
Reliability Simulation of Component-Based Software Systems

Swapna S. Gokhale1�, Michael R. Lyu2y, Kishor S. Trivedi3z

1 Bourns College of Engg. 2 Dept. of Computer Science & Engg.3 Dept. of Electrical Engg.
University of California Chinese University of Hong Kong CACC, Duke University

Riverside, CA 92521 Shatin NT, Hong Kong Durham, NC 27708
swapna@cs.ucr.edu lyu@cse.cukh.edu.hk kst@ee.duke.edu

Abstract

Prevalent Markovian and semi-Markovian methods to
predict the reliability and performance of component-based
heterogeneous systems suffer from several limitations: they
are subject to an intractably large state-space for more in-
volved scenarios, and they cannot take into account the in-
fluence of various parameters such as reliability growth of
the individual components, dependencies among the com-
ponents, etc., in a single model. Discrete-event simulation
on the other hand offers an attractive alternative to analyt-
ical models as it can capture a detailed system structure,
and can be used to study the influence of different factors
separately as well as in a combined fashion on dependabil-
ity measures. In this paper we demonstrate the flexibility
offered by discrete-event simulation to analyze such com-
plex systems through two case studies, one of a terminating
application, and the other of a real-time application with
feedback control. We simulate the failure behavior of the
terminating application with instantaneous as well as ex-
plicit repair. We also study the effect of having fault-tolerant
configurations for some of the components on the failure
behavior of the application. In the second case of the real-
time application, we initially simulate the failure behavior
of a single version taking into account its reliability growth.
Later we study the failure behavior of three fault tolerant
systems, viz., DRB, NVP and NSCP, which are built from
the individual versions of the real-time application. Results
demonstrate the flexibility offered by simulation to study the
influence of various factors on the failure behavior of the
applications for single as well as fault-tolerant configura-

�This work was done when the author was a graduate student at Duke
University

ySupported by the Direct Grant from the Chinese University of Hong
Kong

zSupported by a contract from Charles Stark Draper Laboratory and in
part by Bellcore as a core project in the Center for Advanced Computing
and Communication

tions.

1 Introduction

Prevalent approaches to software reliability modeling
are black-box based, i.e., the software system is treated as
a whole and only its interactions with the outside world
are modeled. The black-box based approaches have been
shown to be inadequate to capture the behavior of modern
systems built using a combination of components off-the-
shelf, components developed in-house, and components de-
veloped contractually [9]. Component-based systems are
thus developed in a heterogeneous fashion, and modeling
the failure behavior of such systems using only one of the
software reliability growth models [3] can be misrepresen-
tative. With the advancement of object-oriented systems
design and web-based development, component-based soft-
ware systems have become more of a norm than an excep-
tion, and thus developing techniques to predict the reliabil-
ity of such systems taking into account their architecture
and failure behavior of the individual components is abso-
lutely essential.

Most of the existing analytical methods to predict the re-
liability and performance of component-based systems are
based on the Markovian assumption [1, 12], and rely on
exponential failure- and repair-time distributions. Semi-
Markov [14] and Markov regenerative models attempt to
relax this assumption in a restrictive manner. Both the
Markov and the semi-Markov models are also subject to
an intractably large state space. Methods have been pro-
posed to model the reliability growth of the components
which cannot be accounted for by the conventional ana-
lytical methods [7, 8, 13], but they are also subject to the
state-space explosion problem, and=or are computationally
very intensive. Some methods have also been proposed
to study the effect of correlated versions on various fault-
tolerant configurations [10, 15]. However, a single analyt-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

ical model which takes into account all such features is in-
tractable. Discrete-event simulation, on the other hand, of-
fers an attractive alternative to analytical models as it can
capture a detailed system structure, and facilitate the study
of the influence of various factors such as reliability growth,
various repair policies, correlations among the various ver-
sions etc., on dependability measures. The main contribu-
tion of this paper lies in demonstrating the flexibility offered
by discrete-event simulation to analyze complex and hetero-
geneous systems through two case studies. One of the case
studies models a terminating application, whereas the other
one deals with a real-time application with feedback con-
trol.

The rest of the paper is organized as follows: Section 2
describes the stochastic failure process, Section 3 presents
generalized simulation procedures for a terminating and a
real-time control application, Section 4 describes the termi-
nating and the real-time application studied in this paper,
and simulates the failure profile of these two applications
under different scenarios, and Section 5 presents conclu-
sions and directions for future research.

2 The stochastic failure process

In this section we provide a brief overview of the
stochastic failure processes, and rate-based simulation for
the process.

