both report incidents, we set it

as 0.5; otherwise, it is set to be 0, i.e., only the KPI trend

similarity is considered.

Finally, for each discovered community, the incidents inside

it form the complete impact graph of the service failure.

Note that in online scenarios, we cannot directly adopt the

techniques introduced in this phase for incident aggregation.

This is because they involve a comparison between different

KPIs, which are not complete until the failures fully mani-

fest themselves. Thus, the comparison is often delayed and

inefficient. Moreover, they can be error-prone without fully

considering the historical cases.

D. Graph-based Incident Representation Learning

After obtaining the impact graph for each service failure

(i.e., the actual incidents triggered by it), we can learn the

correlations among incidents. Such correlations describe the

sets of incidents that tend to appear together. FP-Growth

proposed by Han et al. [21] is a standard algorithm to mine

such frequent item sets. However, our analysis reveals the

following drawbacks it possesses for our problem:

• It is vulnerable to background noise. In production en-

vironments, some simple incidents are constantly being

reported, e.g., “High CPU utilization rate”. These inci-

dents will appear in many transactions (a collection of

items that appear together) for FP-Growth. As a result,

unrelated incidents might be put into the same frequent

item set due to sharing such incidents. These simple

incidents cannot be trivially removed as they provide

necessary information about a system, and a burst of such

incidents can also indicate serious problems.

• It cannot handle incidents with a low frequency. FP-

Growth has a parameter called support, which describes

how frequently an item set is in the dataset. Incident sets

with a low support value will be excluded to guarantee

the statistical significance of the results. However, more

often than not, such incident sets are more important,

as they report some critical failures that do not happen

frequently.

In online service systems, different resources (e.g., mi-

croservices and devices) are naturally structured in graphical

forms, such as service dependency and network IP routing.

Therefore, graph representation learning [11] can be an ideal

solution to deal with the above issues. Graph representation

learning is an essential and ubiquitous task with applications

ranging from drug design to friendship recommendation in

social networks. It aims to find a representation for graph

structure that preserves the semantics of the graph. A typical

graph representation learning algorithm learns an embedding

vector for all nodes of a graph. For example, Chen et al. [3]

employed node2vec [22] to learn a feature representation for

cloud components. Different from them, we propose to learn

a representation for each unique type of incident, which can

appear in multiple places of the graph. In our framework, we

employ DeepWalk [23] because of its simplicity and superior

performance. DeepWalk belongs to the class of shallow em-

bedding approaches that learn the node embeddings based on

random walk statistics. The basic idea is to learn an embedding

ϑi for node vi in graph G such that:

EMB(ϑi, ϑj) �
eϑi·ϑj∑

vk∈V eϑi·ϑk
≈ pG,T (vj |vi) (5)

where V is the set of nodes in the graph and pG,T (vj |vi) is the

probability of visiting vj within T hops of distance starting at

vi. The loss function to maximize such probability is:

L =
∑

(vi,vj)∈D
−log(EMB(ϑi, ϑj)) (6)

where D is the training data generated by sampling random

walks starting from each node. Readers are referred to the

original paper [23] for more details.

For each failure-impact graph, incident sequences are gener-

ated through random walk starting from every node inside. In

reality, each node usually generates more than one incident

when failures happen. Our tailored random walk strategy

therefore contains two hierarchical steps. In the first step, a

node is chosen by performing random walks on node level;

in the second step, an incident will be randomly selected

from those reported by the chosen node. Duplicate types of

incidents in a node will be kept because frequency is also

an important feature of incidents (it impacts the probability

of being selected). Following the original setting of [22], we

set the walk length as 40, i.e., each incident sequence will

contain 40 samples. Finally, the incident sequences will be fed

into a Word2Vec model [24] for embedding vector learning.

The Word2Vec model has two important hyper-parameters:

the window size and the dimension of the embedding vector.

We set the window size as ten by following [22] and set the

dimension as 128. In particular, by considering the topological

distance between incidents, we can alleviate the problem of

background noise. This is because as the distance increases,

the impact of noisy incidents gradually weakens, while in FP-

Growth, all incidents play an equivalent role in a transaction.

