
Reliability Simulation of Fault-Tolerant Software and Systems

Swapna S. Gokhale'; Michael R. Lyu2, Kishor S. Trivedi't

' Dept. of Electrical and Computer Engg, Center for Advanced Comp. & Comm.

E-mail: { ssg , ks t } Qee. duke. edu
Phone: (919) 660-5269, Fax: (908) 660-5293.

Duke University, Durham, N C 27708-0291 - USA

Room No. 2A-413, Lucent Technologies, Bell Laboratories
600, Mountain Avenue, Murray Hill, N J 07974

E-mail: lyu@research.bell-labs.com
Phone: (908) 582-5366, Fax: (908) 582-5809.

Abstract 1 Introduction

Fault tolerance is a survival attribute of complex
computer systems and software in their ability to de-
liver continuous service to their users in the presence of
faults. Formulating an analytic model for dependabil-
ily and performance evaluation o f hardwarelsoftware
fault tolerant architectures can be quite cumbersome.
Also, in practice, isolating the effect of various param-
eters on a system, while holding the others constant
requires exploring a variety of scenarios. It is econom-
ically infeasible to build several such systems. Simu-
lation offers an attractive mechanism for dependabil-
ity evaluation and the study of the influence of vari-
ous parameters on the failure behavior of the system.
In this paper, we develop algorithms to simulate the
failure behavior of three commonly used fault tolerant
architectures, viz., Distributed Recovery Block (ORB),
N - Version Programming (NVP) and N-Self Checking
Programming (NSCP). We demonstrate the ability of
the approach t o simulate complex failure scenarios with
various dependencies using some illustrative numerical
examples.

'Supported in part by Bellcore as a core project in the Center

t Supported in part by National Science Foundation under
for Advanced Computing and Communication

grant number EEC-9418765.

The size and complexity of modern software sys-
tems embedded in sophisticated hardware has grown
more rapidly in the past decade, than our ability to
design, implement, test and maintain them. Faults in
a computer system axe inevitable as the system com-
plexity grows, and hence computer systems are often
designed to tolerate b'oth software and hardware faults,
by configuring multiple software versions on redundant
hardware. Fault tolerance is the survival attribute of
computing systems or software in their ability to de-
liver continuous service to their users in the presence
of faults [a].

Dependability and performance modeling of fault
tolerant software has been done extensively [l, 61, for
the quantitative evaluation of their relative and abso-
lute merits. Most of these techniques do not, explic-
itly consider hardware failures. Dugan et al. [4] model
fault tolerant architectures providing a unified toler-
ance to both hardware and software faults in a hier-
archical manner. Formulating an analytical model of
a system, which employs both hardware and software
fault tolerance, can be quite cumbersome. Rate-based
simulation can offer an attractive mechanism to study
the combined influence of hardware and software fail-
ures, and the possible interactions between them on
the overall failure behavior of a system. Also, the ul-
timate success of modeling is governed by the avail-
ability of comprehensive, complete and consistent da ta

0-8186-8212-4/97 $10.00 0 1997 IEEE
167

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:00 UTC from IEEE Xplore. Restrictions apply.

mailto:lyu@research.bell-labs.com

sets. Fault tolerant systems are inherently complex
due to various dependencies between the software and
hardware components, and hence collection of compre-
hensive and homogeneous data sets for such systems
is a formidable task. Also, in practice, isolating the
effect of various parameters on a system, while hold-
ing the others constant requires exploring a variety of
scenarios. It is economically infeasible to build several
systems with diKererit values/levels of the factors of in-
terest. Simulation can also provide a viable mechanism
to supply carefully controlled, homogeneous da ta sets,
and to study the overall failure behavior of a system as
well as the influence of various pnrameters/factors on
the failure behavior.

The layout of the paper is as follows: Section 2
presents an overview of rate-based simulation tech-
nique for non-homogeneous continuous time Markov
chains (NHCTMCs) and briefly describes the three
fault tolcrant architectures studicd hcrc, Section 3 dis-
cusses various assumptions based on which the algo-
rithms are developed, Section 4 describes combinations
of software and hardware failures that could lead to a
system failure, Section 5 presents some illustrations to
demonst,rat,e the abilit,y of simula.t,ion to study the fail-
ure behwior, and Sectmion 6 concludes the paper and
discusses directions for future research.