2.1 Overview of NHCTMC processes

We assume that the failure behavior of each compo-
nent is described by a class of non-homogeneous contin-
uous time Markov chain (NHCTMC), where the behavior
of the stochastic processfX(t)g of interest depends only
on a rate function�(n; t), wheren is the state of the com-
ponent. Some of the popular software reliability models
are NHCTMC based, viz., Goel-Okumoto model, Musa-
Okumoto model, Yamada S-shaped model, Duane model,
Littlewood-Verrall, and Jelinski-Moranda model [18]. The
state of the component depends on the number of failures
observed from the component.fX(t)g can be viewed as a
pure death process if we assume that the maximum num-
ber of failures that can occur in the time interval of inter-
est is fixed, and the remaining number of failures forms the
state-space of the NHCTMC. Thus, the component is said
to be in statei at timet, if we assume that the maximum
number of failures that can occur isN , andN � i failures
have occurred by timet. It can also be viewed as a pure
birth process, if the number of failure occurrences forms the
state space of the NHCTMC. In this case, the component is
said to be in statei at time t, if i failures have occurred
up to timet. LetN0(0; t) denote the number of failures in
the interval(0; t), andm0(0; t) denote its expectation, thus

m0(0; t) = E[N0(0; t)]. The notationm0(0; t) indicates
that the process starts at timet = 0, and the subscript0
indicates no failures have occurred prior to that time. Pure
birth processes can be further classified as “finite failures”
and “infinite failures” processes, based on the value that
m0(0; t) can assume in the limit. In case of a finite failures
pure birth process, the expected number of failures occur-
ring in an infinite interval is finite (i.e.,lim

t!1
m0(0; t) = a,

wherea denotes the expected number of failures that can
occur in an infinite interval), whereas in case of an infinite
failures process, the expected number of failures occurring
in an infinite interval is infinite (i.e.,lim

t!1
m0(0; t) = 1).

Although these definitions are presented for specific initial
conditions (the state of the process is 0 att = 0), they hold
in the case of more general scenarios.

Analytical closed form expressions can be derived for
the failure process of a single component described either
by a pure birth and pure death NHCTMC. Now, consider
a system composed ofk components. In addition to the
state of each component, we need to keep track of the
amount of execution time experienced by each component
separately. The failure rate of the system is denoted by
�(n; �; t), where the vectorn = (n1; n2; : : : ; nk), with ni
denoting the number of failures observed from componenti
up to timet, the vector� = (�1; �2; : : : ; �n), with �i denot-
ing the amount of time spent in componenti up to timet,
andt is the total time spent executing the system such that
Pk

i=1 �i = t. The failure behavior of such a system can
no longer be described by a NHCTMC, and is analytically
intractable. Rate-based simulation described in the sequel
offers an attractive alternative to study the failure behavior
of such systems.

2.2 Rate-based simulation

Rate-based simulation technique can be used to obtain a
possible realization of the arrival process of a NHCTMC.
The occurrence time of the first event of a pure-birth
NHCTMC process can be generated using Procedure A ex-
pressed in a C-like form [18], in Appendix A. The function
single event() returns the occurrence time of the event. In
the code segment in Procedure A,occurs(x) compares a
random number withx, and returns 1 ifrandom() < x,
and 0 otherwise. Procedure A can be easily extended to
generate the failure process of a multicomponent system,
by keeping track of the number of failures observed from
every component, and the execution time experienced by
every component.

3 Simulation procedures and assumptions

In this section we describe generalized simulation proce-
dures to simulate the failure profile of a terminating appli-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

cation and a real-time application with feedback control.

3.1 Terminating application

We assume that the terminating application comprising
of m components begins execution with component1, and
terminates upon the execution of componentm. The ar-
chitecture of the application is specified by the intercom-
ponent transition probabilities, denoted bywi;j . wi;j rep-
resents the probability that componentj is executed upon
the completion of componenti. The procedure is pre-
sented for the case when the failure behavior of each of
the components described by one of the software reliabil-
ity growth models listed in Section 2, but it can be easily
modified to take into account the scenarios when the fail-
ure behavior is described either by a constant failure rate or
a fixed probability of failure. We assume that the applica-
tion spends� units of time in a component per visit.� is
assumed to be approximately 100 times that ofdt, which
is the time step used in Procedure A in Appendix A. The
failure profile of a terminating application, during a sin-
gle execution, assuming independent failures of the com-
ponents, can be simulated using Procedure B in Appendix
A. The function generate failure(curr comp; dt), ac-
cepts the current component as input, and checks if the
component fails in� time units, based on the num-
ber of failures observed from that component, and the
time spent in that component, i.e. based on�(n; �; t).
generate failure(curr comp; dt) calls Procedure A ev-
ery dt time steps to check for the occurrence of a failure.
The procedure in its current form returns the number of time
units necessary for a single execution of the application, and
can be easily modified to return the counts of the total num-
ber of faults detected, number of faults detected from every
component, number of time units spent in every component,
etc. The procedure can also be suitably modified to simu-
late the failure behavior of the application during testing,
where test cases are executed in succession for a certain pe-
riod of time. The time period can be pre-specified if there
is a constraint in terms of a deadline, or it can also be deter-
mined as the testing progresses based on optimizing some
measure such as cost, reliability, failure rate etc., of the in-
dividual components or the application as a whole. Various
enhancements to this basic model can also be made to sim-
ulate other scenarios such as finite debugging time, fault
tolerant configurations for some selected or all of the com-
ponents, dependent failures etc., as will be demonstrated
using a case study.