E. Online Incident Aggregation

With the learned incident representation from the last phase,

we can conduct incident aggregation in production environ-

ments, where the incidents come in a streaming manner. Each

group of aggregated incidents represents a specific type of

service issue, such as hardware issue, network traffic issue,

network interface down, etc. The EVT-based method also plays

a role in this phase by continuously monitoring the number of

incidents per minute. If it alerts a failure, the online incident

435

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

aggregation will be triggered. When two incidents, say i and j,

appear consecutively, GRLIA measures their similarity. If the

similarity score is greater than a predefined threshold, they will

be grouped together immediately. In particular, the similarity

score consists of two parts, i.e., historical closeness (HC) and

topological rescaling (TR), which are defined as follows:

HC(i, j) =
ϑi · ϑj

‖ϑi‖ × ‖ϑj‖

TR(i, j) =
1

max(1, d(i, j)− T)

(7)

where ϑi and ϑj are the embedding vectors of incident i and

j (as described in Section III-D), respectively; d(i, j) is the

topological distance between i and j, which is the number of

hops along their shortest path in the system topology; and T
is the threshold for considering the penalty of long distance.

That is, the topological rescaling becomes effective (i.e., <1)

only if their distance is larger than T . In our experiments, T
is set as four. Incorrect correlations will be learned if T is

too large, while important correlations will be missed if T is

too small. Our experiments show similar results when T is in

[3, 6]. Cosine similarity is adopted to calculate the historical

closeness, which is related to their co-occurrences in the past.

Finally, the similarity between i and j can be obtained by

taking the product of TR(i, j) and HC(i, j):

sim(i, j) = TR(i, j)×HC(i, j)

=
1

max(1, d(i, j)− T) ×
ϑi · ϑj

‖ϑi‖ × ‖ϑj‖
(8)

We set an aggregation threshold λ for sim(i, j) to consider

whether or not two incidents are correlated:

cor(i, j) =

{
1, if sim(i, j) ≥ λ

0, otherwise
(9)

In our experiments, λ is empirically set as 0.7. In particular,

the distance of an incident to a group of incidents is defined as

the largest value obtained through element-wise comparison.

IV. EXPERIMENTS

In this section, we evaluate our framework using real-

world incidents collected from industry. Particularly, we aim

at answering the following research questions.

RQ1: How effective is the service failure detection module

of GRLIA?

RQ2: How effective is GRLIA in incident aggregation?

RQ3: Can the failure-impact graph help incident aggrega-

tion?

A. Experiment Setting

1) Dataset: Incident aggregation is a typical problem across

different online service systems. In this experiment, we select a

representative, large-scale system, i.e., the Networking service

of Huawei Cloud, to evaluate the proposed framework. Besides

offering traditional services such as Virtual Network, VPN

Gateway, it also features intelligent IP networks and other

next-generation network solutions. In particular, the service

system comprises a large and complex topological structure.

In the layer of infrastructure, platform, and software, it

has multiple instances of virtual machines, containers, and

applications, respectively. In each layer, their dependencies

form a topology graph. The cross-layer topology is mainly

constructed by their placement relationships, i.e., the mappings

between applications, containers, and virtual machines. Like

other cloud enterprises, Huawei Cloud’s resources are hosted

in multiple regions and endpoints worldwide. Each region

is composed of several availability zones (isolated locations

within regions from which public online services originate

and operate) for service reliability assurance. The incident

management of the Networking service is also conducted in

such a multi-region way, with each region having relatively

isolated issues. In this paper, we collect incidents generated

between May 2020 and November 2020, during which the

Networking service reported a large number of incidents.

Although we conduct the evaluation on a single online service

system, we believe GRLIA can be easily applied to other

online service systems and bring them benefits.

To evaluate the effectiveness of GRLIA, experienced do-

main engineers manually labeled related incidents. Thanks

to the well-designed incident management system with user-

friendly interfaces, the engineers can quickly perform the

labeling. Note that the manual labels are only required for

evaluating the effectiveness of our framework, which is unsu-

pervised. To calculate the KPI trend similarity, we adopt the

following KPIs, which are suggested by the engineers:

• CPU utilization refers to the amount of processing re-

sources used.

• Round-trip delay records the amount of time it takes to

send a data packet plus the time it takes to receive an

acknowledgement of that data packet.

• Port in-bound/out-bound traffic rate refers to the average

amount of data coming-in to/going-out of a port.

• In-bound packet error rate calculates the error rate of the

packet that a network interface receives.

• Out-bound packet loss rate calculates the loss rate of the

packet that a network interface sends.