2 Background

2.1 Simulation for NHCTMCs

In this section we provide an overview of rate based
simulation technique which forms the basis of this
paper. The failure behavior of an individual com-
ponent can be described by a process belonging to
a class of non-homogeneous continuous time Markov
chains (NHCTMCs). The stochastic process of in-
terest, { X (t) } , is the number of faults activated in
the component, and depends only on a rate function
X(n,, t) , where n, denot,es t,he stat,? of t,he syst,eml and is
t,he number of fanlt,s detectred iipt,o time t . The condi-
tional probability that an event occurs in the infinitesi-
nial interval (t , t+dt) is given by X(n, t) d t . If we assume
that the number of faults detected at t = 0 is 0 , then
the state of the system is 0 a t time t = 0, the fault
detection rate is given by X (O , t) , and the probability
that a fault will not be detected in the time interval
(O,t), denoted by Po(t), is given by:

'System in this section is a single component

/* Input parameters and functions are assumed
to be defined at this point */
double single-event(doub1e t, double dt,
double (*lambda) (int ,double))

int event = 0;
while (event == 0)
c
if (occurs(lambda(n,t) * dt))

t += dt;

return t ;

c

event ++;

1

1

Figure 1. Single Event Simulation Routine

where
P t

X (0 , t) is often referred to as failure intensity, since
the events of interest are failures, and mo(0, t) is the
mean value function. The subscript 0 on mo(0,t) in-
dicates that no failure have occurred prior to time
t = 0. The cumulative distribution function F l (t) and
the probability density function fl(t) of the t,ime to
occurrence of t,he first event are t,hen given by [13]:

F l (t) = 1 - PlJ(t) = 1 - e-mo(oJ)

f i (t) = --F1(t) = X(O, t)e - (OJ)

(3)

(4)

and
d
dt

Expressions for occurrence times of further events
are rarely analytically tractable [13]. These processes
are also known as conditional event-rate processes [ll].

The Occurrence tiimc of the (n + l)st event of the
NHCTMC based process described above can be gen-
erated (sampled) using the C-like routine shown in Fig-
ure 1 [ll], The function s ingle-event () returns the oc-
currence time of the (n + l)st event. In the routine
above, o c c u ~ s (2) compares a random number with 2 ,

and retiirns 1 if random() < 2 , and 0 otherwise. This
routine is the basis of all the algorithms developed in
this paper.

2.2 Fault Tolerant Architectures

In this section we briefly discuss the t,hree systpm ar-
chit,ectures, viz., Distributed Recovery Block(DRB), N-
Version Programming(NVP) and N Self-checking Pro-
gramming (NSCP), studied in this paper. Each system
is characterized by the number of software variants, the

168

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:00 UTC from IEEE Xplore. Restrictions apply.

number of hardware replications, and the decision al-
gorithm.

2.2.1 Distributed Recovery Block (DRB)

The recovery block (RB) [lo] approach t o software fault
tolerance consists of a set of diverse program versions
called alternates, along with an error detection routine
known as the Acceptance Test (AT). The acceptability
of a computation performed by the primary is deter-
mined by an acceptance test. If the results are deemed
unacceptable, the state of the system is rolled back to
that on entry to the RB and a spare is execut,ed. This
process is repeated until an acceptable result is deliv-
ered or no more alternates are available. Alternates are
designed to provide the same functionality as the pri-
mary but deliberately as independent as possible. The
Distributed Recovery Block (DRB) proposed by Kim
et. a1 [7] provides a way of combining hardware redun-
dancy with recovery blocks. The RB/1/1 [8] structure
used in this study and is obtained by the duplication
of RB composed of two alternates and an acceptance
test on two hardware components.