3.2 Application with feedback control

In this section we develop a simulation procedure to
capture the failure behavior of a real-time application with

feedback control. We assume that there arek modes of
operation, and the system spends a fixed amount of time
in each of thesek modes. Upon completion of thekth
mode, the application terminates. Computations for certain
attributes are performed during each time frame, and the
values computed in the(i�1)st time frame are used for the
computations in theith frame. We assume that the applica-
tion terminates afterl time frames, and it spendsli frames in
modei, such that

Pk
i=1 li = l. The algorithm is presented

for the case when the failure behavior of the components in
the application is specified by one of the software reliability
growth models listed in Section 2, and can be generalized
when the failure behavior is specified either by a constant
failure rate or a fixed probability of failure. One of the ways
to test such a application is to execute the application for a
number of test cases, where each test case consists ofl time
frames. Procedure C presented in Appendix A simulates the
failure behavior of the application during the testing phase,
for one test case. For every time frame the procedure deter-
mines the mode of operation, and checks if the application
fails in that mode of operation in that time frame. Error
detection is performed at the end of every time frame. We
assume that every module takes� time units to complete ex-
ecution.� is assumed to be approximately 100 times that of
dt, which is the time step used in Procedure A in Appendix
A.

These kind of applications are typically used in critical
systems and operate in fault tolerant configurations such as
DRB, NVP, and NSCP [11]. The simulation procedures for
these three fault tolerant systems are reported in [6], and
we apply these procedures to a real world case study in this
paper.

4 Project applications

In this section, we present two project applications, one
of a terminating application and the other of a real-time ap-
plication with feedback control.

4.1 Terminating application

We use the terminating application reported in [1] as a
running example in this section. The application consists
of 10 components, and begins execution with component1,
and terminates upon the execution of component10. The
control-flow graph of the application is shown in Figure 1,
and the intercomponent transition probabilities are shown in
Table 1. Initially we assume that the failure behavior of the
components is specified by their reliabilities. We simulate
the expected time to completion of the application, and the
reliability of the application. The expected number of time
units necessary to complete the execution of the application
is 6:450346 (assuming� = 1), and the reliability of the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

R µ λ 111

R µ λ 222 R µ λ 33 3 R µ λ 444

R µ λ 555 R µ λ 666

R µ λ 777 R µ λ 888 R µ λ 999

µ λ10R10 10

1

2 3 4

5 6

7 8 9

2

10

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

1,2

2,3

2,5

7,2

5,7

7,9

5,8

6,7

1,3

1,4

6,3

4,5

8,4

9,8

8,10

9,10

6,9

4,6

9,4

w6,8

3,5

Figure 1. Control-flow Graph of a Terminating
Application

Table 1. Transition probabilities in Figure 1
w1;2 = 0:60 w1;3 = 0:20 w1;4 = 0:20
w2;3 = 0:70 w2;5 = 0:30
w3;5 = 1:00
w4;5 = 0:40 w4;6 = 0:60
w5;7 = 0:40 w5;8 = 0:60
w6;3 = 0:30 w6;7 = 0:30 w6;8 = 0:10 w6;9 = 0:30
w7;2 = 0:50 w7;9 = 0:50
w8;4 = 0:25 w8;10 = 0:75
w9;8 = 0:10 w9;10 = 0:90

application is0:8811. These values are very close to the
analytical results reported in [1, 5].

We then assign time-dependent failure rates to each of
the 10 components. Without loss of generality, we as-
sume that the failure rate of each of the components is
given by the failure rate of the Goel-Okumoto model, i.e.
�(n; t) = ae�bt, wherea is the expected number of faults
that would be detected from the component if it were to be
tested for infinite time, andb is the failure occurrence rate
per fault [3]. The parametersa andb are estimated from
the field data reported in [4], and the failure rate is given by
34:05�0:0057�e�0:0057�t. The objective now is to simulate
the failure profile of the application given the failure rates
of its components, and the transition probabilities between
them for a typical testing scenario, where the application is
tested by executing several test cases one after the other, for
a certain specified duration oft units. The failure profile of
the application is given by the expected number of failures
observed as a function of time.

Initially, we assume that the failure of any of the compo-
nents is regarded as failure of the application. The faults are