These KPIs are representative that characterize the basic

states of the Networking service system. In particular, CPU

utilization is monitored for different containers and virtual

machines, while the remaining KPIs are monitored for the

virtual interfaces of each network device. Each KPI is calcu-

lated or sampled every minute. We collect two hours of data

to measure the KPI trend similarity. Note that the set of KPIs

can be tailored for different systems. For example, a database

service may also care about the number of failed database

connection attempts, the number of SQL queries, etc.

In this paper, we select the largest ten availability zones for

experiments, each of which contains a large system topology.

Six months of production incidents are collected from the

Networking service of Huawei Cloud. The number of distinct

436

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DATASET STATISTICS

incident types is more than 3,000. Similar to [4], [15], [25], we

conduct three groups of experiments using incidents reported

in the first four months, the first five months, and all months,

respectively. In all periods, incident aggregation is applied

to the failures that happened in the last month based on

the incident representations learned from previous months.

Table II summarizes the dataset. For column #Incidents (resp.

#Failures), the first figure calculates the incidents (resp. fail-

ures) captured during the training period, while the second

figure shows that of the evaluation month. Particularly, some

failures are of small scale and can be quickly mitigated, while

others are cross-region and become an expensive drain on

the company’s revenue. We can see each failure is associated

with roughly 200 incidents, demonstrating a strong need for

incident aggregation.

2) Evaluation Metrics: For RQ1, which is a binary classi-

fication problem, we employ precision, recall, and F1 score
for evaluation. Specifically, precision measures the percentage

of incident bursts that are successfully identified as service

failures over all the incident bursts that are predicted as

failures: precision = TP
TP+FP . Recall calculates the portion

of service failures that are successfully identified by GRLIA

over all the actual service failures: recall = TP
TP+FN . Finally,

F1 score is the harmonic mean of precision and recall:

F1 score = 2×precision×recall
precision+recall . TP is the number of service

failures that are correctly discovered by GRLIA; FP is the

number of trivial incident bursts (i.e., no failure is actually

happening) that are wrongly predicted as service failures by

GRLIA; FN is the number of service failures that GRLIA

fails to discover.

For RQ2 and RQ3, we choose Normalized Mutual In-

formation (NMI) [26], which is a widely used metric for

evaluating the quality of clustering algorithms. The value of

NMI ranges from 0 to 1 with 0 indicating the worst result

(no mutual information) and 1 the best (perfect correlation):

NMI(Ω,C) = 2×I(Ω;C)
H(Ω)+H(C) , where Ω is the set of clusters, C

is the set of classes, H(·) is the entropy, and I(Ω;C) calculates

and mutual information between Ω and C.

3) Implementation: Our framework is implemented in

Python. We parallelize our experiments by assigning availabil-

ity zones to different processors. The output of each processor

is a list of incident sequences generated through random walk,

which we merge and feed to a Word2Vec model implemented

with Gensim [27], an open-source library for topic modeling

and natural language processing. We run our experiments on

a machine with 20 Intel(R) Xeon(R) Gold 6148 CPU @

2.60GHz, and 256GB of RAM. The results show that each

phase of our framework takes only a few seconds. The last

phase can even produce results in a real-time manner as it

only involves simple vector calculation. Thus, our framework

can quickly respond in online scenarios. This demonstrates

that GRLIA is of high efficiency.

B. Comparative Methods

The following methods are selected for comparative evalu-

ation of GRLIA.

• FP-Growth [21]. FP-Growth is a widely-used algorithm

for association pattern mining. It is utilized as an analyt-

ical process that finds a set of items that frequently co-

occur in datasets. In our experiments, each impact graph

is regarded as a transaction for this algorithm. Given a set

of impact graphs, it searches incidents that often appear

together, regardless of their distance.

• UHAS [4]. This approach is proposed by Zhao et al. aim-

ing at handling alert storms for online service systems.

Similar to incident bursts, alert storms also serve as a

signal for service failures. Particularly, UHAS employs

DBSCAN for alert clustering based on their textual and

topological similarity. The textual similarity between two

alerts is measured by Jaccard distance. The topological

similarity considers two types of topologies, i.e., software

topology (service) and hardware topology (server). The

topological distance is computed by the shortest path

length between two nodes. Finally, a weighted combi-

nation of the two types of similarities yields the final

similarity score.