2.2.2 N-Version Programming (NVP)

The NVP method employs N independently devel-
oped, functionally equivalent software versions, from
the same initial specification, to perform the same
task [3]. The programming efforts are carried out by N
individuals or groups that do not interact with respect
to the programming process, so that the versions are as
diverse as possible. These versions are executed in par-
allel using identical inputs, and their outputs are col-
lected and evaluated by a decider/voter/adjudicator.
In the event that all the outputs do not match, the out-
put produced by the majority of the versions is taken
t o be correct. The NVP/1/1 [8] system studied here is
assumed t o have three identical hardware components,
each running a distinct software version.

2.2.3 N Self-checking Programming (NSCP)

The NSCP/1/1 [SI architecture considered in this study
is comprised of four software versions and four hard-
ware components, each grouped in two pairs, essen-
tially dividing the system in two halves. The hardware
pairs operat'e in hot standby redundancy with each
hardware component supporting one software version.
The version pairs form self-checking software compo-
nents, so that error detection is done by comparison.
The four software versions are executed and the re-
sults of the two versions executing in each half of the
system are compared. If either pair of results do not

match, they are discarded and only the remaining two
are used. If the results do match, the results of the
two pairs are then coimpared. A hardware fault causes
the software version running on it to produce incorrect
results, as would a fault in the software version itself.
This results in a discrepancy in the output of the two
versions, causing that pair to be ignored.

3 Simulation Assumptions

In this section, we describe the assumptions regard-
ing the failures of the software versions, permanent and
hansient hardware failures, failures of the acceptance
test/voter, and coincident failures among versions. The
simulation algorithms are based on these assumptions.

Task Computation: We assume that the com-
putation being performed is a task or (a set of
tasks) that is repeated periodically. A set of sen-
sor inputs is gat,hered and analyzed and a set of
actuations are produced. Each repetition of the
task is independent. We do not address timing
or performabilitl issues in this study. The inter-
ested reader is referred to [la] for a performability
analysis.

Failures of software versions
and AT/Decider: We assume that the failure
process of the versions/alternates and acceptance
test/voter can be described by the failure intensity
function associated with one of the six software
reliability growth models [ll]. Most of t,he exist-
ing approaches to dependability modeling of fault
tolerant systems #either assign a fixed failure prob-
ability or a constant failure rate to the software,
except the one by Kanoun et a1 [6]. Simulation
can easily accommodate reliability growth of the
software versions, as we will see in the sequel.

Coincident errors: When two software ver-
sions fail, they produce either similar or dif-
ferent erroneous results. We use the Ar-
lat/Kanoun/Laprie [l] terminology for software
failures and assume that similar erroneous, or
identical-and-wrong (IAW) results [9] are caused
by related software faults, and different erroneous
results are caused by unrelated or independent
software faults. \Ne also assume that related and
unrelated software faults are mutually exclusive.

Permanent hardware faults: The rate of oc-
currence of a permanent hardware fault is assumed
to be time independent.

169

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:00 UTC from IEEE Xplore. Restrictions apply.

Transient hardware faults: They are modeled
separately from permanent hardware faults. A
transient hardware fault is assumed to upset the
software running on the processor and produce an
erroneous result which is indistinguishable from an
input activated software error. We assume that
the lifetime of a transient hardware fault is shorter
when compared to the length of task computation.
We assume that a hardware transient fault occurs
with a fixed probability during each time frame.

Fault Treatment: No fault treatment mecha-
nisms are employed to make a faulty software
version passive. Should a version produce an
incorrect result as detected by the acceptance
test/voter, i t is still kept in the system architec-
ture and supplied with new input data [l].

Most of the assumptions described above, except the
one which assumes tha t related and unrelated faults are
mutually exclusivq, are the same as in [4]. Software
error detection is performed at the end of each time
frame of fixed duration.

4 Failure Scenarios

In this section, we describe various combinations of
software and hardware failures for the three fault tol-
erant architectures that could lead to a system failure.
Simulation programs for these failure scenarios have
been developed.