debugged instantaneously upon detection, and the execution
of the application proceeds uninterrupted after the instanta-
neous debugging. Thus the expected total number of faults
detected is equal to the expected number of failures of the
application. However, in real-life testing scenarios, there is
a definite non-zero time interval that is necessary to debug
the detected fault [20]. We then introduce finite debugging
time into the simulation model, in order to obtain a real-
istic estimate of the expected total number of faults fixed
(repaired or debugged), and the expected number of faults
debugged from every component at a given time. Initially
we consider sequence dependent failures, where there is no
independent debugging for every component. A single de-
bugging facility with a constant debugging rate of� = 0:1
is shared among all the components, and the faults are de-
bugged in the order of their detection. Next, we assume that
each of the10 components has an independent debugging
facility with a debugging rate which is one-tenth of the de-
bugging rate in the case of sequence dependent repair. Thus
the faults detected from componenti are being debugged at
the rate of�i = 0:01, for i = 1; : : : ; 10. The expected num-
ber of faults debugged as a function of time, fort = 1000
time units, in case of instantaneous, shared and independent
repair is depicted in Figure 2. As seen from Figure 2, the
expected total number of faults debugged in case of inde-
pendent debugging is lower than the expected total num-
ber of faults debugged in case of shared debugging. This
is due to the fact that all the components are not tested to
the same extent, resulting in an unequal expected number
of faults being detected from all the components. As a re-
sult, the debugging mechanism belonging to certain com-
ponents would be over utilized, whereas for certain compo-
nents it will be under utilized. Results like these could aid in
making decisions regarding allocation of resources towards
testing and debugging of each component so as to maxi-
mize some dependability measure of interest. This could
also help towards tracking and controlling the schedule and
the budget of a project.

0.0 200.0 400.0 600.0 800.0 1000.0
Time

0.0

50.0

100.0

150.0

E
xp

ec
te

d
N

um
be

r
of

 F
au

lts

Expected Number of Faults vs. Time
(Detected and Debugged)

Detected
Debugged (Shared Repair)
Debugged (Independent Repair)

Figure 2. Shared and independent repair
We now simulate the failure behavior of the application

assuming fault-tolerant configurations for some of the com-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

ponents. Suppose if the correct functioning of component2
is critical for the successful completion of the application,
and we wish to conduct a “what-if” analysis to determine
which of the two configurations, namely, NVP=1=1 [11]
with three parallel versions of component2 running on three
hardware hosts, or a RB=1=1 [11], i.e., Distributed Recov-
ery Block (DRB) configuration, with two hardware hosts
running two recovery blocks [17] is more effective. For
both the configurations we assume that the hardware hosts
running the software versions=alternates do not fail, and
the voter in the NVP system is perfect. The failure rate
of the acceptance test (AT) in case of the DRB was set
to two orders of magnitude lower than the failure rate of
the alternates. We simulate the failure behavior for1000
units of time beyondt = 1000, with NVP and RB con-
figurations for component2, for two values of correlation
among the two alternates in case of DRB configuration,
and two versions in case of NVP configuration, viz.,0:0
and0:2. The expected number of failures observed from
the entire application, with different levels of correlation
among the alternates=versions of component 2 are shown
in Figure 3. As the probability of a related fault among the
versions=alternates increases, the expected number of fail-
ures of the application increases, due to an increase in the
number of failures of component2. The expected number
of failures with the NVP configuration are slightly higher
than the expected number of failures with the DRB config-
uration for component 2. A second way of guarding the ap-
plication against the failures of component2, is to cover the
failures of component2 with a certain probability known as
coverage [2]. Figure 3 shows the expected number of fail-
ures of the application for different values of coverage for
component2. Normally, coverage is the ability of the sys-
tem to tolerate faults, and is provided by the fault-tolerant
capability built into the system. The effectiveness of the
fault-tolerant capability to guard against failures will de-
pend on the correlation among the versions which consti-
tute the fault-tolerant configuration. Thus, intuitively, a low
correlation among the versions should result in high cover-
age. As seen from Figure 3, the expected number of faults
observed assuming complete independence among the ver-
sions constituting the NVP configuration, (correlation of0:0
among the versions), and when the coverage is0:8, are ap-
proximately the same. Thus, we can roughly say that a cor-
relation of0:0 for the NVP configuration, corresponds to
a coverage of0:8. Although, no mathematical relationship
exists between correlation and coverage, simulation can be
thus used to determine an approximate empirical relation-
ship between two related variables, for a particular system.
Studies like these, which help assess the sensitivity of the
parameters to the behavior of the system can be of great
importance in carrying out “what-if” analysis to enable a
choice among a set of alternatives.

Altitude
Comp. Filter

Radio

Barometric
Altitude
Comp. Filter

Glide Slope
Deviation
Comp. Filter

Mode
Logic

Altitude
Hold

Glide Slope
Capture &
Track

Flare

Command
Monitors

Display

X

Y

Z

I

I

I
I

I

I

I

I
CM

LC

D

X Y Z

Legend: I = Airplane Sensor Inputs
 LC = Lane Command
 CM = Command Monitor Outputs
 D = Display Outputs

Figure 4. Autoland system functions and data
flow diagram

4.2 Application with feedback control

The real-time application with feedback control under
consideration is theautopilotproject which was developed
by multiple independent teams at the University of Iowa and
the Rockwell / Collins Avionics Division [16]. The appli-
cation program is an automatic flight control function (also
known as theautopilot) for the landing of commercial air-
liners that has been implemented by the avionics industry.
The major system functions of theautopilot and its data
flow are shown in Figure 4. In this application, the au-
topilot is engaged in the flight control beginning with the
initialization of the system in the altitude hold mode, at a
point approximately ten miles (52800 feet) from the airport.
The initial altitude is about1500 feet, and the initial speed
is about120 knots (200 feet per second).