• LiDAR [3]. LiDAR is a supervised method proposed

by Chen et al. to identify linked incidents in large-

scale online service systems. Specifically, LiDAR is

composed of two modules, i.e., textual encoding module

and component embedding module. The first module

produces similar representations for the text description

of linked incidents, which are labeled by engineers. In

the evaluation stage, the textual similarity between two

incidents is measured by the cosine distance of their rep-

resentations. The second module learns a representation

for the system topology (instead of incidents). The final

similarity is calculated by taking a weighted sum of both

parts. As LiDAR is supervised, it would be unfair to

compare it with other unsupervised methods. Considering

the success of Word2Vec model [24], [28] in identifying

semantically similar words (in an unsupervised manner),

we alter LiDAR to be unsupervised to fit our scenario by

representing the text of incidents with off-the-shelf word

vectors [29].

C. Experimental Results

1) RQ1: The Effectiveness of GRLIA’s Service Failure De-
tection: To answer this research question, we compare GRLIA

with the fixed thresholding method on three datasets and

report precision, recall, and F1 score. Thresholding remains an

effective way for anomaly detection in production systems and

serves as a baseline in many existing work. Since both methods

require no parameter training, we use them to detect failures

437

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EXPERIMENTAL RESULTS OF SERVICE FAILURE DETECTION

for both the training data and evaluation data. Particularly, the

threshold of the baseline method is #incidents/min>50, which

is recommended by field engineers. Moreover, the ground truth

is obtained directly from the historical failure tickets, which

are stored in the incident management system.

The results are shown in Table III, where GRLIA outper-

forms the fixed thresholding in all datasets and metrics. In

particular, GRLIA achieves an F1 score of more than 0.93

in different datasets, demonstrating its effectiveness in service

failure detection. Indeed, we observe that some failures may

not always incur a large number of incidents at the beginning.

However, if ignored, they could become worse and end up

yielding more severe impacts across multiple services. Fixed

thresholding does not possess the merit of threshold adaptation

based on the context and thus produces many false positives.

GRLIA outperforms it for being able to adjust the threshold

automatically.

2) RQ2: The Effectiveness of GRLIA in Incident Aggre-
gation: We compare the performance of GRLIA against a

series of baseline methods for incident aggregation. Table IV

shows the NMI values of different experiments. From dataset

1 to 3, GRLIA achieves an NMI score of 0.831, 0.866, and

0.912, respectively, while the best results from the baseline

methods are 0.742, 0.758, and 0.826, all attained by Li-

DAR. LiDAR outperforms UHAS by explicitly considering

the entire system topology. Except for UHAS, all approaches

achieve better performance with more training data available.

This is because UHAS directly works on alert storms when

failures are detected. Without learning from the history, it

cannot handle complicated scenarios. Recall that both UHAS

and LiDAR rely on the textual similarity between incidents.

However, in our system, related incidents do not necessarily

possess similar text descriptions. For example, there is a clear

correlation between the incident “Traffic drops sharply in

vRouter” and “OS network ping abnormal” in VPC service,

which tends to be missed by them. Moreover, monitors that

render incidents are configured by multiple service teams,

which further damages the credit of textual similarity. This

is particularly true for some critical incidents because they

are often tailored for special system errors, which may not be

shared across different services. On the other hand, although

TABLE IV
EXPERIMENTAL RESULTS OF INCIDENT AGGREGATION

GRLIA does not explicitly leverage incident’s textual features,

our experiments show that it is capable of correlating incidents

that share some common words, e.g., “VPC service tomcat

port does not exist” and “VPC service tomcat status is dead”.

This is because such a relationship is reflected in their temporal

and topological locality, which can be precisely captured by

incidents’ representation vectors.

Another observation is that FP-Growth does not fit the

task of incident aggregation, whose best NMI score is 0.546.

As discussed in Section III-D, this method is not robust

against background noise. Indeed, in the system, some trivial

incidents (e.g., “Virtual machine is in abnormal state”) are

continuously being reported, which may connect incidents

from distinct groups. Furthermore, many essential incidents

are excluded by this method due to low frequency, which

is undesirable. This problem can be effectively alleviated

by leveraging the topological relationship between incidents

as done by other approaches. According to Eq. 5, the im-

pact of background noise weakens with distance. However,

in FP-Growth, each incident co-occurrence will be counted

equally towards the final association rules. UHAS considers

the topological similarity by simply calculating the distance.

LiDAR employs a more expressive machine learning model,

i.e., node2vec [22], an algorithmic framework for learning a

continuous representation for a network’s nodes. However,

they both ignore the problem of incomplete failure-impact

graph, which is a common issue in online service systems

according to our study. The necessity of completing the impact

graph will be demonstrated in RQ3. Moreover, different from

the traditional applications of graph representation learning,

we learn a representation for each unique type of incident,

which compactly encodes its relationship with others.