4.1 DRB System

The recovery block is executed on redundant hard-
ware in the initial configuration, and can lead to an
unacceptable result if the software recovery block fails,
or a transient fault occurs in both the hardware hosts.
The software R B can fail as follows: the execution
of the primary can (1) result in a success, (2) acti-
vation of an independent fault, (3) activation of a re-
lated fault between primary and secondary, or (4) the
activation of a related fault between primary and ac-
ceptance test. An independent fault can be activated
in the acceptance test after the activation of an inde-
pendent fault in the primary. The activation of a re-
lated fault between primary and secondary or primary
and AT leads to a failure. Thus the secondary alter-
nate is executed only when an independent fault has
been activated either in the primary and/or AT [l].
The activation of a fault in the secondary alternate

leads to an unacceptable result, and hence an unre-
liable operation of the RB. The activation of an in-
dependent fault in the acceptance test after the suc-
cessful execution of the secondary also leads to a fail-
ure. Further distinction of the fault activated in the
secondary into related/independent is necessary from
the point of view of safety analysis, since they lead to
undetected/detected failures respectively. After the oc-
currence of a permanent hardware fault, the DRB is re-
configured and a single copy of the RB is executed. An
unacceptable result in the reconfigured mode of opera-
tion can be caused by an error in the RB, or a transient
failure of the hardware host on which the software is
executing. Thus the key difference between the initial
and the reconfigured mode is the reduction in hardware
redundancy.

4.2 NVP System

The 3-version programming system consists of three
software versions running on three different processors,
and hence different failure scenarios, including related
and unrelated software faults, hardware transients, and
combination of hardware and software faults must be
considered. The NVP system in its initial configura-
tion can fail from several causes: (1) if two of the three
versions activate unrelated faults, or if any related fault
between two versions is activated; (2) if the input acti-
vates a fault which affects all three versions or a fault
in the voter; (3) two of the three processors experience
faults; and (4) if a hardware host fails and one of the
software version on the other host also fails (via an
unrelated or related fault) [4]. Thus the activation of
either an independent or a related fault between two or
three software versions leads to an unreliable behavior
of the NVP system. The activation of an independent
fault leads to a detected failure, whereas the activation
of a related fault leads to an undetected failure. We
assume that the system is reconfigured to the simplex
mode after the first permanent hardware fault. In this
reconfigured state, an unacceptable result is produced
by either a hardware transient or a software fault acti-
vation.

4.3 NSCP System

The NSCP system is vulnerable to related faults,
whether they involve versions running in the same or
different half of the system. We have ignored the pos-
sibility of a related fault among all three versions to
enable comparisons with NVP and DRB systems. The
various causes due to which NSCP system can fail in its
initial configuration are: (1) any two versions activate

170

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:00 UTC from IEEE Xplore. Restrictions apply.

related faults; (2) activation of a related fault among
all four versions, or voter failure; (3) activation of inde-
pendent faults among two versions, if the versions are
running on two hardware hosts in two different halves;
(4) activation of an independent fault in two versions
in the same half of the system and the activation of a
transient fault in the hardware host in the other half;
and (5) activation of a transient hardware fault in each
half of the system. The key difference between NVP,
DRB and NSCP systems is that in case of NSCP, two
independent faults in the software versions can be tol-
erated as long as they occur in the same half of the
system, and the hardware host in the other half does
not fail.

1
2
it 3

5 Numerical Results and Discussion

34 * 0.0057 * e(-o.oo57**)
34 * 0.0020 * e (- 0 . 0 0 2 0 * t)

3.4 * 0.0020* e(-' 0020**)

In this section, we describe the results of the sim-
ulation of the failure behavior of the three systems.
The failure profile is expressed in terms of the expected
number of failures experienced by the system over a pe-
riod of time. The rate functions and the values of the
parameters chosen are merely to demonstrate the util-
ity of simulation, and are not based on any systematic
experimental study.