15 versions of the autoland application were developed
independently by 15 programming teams at U/Iowa and
the Rockwell Avionics Division. The details of the experi-
ment are reported in [16]. The failure data collected from
the testing of the 12 accepted versions of theautopilot,
served as a guideline to assign failure rates to the mod-
ules in the application for the purpose of simulation. The
number of faults detected from each of the modules dur-
ing testing was used as an estimate of the parametera of
the Goel-Okumoto model [4]. The parameterb reflects the
sensitivity of faults to failures. Arbitrary values for param-
eterb were chosen in a decreasing order, for the modules
Mode Logic, Interface routines, Inner Loop, Glide Slope
Control Outer Loop, Altitude Hold Outer Loop, Radio Fil-
ter, Barometric Filter, GS Filter, Command Monitor, and
Display. There are sixteen different modes in which the
data can be displayed, and the complexity of the display
increases from mode 1 to mode 16. The display modules
were not tested in the original experiment, and hence no
failure data were available. As a result, we assign arbitrary

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

0.0 200.0 400.0 600.0 800.0 1000.0
Time

0.0

20.0

40.0

60.0

80.0

E
xp

ec
ct

ed
 N

um
be

r
of

 F
au

lts

Expected Number of Faults vs. Time
(DRB and NVP Configurations for Component 2)

DRB (0.0)
DRB (0.2)
NVP (0.0)
NVP (0.2)

0.0 200.0 400.0 600.0 800.0 1000.0
Time

0.0

20.0

40.0

60.0

80.0

100.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

Expected Number of Faults vs. Time
Coverage for Component 2

Coverage = 0.0
Coverage = 0.2
Coverage = 0.4
Coverage = 0.6
Coverage = 0.8

Figure 3. Operational scenarios of fault tolerance and coverage

0 10000 200000
frames

0.0

50.0

100.0

150.0

E
xp

ec
te

d
N

um
be

r
of

 F
au

lts

Expected Number of Faults vs. # frames

Figure 5. Failure profile for 4 simulations
failure rates to the sixteen modes of display module, with
a higher failure rate reflecting higher complexity of the dis-
play. The failure rate of the display in modei is assumed to
be3:0�0:00001�(10+(i�1)�5)�e(�0:00001�(10+(i�1)�5)).
The number of faults detected from each of the modules for
the 12 versions are summarized in Table 2.

A single run of theautopilot consists of5582 frames,
with each frame of 50 ms duration for a total landing time
of approximately 264 seconds. Thus a single test case in
this context consists of5582 frames. We assume that soft-
ware error detection is performed at the end of each frame.
For every frame, the display mode is generated randomly,
assuming that all16 modes are equally likely. The expected
number of failures of theautopilot for 4 flight simulations
from all the 12 versions, which consist of22328 frames is
shown in Figure 5.

Having analyzed the reliability growth of the individual
versions in the testing phase, we then proceed to evaluate
the failure behavior of three fault-tolerant configurations of
theautopilot in operation. Thus the failure behavior is ana-
lyzed at two levels: the first level being the analysis of the
failure behavior during testing, and the second one is to ana-
lyze the failure behavior in three FT configurations, namely,
RB=1=1, NVP=1=1, and NSCP=1=1 [11] during operation.

We do not address performability issues in this study,
and the interested reader is referred to [19] for performa-
bility analysis. Each of theautopilot versions comprising
the fault-tolerant configuration is now treated as a black-

box, and error detection is performed at the end of every
test case. A fixed probability of failure per test case is
assigned to everyautopilot version. We assume that the
hardware hosts running theautopilot versions are perfect.
In addition, we also assume that the probability of activa-
tion of a related fault between any two autopilot versions
is fixed for every test case. Initially, the probability of a
failure of a single version for every test case is assumed to
be0:0195, and the probability of a related fault among two
software versions is assumed to be0:0167. These two val-
ues have been guided by a systematic parameter estimation
case study for theautopilot reported in [2]. The results
obtained using simulation procedures using these parame-
ter values are in close accordance with the ones reported in
[2] for all the three systems. We then study the effect of
correlation among the alternates=versions on the failure be-
havior of the DRB, NVP and NSCP systems. Starting from
a value of0:0167 for the correlation, we simulate the ex-
pected number of failures that would be observed for1000
runs for correlations of0:3, 0:4, 0:6 and0:8. The probabil-
ity of a related fault among all the versions is assumed to
be the same as the probability of a related fault among two
versions. The expected number of failures increase with in-
creasing correlation, and in case of DRB, they are less than
the number of failures that would be expected from a sin-
gle version with the same failure probability. However, in
case of NVP and NSCP, beyond a certain threshold value of
correlation, the expected number of failures that would be
observed from a single version with the same failure prob-
ability as that of one of the versions constituting the fault-
tolerant configuration are in fact lesser than the number of
failures that would be observed from the NVP and NSCP
configurations. The effect of the failure behavior of the ac-
ceptance test (AT) in case of the DRB system and voter in
case of NVP and NSCP systems is studied next. The ex-
pected number of failures for AT=voter failure probabilities
of 0:001, 0:01 and0:1 are simulated. The increase in the
number of failures is significant as the failure probability of
the AT=voter increases from0:01 to 0:1, than the increase
observed when the failure probability of the AT=voter in-
creases from0:001 to 0:01. Thus for higher values of the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

Table 2. Summary of faults detected from 12 versions of Autopilot
Module b Faults Detected

�
 � � � � � � � � � !