3) RQ3: The Necessity of the Failure-Impact Graph for
Incident Aggregation: We demonstrate the importance of

impact graphs by creating a variant of GRLIA without the

phase of failure-impact graph completion (i.e., phase two in

Fig. 3), denoted as GRLIA′. We follow LiDAR to remove

this feature, which considers two incidents as related only

when they are directly connected in the system topology.

The experimental results are presented in Table V, where we

can see a noticeable drop in the NMI score for all datasets.

Due to the high complexity and large scale of online service

systems, monitors are often configured in an ad-hoc manner.

These monitors may not be able to accommodate to the ever-

changing systems and environments. Thus, some incidents are

not successfully captured by them. System engineers may

438

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

TABLE V
EXPERIMENTAL RESULTS OF INCIDENT AGGREGATION USING GRLIA (W/

AND W/O FAILURE-IMPACT GRAPH COMPLETION)

incorrectly perceive the service as healthy, which is a typical

situation of gray failures [10]. Without completing the impact

graph of failures, the true correlations among incidents cannot

be fully recovered.

D. Threats to Validity

During our study, we have identified the following major

threats to the validity.

Labeling noise. Our experiments are conducted based on

six months of real-world incidents collected from Huawei

Cloud. The evaluation requires engineers to inspect and label

the incidents manually. Label noises (false positives/false

negatives) may be introduced during the manual labeling

process. However, the engineers we invite are cloud system

professionals and have years of system troubleshooting expe-

rience. Moreover, the labeling work can be done quickly and

confidently thanks to the incident management system which

has user-friendly interfaces. Therefore, we believe the amount

of noise is small (if it exists).

Selection of study subjects. In our experiments, we only

collect incidents from one online service of Huawei Cloud,

i.e., the Networking service. This is a large-scale service that

supports many upper-layer services such as web application,

virtual machine. Sufficient data can be collected from this

service system. Another benefit we can enjoy is that the

topology of the Networking service system is readily available

and accurate. Although we use the Networking service as the

subject in this paper, our proposed framework is generalizable,

as this service is a typical, representative online service. Thus,

we believe GRLIA can be applied to other services and cloud

computing platforms and bring them benefits.

The second type of subject that could threaten the validity

is the KPI. In production systems, there is a large amount

of KPIs available to gauge the similarity between two nodes.

Although we only select six representative KPIs (as presented

in Section IV-A1), they record the basic and critical states of

a service component. Thus, we believe they are able to profile

the service system comprehensively.

Implementation and parameter setting. The implemen-

tation and parameter setting are two critical internal threats

to the validity. To reduce the threat of implementation, we

employ peer code review. Specifically, the authors are invited

to carefully check others’ code for mistakes. In terms of

parameter setting, we conduct many groups of comparative

experiments with different parameters. We choose the param-

eters by following the original work or empirically based on

the best experimental results. In particular, we found GRLIA

is not very sensitive to the parameter setting.

V. DISCUSSION

A. Success Story

GRLIA has been successfully incorporated into the inci-

dent management system of Huawei Cloud. Based on the

positive feedback we have received, on-site engineers (OSEs)

highly appreciated the novelty of our approach and benefited

from it during their daily system maintenance. Specifically,

OSEs confirmed the difficulty of the auto-detection of ser-

vice failures in the existing monitoring system. This is be-

cause simple detection techniques (e.g., fixed thresholding)

are widely adopted. GRLIA introduces more intelligence and

automation by leveraging EVT-based incident burst detection.

Interestingly, OSEs found problems for some monitors by

comparing their configurations with the aggregated incidents,

including wrong names, missing information, etc. Meanwhile,

during failure diagnosis, incident aggregation assists OSEs

in reducing their investigation scope. Before the deployment

of GRLIA, they would have to examine a large number of

incidents to locate the failures.

To quantify the practical benefits conveyed to the Network-

ing service system, we further collect failure tickets generated

during November 2020. In total, 26 failures are recorded.

We calculate the average failure handling time in November

and compare it with that in August, September, and October.

Results show that the time reduction rate is 24.8%, 21.9%, and

18.6%, respectively, demonstrating the effectiveness of GRLIA

in accelerating the incident management of Huawei Cloud.