Without loss of generality we assume that the fail-
ure intensities of the versions / alternates / voter / AT
are given by the failure intensity of the Goel-Okumoto
model [5]. Thus X(n, t) = a b e P b t , where a is the ex-
pected number of faults that would be detected given
infinite testing time, and b is the failure occurrence rate
per fault. The failure intensities used in this study are
summarized in Table 1. The parameters of Failure In-
tensity # 1 are estimated from NTDS data [5]. Ini-
tially, we study the vulnerability of the fault tolerant
architectures to related faults among software versions.
The failure intensity of the AT / voter is assumed t o
be Failure Intensity # 4 in this case. The effect of
the failure behavior of AT/voter on the overall failure
behavior of the fault tolerant architectures was stud-
ied next. The probability of a related fault among the
software versions was set to a very low value in this
case. Simulations were carried out by setting the fail-
ure intensities of the acceptance test / voter to all the
four intensities in Table 1. Figure 2, Figure 3 and Fig-
ure 4 show the expected number of failures for vari-
ous values of correlation and failure intensities of the
acceptance test/voter, for DRB, NVP and NSCP, re-
spectively. The figure also shows the expected number
of faults that would be detected from a single version
with the same failure intensity, for the sake of com-
parison. Initially we assume that the hardware hosts
are perfect, by setting the probability of activation of

Table 1. Failure Intensities of
AT/Voter/Versions/ Alternates

I .. , 1 Failure Intensity # 4 I 0.34 * 0.0020r e (- 0 . 0 0 2 0 * *) 1

a transient hardware fault, and rate of occurrence of a
permanent hardware fault to 0.0. Figures 2 , 3 and 4
depict that for a given value of the probability of a re-
lated fault, the expected number of failures is highest
for NSCP, followed by NVP, followed by DRB. This
could be attributed to the fact that NSCP has four
software versions executing in parallel, NVP has three,
while two versions execute sequentially in case of DRB.
Also, as the probability of a related fault increases, re-
lated fault increases. the expected number of failures
increases, and after a" certain threshold probability, the
single version soft'ware is in fact less failure-prone than
the fault tolerant software. The expected number of
failures increases as the failure intensity of the AT /
voter ranges from Failure Intensity #4 to Failure In-
tensity #l.

We then compared the failure profiles of DRB, NVP,
NSCP and a single version. An extreme case of an ac-
ceptance test is another module. The expected number
of failures observed by DRB and NVP systems in this
extreme situation (assuming that NVP system has a
perfect voter), was comparable. The expected number
of failures of NSCP s,ystem is higher than NVP system,
followed by the DREl system. The probability of a re-
lated fault among two versions is assumed to be 0.1,
and the probability of a related fault among all ver-
sions is assumed to be 0.0. For a low probability of a
related fault among software versions, fault tolerance
does improve the reliability of a system over a single
version. NSCP system experiences a larger number of
failures than NVP, and hence is more unreliable than
NVP.

Failures experienced by a fault tolerant system can
be classified into two categories, viz., detected and un-
detected. Undetected failures lead to an unsafe opera-
tion of the system, a.nd it could be highly undesirable
if the system is a part of a safety-critical application.
Simulation was used to compute the percentage of un-
detected faults for N V P and NSCP systems, for differ-
ent values of the probability of a related fault among
two versions, which is the most comon source of unde-
tected failures. The effect of the probability of a related
fault was studied assuming a perfect voter. The results

171

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:00 UTC from IEEE Xplore. Restrictions apply.

Expected Number of Failures YS Time
< m a of Car.i.(ml

Figure 2. DRB - Failure Behavior in the Absence of Hardware Failures

Figure 3. NVP - Failure Behavior in the Absence of Hardware Failures

Figure 4. NSCP - Failure Behavior in the Absence of Hardware Failures

Percentage of Undetected Faults YS Time Percentage of Undetected Failures vs Time

Figure 5. NVP 81 NSCP - Percentage of Undetected Software Failures

172

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:00 UTC from IEEE Xplore. Restrictions apply.

are shown in Figure 5.
Similar experiments can be conducted under the in-

fluence of permanent and transient hardware faults.
The expected number of failures in case of all the three
systems will increase, due to the contribution of hard-
ware faults.