Mode Logic 0:0009 2 1 6 5 1 1 0 0 0 0 0 0
Interface Routines 0:0008 1 0 2 0 1 0 2 2 0 0 2 1

Radio Filter 0:0003 1 0 2 2 1 0 1 2 0 0 0 0
Barometric Filter 0:0002 0 0 0 0 0 0 0 0 0 0 0 0

GS Filter 0:0001 0 1 0 0 0 0 2 0 4 0 0 0
AHD Outer Loop 0:0004 0 0 0 0 1 1 0 0 1 0 2 0
GSCD Outer Loop 0:0006 2 1 0 0 0 0 1 0 1 2 2 1
Flare Outer Loop 0:0005 2 2 0 1 0 0 1 2 1 0 0 0

Inner Loop 0:0007 2 1 0 1 3 3 2 2 2 2 4 0
Command Monitor 0:00009 0 1 0 0 0 0 0 0 0 1 0 0

failure probabilities of AT=voter, failures of the AT=voter
dominate the system analysis. The expected number of fail-
ures for DRB, NVP and NSCP systems, for different corre-
lations, and the failure probabilities of AT=voter are shown
in Figure 6.

Failures experienced by a fault tolerant system can be
classified into two categories, viz., detected and undetected.
Undetected failures lead to an unsafe operation of the sys-
tem, and it could be highly undesirable if the system is a
part of a safety-critical application. The two sources of un-
detected failures are: a related fault among two or more au-
topilot versions, and a related or an independent fault in the
AT=voter. Next we study the effect of a related fault among
two or more software versions on the percentage of unde-
tected faults for the DRB, NVP and NSCP systems. The
failure probability of the voter is assumed to be0:001 and
that of the versions is assumed to be0:095. The probabil-
ity of a related fault among any two versions, and among
all the versions was set to0:0167, 0:2, 0:4, 0:6, and0:8 re-
spectively. The percentage of undetected faults increases
significantly in case of NVP, as the correlation increases,
whereas the increase in the percentage is not so dramatic
in case of NSCP. Thus, NVP is more vulnerable to related
faults from the safety view point than NSCP. Comparison
with the results obtained for the DRB system also indicates
that the NSCP exhibits least vulnerability to related faults
among the three fault tolerant systems.

We then study the combined influence of two parameters.
viz., the reliabilities of an individual version, and the prob-
ability of a related fault among two versions on the failure
behavior of the DRB, NVP, and NSCP systems. A single
experiment in this case consisted of varying the reliability of
the individual versions from0:90 to 0:995 for a fixed value
of the probability of a related fault among twoautopilot
versions. The failure behavior was simulated with correla-
tion among two versions set to0:01, 0:05 and0:1, for 1000
runs of theautopilot. Since the AT in case of the DRB
system is significantly more complex than the voter in case
of the NVP=NSCP system, and in the extreme case could
be another alternate, we assume the failure probability of
the AT to be the same as one of the alternates. The prob-

0.90 0.92 0.94 0.96 0.98
Reliability of Individual Versions

0.0

20.0

40.0

60.0

80.0

100.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

Effect of Version Reliabilities and Correlation

DRB (0.01)
DRB (0.05)
DRB (0.1)
NSCP (0.01)
NSCP (0.05)
NSCP (0.1)
NVP (0.01)
NVP (0.05)
NVP (0.1)

Figure 7. Effect of reliability and correlation

ability of a related fault among the AT and the alternates
in case of a DRB is set to the same value as the probabil-
ity of a related fault among the alternates. The probability
of a related fault among all the three versions in case of
NVP, and three and four versions in case of NSCP is set
to 0:01. Figure 7 shows the effect of these two parameters
on the failure behavior of the three fault-tolerant architec-
tures. As expected, for a fixed probability of a related fault
among the alternates=versions, and alternates=AT, the ex-
pected number of failures for1000 runs decreases, as the
alternates=versions and AT become more reliable. The fig-
ure indicates that the NVP system is more reliable followed
by the DRB system, followed by the NSCP system. It is
noted however, that the AT in case of the DRB system is
assumed to have the same failure probability as that of the
alternates, which is a very pessimistic view. From safety
point of view, NSCP would be better than DRB and NVP.