B. Lessons Learned

Optimizing monitor configurations. Today, popular online

services are serving tens of millions of customers. During daily

operations, they can produce terabytes and even petabytes of

telemetry data such as KPIs, logs, and incidents. However, the

majority of these data does not contain much valuable infor-

mation for service failure analysis. For example, a significant

portion of KPIs only record plain system runtime states; most

of the incidents are trivial and likely to mitigate automatically

with time. The configuration of system monitors should be

optimized to report more important yet fewer incidents. In

the meantime, monitor configurations show different styles

across different service teams, making the monitoring data

heterogeneous. Standards should be established for monitor

configurations so that high-quality incidents can be created to

facilitate the follow-up system analysis, e.g., fault localization.

Building data collection pipeline. In online service sys-

tems, IT operations play a critical role in system mainte-

nance. Since it is data-driven by nature, modern cloud ser-

vice providers should build a complete and efficient pipeline

for monitoring data collection. Common data quality issues

include extremely imbalanced data, small quantity of data,

poor signal-to-noise ratio, etc. In general, we are facing the

following three challenges: 1) What data should be collected?
We need to identify what metrics and events that are most

representative for cloud resource health. Not everything that

can be measured needs to be monitored. 2) How to collect

439

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

and label data? Labeling incidents (e.g., incident linkages,

culprit incidents) requires OSEs to have a decent knowledge

about the cloud systems. Since they often devote themselves

to emerging issue mitigation and resolution, tools should be

developed to facilitate the labeling process, such as label

recommendation and friendly interfaces. 3) How to store and
query data? Today’s cloud monitoring data are challenging the

conventional database systems. To save space, domain-specific

compression techniques should be developed, for example, log

compression [30]–[32].

VI. RELATED WORK

A. Problem Identification

To provide high-quality online services, many researchers

have conducted a series of investigations, including problem

identification and incident diagnosis from runtime log data

and alerts [25], [33], [34]. For example, to identify problems

from a large volume of log data, Lin et al. [33] proposed

LogCluster to cluster log sequences and pick the center of

each cluster. Rosenberg et al. [35] extended LogCluster by

incorporating dimension reduction techniques to solve the

high-dimension challenge of log sequence vectors. Inspired by

LogCluster [33], Zhao et al. [4] clustered online service alerts

to identify the representative alerts to engineers. Different from

the clustering techniques, Jiang et al. [34] proposed an alert

prioritization approach by ranking the importance of alerts

based on the KPIs in alert data. The top-ranked alerts are more

valuable to identifying problems. However, this approach has

a limited scope of application because it is only practical to

KPI alerts generated from manually defined threshold rules.

To conduct problem identification more aggressively, Chen et

al. [36] proposed an incident diagnosis framework to predict

general incidents by analyzing their relationships with different

alerting signals. Zhao et al. [37] considered a more practical

scenario where there are plenty of noisy alerts in online service

systems. They proposed eWarn to filter out the noisy alerts and

generate interpretable results for incident prediction.

B. Incident Management

In recent years, cloud computing has gained unprecedented

popularity, and incidents are almost inevitable. Thus, incident

management becomes a hotspot topic in both academia and

industry. Massive amount of effort has been devoted to incident

detection [15], [37]–[39] and incident triage [38], [40]–[42].

For example, Lim et al. [43] utilized Hidden Markov Random

Field for performance issue clustering to identify representa-

tive issues. Chen et al. [42] proposed DeepCT, a deep learning-

based approach that is able to accumulate knowledge from

incidents’ discussions and automate incident triage. However,

due to high manual examination costs, these methods cannot

handle the overwhelming number of incidents. Many existing

work [4], [44] address this problem by reducing the duplicated

or correlated alerts. For example, Zhao et al. [45] aimed to

recommend the severe alerts to engineers. Lin et al. [39]

proposed an alert correlation method to cluster semi-structured

alert texts to gain insights from the clustering results.