6 Conclusions and Future Research

In this paper we have explored simulation technique
t o study the failure behavior of the three commonly
used fault tolerant archit,ectures, viz., Distributed Re-
covery Block (DRB) , N-Version Programming (NVP)
and N-Self Checking programming (NSCP). We have
demonstrated the ability of simulation to study com-
plex failure scenarios with interactions among the var-
ious components comprising the system, by choosing
the rate functions to describe the reliability growth
of the software versions, and failure probabilities and
rates for the hardware hosts. The simulations have
been used to study the effect of various parameters
like the probability of a related fault, failure behav-
ior of the acceptance test/voter, etc. on the expected
number of failures of the system. Simulation can also
be used to compute other metrics of interest like the
mean time between failures (MTBF), expected num-
ber of hardware failures, expected number of failures
caused by related and independent software faults, ex-
pected number of failures of the acceptance test/voter
etc,. Simulations have been developed specifically for
2 alternates in case of DRB, 3 versions in case of NVP,
and 4 versions in case of NSCP, and are not scalable.
Future work involves developing scalable simulations,
and studying the influence of the other parameters like
coverage etc. on the failure behavior of the system,
along with faster and better simulation techniques.

References

[1] J . Arlat, K. Kanoun, and J . C. Laprie. “De-
pendability Modeling and Evaluation of Software
Fault Tolerant Systems”. IEEE Trans. on Comp.,
39(4):504-512, April 1990.

[a] A. Aviiienis. “Fault Tolerance: The Survival
Attribute of Digital Systems”. Proc. of IEEE,
66(10):1109-1125, Oct. 1978.

[3] A. Aviiienis. “The N-Version Approach to Fault-
Tolerant Software”. IEEE Trans. on Soft. Eng.,
SE-11(12):1491-1501, Dec. 1985.

[4] J . B. Dugan and M. R. Lyu. Software Fault Tol-
erance, M . R . Lyu, Ed.,, chapter Dependability

Modeling for Fault-Tolerant Software and Sytems,
pp 109-138. John Wiley, New York, 1995.

[5] A. L. Goel and K. Okumoto. “Time-Dependent
Error-Detection Rate Models for Software Relia-
bility and Other Performance measures”. IEEE
Trans. on Rei., 12-28(3):206-211, August 1979.

[6] K. Kanoun, M . Kaaniche, C. Beounes, J . C .
Laprie, and J . Arlat. “Reliability Growth of
Fault-Tolerant Software”. IEEE Trans. on Rel.,
42(2):205-219, June 1993.

[7] K. H. Kim and H. 0. Welch. “Distributed Exe-
cution of Recovery Blocks: An Approach for Uni-
form Treatment of Hardware and Software Faults
in Real-Time Applicat>ions”. IEEE Trans. on
Comp., 38(5):626-636, May 1989.

[8] J . C. Laprie, J . Arlat, C. Beounes, and K. Ka-
noun. “Definition and Analysis of Hardware- and
Software-Fault-Tolerant Architectures”. IEEE
Computer, 23:39-51, July 1990.

[9] D. F . McAllister and M. A. Vouk. Handbook of
Software Reliabil‘ity Engineering, M. R . Lyu , Ed.,,
chapter Fault-Tolerant Software Reliability Engi-
neering, pp 567--614. McGraw-Hill, New York,
NY, 1996.

[lo] B. Randell. “System Structure for Software Fault
Tolerance”. IEEE Trans. on Soft. Eng., SE-
1(2):220-232, June 1975.

[ll] R. C. Tausworthe and M. R. Lyu. Handbook of
Software Reliability Engineering, M. R. Lyu , Ed.,,
chapter Software Reliability Simulation, pp 661-
698. McGraw-Hill, New York, 1996.

[la] L. A. Tomek and K. S. Trivedi. Software Fault Tol-
erance, M . R. L:yu, Ed.,, chapter Analyses Using
Stochastic Reward Nets, pp 139-165. John Wiley,
New York, 1995.

[13] K. S. Trivedi. “Probability and Statistics with Re-
liability, Queuing and Computer Science Applica-
tions”. Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1982.

173

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:00 UTC from IEEE Xplore. Restrictions apply.