Suppose the reliability objective is specified as the ex-
pected number of failures that would be tolerated in1000
runs of theautopilot system, and that this objective could
be achieved by adjusting two parameters, viz., the reliabili-
ties of the individual versions, and the correlation among the
versions. Let us assume that the versions are available with
a basic reliability of0:90. For every additional1% increase
in the reliability, we incur a cost ofc1;DRB in case of DRB,
c1;NV P in case of NVP, andc1;NSCP in case of NSCP, for
every alternate=version. Similarly, the basic probability of
a related fault among the two alternates, and alternates and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000
test cases

0.0

20.0

40.0

60.0

80.0

100.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

DRB - Effect of Correlation

Correlation = 0.0167
Correlation = 0.2
Correlation = 0.4
Correlation = 0.6
Correlation = 0.8
Single Version

0 200 400 600 800 1000
test cases

0.0

50.0

100.0

150.0

200.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

NVP - Effect of Correlation

Correlation = 0.0167
Correlation = 0.2
Correlation = 0.4
Correlation = 0.6
Correlation = 0.8
Single Version

0 200 400 600 800 1000
test cases

0.0

100.0

200.0

300.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

NSCP - Effect of Correlation

Correlation = 0.0167
Correlation = 0.2
Correlation = 0.4
Correlation = 0.6
Correlation = 0.8
Single Version

0 200 400 600 800 1000
test cases

0.0

20.0

40.0

60.0

80.0

100.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

DRB - Effect of Failure Behavior of AT

Failure prob = 0.001
Failure prob = 0.01
Failure prob = 0.1
Single version

0 200 400 600 800 1000
test cases

0.0

50.0

100.0

150.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s
NVP - Effect of Failure Behavior of Voter

Failure prob = 0.001
Failure prob = 0.01
Failure prob = 0.1
Single version

0 200 400 600 800 1000
test cases

0.0

50.0

100.0

150.0

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

NSCP - Effect of Failure Behavior of Voter

Failure prob = 0.001
Failure prob = 0.01
Failure prob = 0.1
Single version

Figure 6. Effect of correlation and failure behavior of AT =Voter
AT in case of DRB, and any two versions in case of NVP
and NSCP is0:2, and it costsc2;DRB for DRB, c2;NV P for
NVP, c2;NSCP for NSCP, for every additional reduction by
0:01. In addition, it costscAT to build the AT in case of the
DRB system. Thus, the cost of the DRB system denoted by
cDRB , cost of the NVP system denoted bycNV P , and the
cost of the NSCP system denoted bycNSCP are given by:

cDRB = 2 � (RDRB � 0:90) � c1;DRB + cAT

+(CDRB � 0:30) � c2;DRB

(1)

cNV P = 3 � (RNV P � 0:90) � c1;NV P

+(CNV P � 0:30) � c2;NV P

(2)

cNSCP = 4 � (RNSCP � 0:90) � c1;NSCP

+(CNSCP � 0:30) � c2;NSCP

(3)

In Equations (1), (2), and (3),RDRB denotes the reliabil-
ity of a single alternate of the DRB system,RNV P denotes
the reliability of a single version of the NVP system, and
RNSCP denotes the reliability of the individual version of
the NSCP system. Similarly,CDRB , denotes the correlation
among the two alternates, and the alternates and the AT in
case of the DRB system, andCNV P andCNSCP denote
the correlation among any two versions of the NVP and
NSCP systems respectively. For example, if the expected
number of allowable faults in1000 runs is specified to be
approximately20, and we have to choose among three op-
tions, viz., (1) DRB with individual version reliabilities of

Table 3. DRB, NVP and NSCP systems’ costs
System R� C� c1;� c2;� cAT=V oter Total Cost
DRB 0:939 0:01 500 300 50 127:5
NVP 0:922 0:01 500 300 0 63:0
NSCP 0:96 0:05 500 300 0 165

0:939, and a correlation of0:01 among the alternates, and
the alternates and the AT, (2) NVP with version reliabilities
of 0:922 and a correlation of0:01 among any two and all
three versions, and (3) NSCP with version reliabilities of
0:96 and a correlation of0:05 among any two versions, and
a correlation of0:01 among all four versions, as indicated
in the Figure 7. We note that many more possibilities exist
than the ones listed here, however, we consider these three
possibilities merely to illustrate the use of simulation to aid
decision making under such scenarios. Thus for costs sum-
marized in Table 3, the cost of the DRB alternative is146:0
units, NVP alternative is90:0 units, and NSCP alternative
is 165:0 units. The choice according to a minimum cost
criteria would then be the NVP alternative. This is a very
simplistic cost model, and can certainly be enhanced to in-
clude other costs. However, we do emphasize, that this was
used merely as an illustration to demonstrate the fact that
studies like the one described cannot be easily obtained an-
alytically, but can be incorporated into the basic simulation
procedures very easily.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

5 Conclusions and Future Research

In this paper, we have demonstrated the utility of sim-
ulation to study the failure behavior of a software system
based on its architecture through two case studies. One
case study was of a terminating application and the other
was of a real-time application with feedback control. Sim-
ulation was also used to assess the sensitivity of the three
fault tolerant systems, viz., DRB, NVP, NSCP to various
parameters such as the probability of a related fault among
the two or more versions, failure behavior of the AT=voter,
etc. Combined influence of two parameters on the failure
behavior was also studied using simulation. A simple cost
model was developed to demonstrate the effectiveness of
simulation to study trade-offs and to choose among a set of
competing alternatives. Results demonstrate the flexibility
offered by simulation to study the influence of various fac-
tors on the failure behavior of the applications for single as
well as fault-tolerant configurations. Simulation thus holds
a lot of promise for modeling a detailed system structure,
however, it may be expensive in case of some systems.