Similar to our method, Zhao et al. [4] conducted alert

reduction by calculating their textual and topological simi-

larity. The centroid alert of each cluster is then selected as

the representative incident to engineers. Specifically, they first

leveraged conventional methods to detect alert storms and the

associated anomalous alerts, and then adopted DBSCAN [46]

to cluster alerts based on their textual and topological sim-

ilarity. Another similar work is LiDAR proposed by Chen

et al. [3], which links relevant incidents by incorporating the

representation of cloud components. Their framework consists

of two modules, a textual encoding module and a component

embedding module. The first module learns a representation

vector for incident’s description in a supervised manner. The

textual similarity between two incidents is measured by the

cosine distance of their representation vectors. Similarly, the

second module learns a vector for system components. The

final similarity is calculated by leveraging two parts of infor-

mation. However, these methods employ a simple weighted

sum to combine the information from different sources, and

still hardly capture the relationship between incidents. Differ-

ently, our method utilizes sophisticated graph representation

learning to obtain the semantic relationship of incidents from

diverse sources, including temporal locality, topological struc-

ture, and KPI metric data. Moreover, many existing incident

management methods rely on supervised machine learning

techniques to detect anomalies or conduct incident triage.

More intelligent approaches with weak-supervision or even

unsupervised frameworks are still largely unexplored.

VII. CONCLUSION

In this paper, we propose GRLIA, an incident aggrega-

tion framework based on graph representation learning. The

representation for different types of incidents is learned in

an unsupervised and unified fashion, which encodes the in-

teractions among incidents in both temporal and topological

dimensions. Online incident aggregation can be efficiently

performed by calculating their distance. We have conducted

experiments with real-world incidents collected from Huawei

Cloud. Compared with fixed thresholding, GRLIA achieves

better performance for being able to adjust the threshold

automatically. In terms of online incident aggregation, GRLIA

also outperforms existing methods by a noticeable margin,

confirming its effectiveness. Furthermore, our framework has

been successfully incorporated into the incident management

system of Huawei Cloud. Feedback from on-site engineers

confirms its practical usefulness. We believe our proposed

incident aggregation framework can assist engineers in failure

understanding and diagnosis.

ACKNOWLEDGEMENT

The work was supported by Key-Area Research and

Development Program of Guangdong Province (No.

2020B010165002), the Research Grants Council of the

Hong Kong SAR, China (CUHK 14210920), and Australian

Research Council (ARC) Discovery Project (DP200102940).

440

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Wolfe, “Amazon’s one hour of downtime on prime
day may have cost it up to $100 million in lost
sales,” 2018. [Online]. Available: https://www.businessinsider.com/
amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7

[2] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu et al., “Towards intelligent incident management: why
we need it and how we make it,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1487–1497.

[3] Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao,
Y. Kang, F. Gao et al., “Identifying linked incidents in large-scale
online service systems,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 304–314.

[4] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang, Z. Chen,
X. Zheng, X. Nie, G. Wang et al., “Understanding and handling alert
storm for online service systems,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Software En-
gineering in Practice, 2020, pp. 162–171.

[5] Z. Chen, Y. Kang, F. Gao, L. Yang, J. Sun, Z. Xu, P. Zhao, B. Qiao,
L. Li, X. Zhang et al., “Aiops innovations of incident management for
cloud services,” 2020.

[6] O. Team, “Grlia: Graph-based incident aggregation for large-
scale online service systems,” 2021. [Online]. Available: https:
//github.com/OpsPAI/grlia

[7] M. J. Kavis, Architecting the cloud: design decisions for cloud com-
puting service models (SaaS, PaaS, and IaaS). John Wiley & Sons,
2014.

[8] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using service dependency graph to analyze and test microservices,” in
2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 2. IEEE, 2018, pp. 81–86.

[9] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E. Hutchinson, NSD-
Miner: Automated discovery of network service dependencies. IEEE,
2012.

[10] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
2017, pp. 150–155.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[12] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

[13] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet, “Anomaly detec-
tion in streams with extreme value theory,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017, pp. 1067–1075.

[14] L. De Haan and A. Ferreira, Extreme value theory: an introduction.
Springer Science & Business Media, 2007.

[15] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,
Y. Wu, R. Yao et al., “Predicting node failure in cloud service systems,”
in Proceedings of the 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2018, pp. 480–490.

[16] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, 2018,
pp. 387–395.

[17] Z. Yang, R. Algesheimer, and C. J. Tessone, “A comparative analysis
of community detection algorithms on artificial networks,” Scientific
reports, vol. 6, p. 30750, 2016.

[18] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[19] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui, M. Zhang, and D. Pei,
“Fluxrank: A widely-deployable framework to automatically localizing
root cause machines for software service failure mitigation,” in 2019
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2019, pp. 35–46.

[20] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping,” Knowledge and information systems, vol. 7, no. 3, pp. 358–
386, 2005.

[21] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM sigmod record, vol. 29, no. 2, pp. 1–12, 2000.

[22] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[23] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[25] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering - ESEC/FSE 2018. ACM Press, pp. 60–70.

[26] Stanford, Evaluation of clustering, 2008 [Online; accessed
November-2020], https://nlp.stanford.edu/IR-book/html/htmledition/
evaluation-of-clustering-1.html.

[27] R. Řehůřek, “Gensim: topic modelling for humans,” 2009. [Online].
Available: https://radimrehurek.com/gensim/

[28] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Ad-
vances in pre-training distributed word representations,” arXiv preprint
arXiv:1712.09405, 2017.

[29] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[30] J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu, “Logzip: extract-
ing hidden structures via iterative clustering for log compression,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 863–873.

[31] R. Christensen and F. Li, “Adaptive log compression for massive log
data.” in SIGMOD Conference, 2013, pp. 1283–1284.

[32] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in 2018 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2018, pp. 178–189.

[33] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume. ACM,
pp. 102–111.

[34] G. Jiang, H. Chen, K. Yoshihira, and A. Saxena, “Ranking the impor-
tance of alerts for problem determination in large computer systems,”
vol. 14, no. 3, pp. 213–227.

[35] C. M. Rosenberg and L. Moonen, “Improving problem identification
via automated log clustering using dimensionality reduction,” in Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM, pp. 1–10.

[36] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang,
H. Dong, Y. Xu et al., “Outage prediction and diagnosis for cloud service
systems,” in Proceedings of the 2019 International Conference on World
Wide Web (WWW), 2019, pp. 2659–2665.

[37] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu, F. Zhou, Z. Feng,
X. Nie, W. Zhang et al., “Real-time incident prediction for online service
systems,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 315–326.

[38] J. Gu, C. Luo, S. Qin, B. Qiao, Q. Lin, H. Zhang, Z. Li, Y. Dang, S. Cai,
W. Wu et al., “Efficient incident identification from multi-dimensional
issue reports via meta-heuristic search,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 292–
303.

[39] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrishnan, and J. Fer-
nandez, “Unveiling clusters of events for alert and incident management
in large-scale enterprise it,” in The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New

441

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

York, NY, USA - August 24 - 27, 2014, S. A. Macskassy, C. Perlich,
J. Leskovec, W. Wang, and R. Ghani, Eds. ACM, pp. 1630–1639.

[40] J. Gao, N. Yaseen, R. MacDavid, F. V. Frujeri, V. Liu, R. Bianchini,
R. Aditya, X. Wang, H. Lee, D. Maltz et al., “Scouts: Improving
the diagnosis process through domain-customized incident routing,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 253–269.

[41] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu,
Y. Dang, and D. Zhang, “An empirical investigation of incident triage
for online service systems,” in Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE Press, 2019, pp. 111–120.

[42] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and
D. Zhang, “Continuous incident triage for large-scale online service sys-
tems,” in Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 364–375.

[43] M.-H. Lim, J.-G. Lou, H. Zhang, Q. Fu, A. B. J. Teoh, Q. Lin, R. Ding,
and D. Zhang, “Identifying recurrent and unknown performance issues,”

in 2014 IEEE International Conference on Data Mining, ICDM 2014,
Shenzhen, China, December 14-17, 2014, R. Kumar, H. Toivonen, J. Pei,
J. Z. Huang, and X. Wu, Eds. IEEE Computer Society, pp. 320–329.

[44] J. Xu, Y. Wang, P. Chen, and P. Wang, “Lightweight and adaptive service
api performance monitoring in highly dynamic cloud environment,” in
2017 IEEE International Conference on Services Computing, SCC 2017,
Honolulu, HI, USA, June 25-30, 2017, X. F. Liu and U. Bellur, Eds.
IEEE Computer Society, pp. 35–43.

[45] N. Zhao, P. Jin, L. Wang, X. Yang, R. Liu, W. Zhang, K. Sui, and D. Pei,
“Automatically and adaptively identifying severe alerts for online service
systems,” in 39th IEEE Conference on Computer Communications,
INFOCOM 2020, Toronto, ON, Canada, July 6-9, 2020. IEEE, pp.
2420–2429.

[46] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Pro-
ceedings of the Second International Conference on Knowledge Discov-
ery and Data Mining (KDD-96), Portland, Oregon, USA, E. Simoudis,
J. Han, and U. M. Fayyad, Eds. AAAI Press, pp. 226–231.

442

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 26,2022 at 03:15:25 UTC from IEEE Xplore. Restrictions apply.