As demonstrated in this paper, simulation techniques are
not restricted to the assessment of fully functional systems.
In fact, one of the biggest advantages of these techniques,
is that they can be used to evaluate the reliability and per-
formance, as early as the architecture phase in the life-cycle
of the software. This can aid in decision-making such as
which components should be re-used, and which should be
developed in-house, and allocation of reliabilities to the in-
dividual components so that the overall reliability objective
is met. It can also help in the identification of reliability
and performance bottlenecks, so that remedial actions can
be taken before it is too late= too expensive.

In order for these techniques to be used widely on large
scale systems, they need to be encapsulated and made avail-
able in a systematic, user-friendly form. Future research in-
cludes the design and implementation of a tool, to facilitate
reliability and performance assessment of component-based
software systems.

References

[1] R. C. Cheung. “A User-Oriented Software Reliability
Model”. IEEE Trans. on Software Engineering, SE-
6(2):118–125, March 1980.

[2] J. Dugan and M. R. Lyu. “System Reliability Analy-
sis of an N-version Programming Application”.IEEE
Trans. on Reliability, R-43(4):513–519, 1994.

[3] W. Farr. Handbook of Software Reliability Engineer-
ing, M. R. Lyu, Editor, chapter Software Reliability
Modeling Survey, pages 71–117. McGraw-Hill, New
York, NY, 1996.

[4] A. L. Goel and K. Okumoto. “Time-Dependent Error-
Detection Rate Models for Software Reliability and
Other Performance Measures”.IEEE Trans. on Relia-
bility, R-28(3):206–211, August 1979.

[5] S. Gokhale.”Analysis of Software Reliability and Per-
formance”. PhD thesis, Duke University, Durham,
NC, June 1998.

[6] S. Gokhale, M. R. Lyu, and K. S. Trivedi. “Reliability
Simulation of Fault-Tolerant Software and Systems”.
In Proc. of Pacific Rim International Symposium on
Fault-Tolerant Systems (PRFTS ’97), pages 167–173,
Taipei, Taiwan, December 1997.

[7] S. Gokhale, T. Philip, and P. N. Marinos. “A Non-
Homogeneous Markov Software Reliability Model
with Imperfect Repair”. InProc. Intl. Performance
and Dependability Symposium (IPDS ’96), pages
262–270, Urbana-Champaign, IL, September 1996.

[8] S. Gokhale and K. S. Trivedi. “Structure-Based Soft-
ware Reliability Prediction”. InProc. of Fifth Intl.
Conference on Advanced Computing (ADCOMP ’97),
pages 447–452, Chennai, India, December 1997.

[9] J. R. Horgan and A. P. Mathur.Handbook of Soft-
ware Reliability Engineering, M. R. Lyu, Editor, chap-
ter Software Testing and Reliability, pages 531–566.
McGraw-Hill, New York, NY, 1996.

[10] D. E. Eckhardt. Jr. and L. D. Lee. “A Theoretical Ba-
sis for the Analysis of Multiversion Software Subject
to Coincident Errors”.IEEE Trans. on Software Engi-
neering, SE-11(12):1511–1517, December 1985.

[11] J. C. Laprie, J. Arlat, C. Beounes, and K. Ka-
noun. “Definition and Analysis of Hardware- and
Software-Fault-Tolerant Architectures”.IEEE Com-
puter, 23(7):39–51, July 1990.

[12] J. C. Laprie and K. Kanoun. Handbook of Soft-
ware Reliability Engineering, M. R. Lyu, Editor, chap-
ter Software Reliability and System Reliability, pages
27–69. McGraw-Hill, New York, NY, 1996.

[13] J. C. Laprie, K. Kanoun, C. Beounes, and
M. Kaaniche. “The KAT (Knowledge-Action-
Transformation) Approach to the Modeling and Eval-
uation of Reliability and Availability Growth”.IEEE
Trans. on Software Engineering, SE-17(4):370–382,
1991.

[14] B. Littlewood. “A Semi-Markov Model for Software
Reliability with Failure Costs”. InProc. Symp. Com-
put. Software Engineering, pages 281–300, Polytech-
nic Institute of New York, April 1976.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

[15] B. Littlewood and D. R. Miller. “Conceptual Model-
ing of Coincident Failures in Multiversion Software”.
IEEE Trans. on Software Engineering, 15(12), De-
cember 1989.

[16] M. R. Lyu and Y. He. “Improving the N-Version Pro-
gramming Process Through the Evolution of a Design
Paradigm”. IEEE Trans. on Reliability, 42(2):179–
189, June 1993.

[17] B. Randell. “System Structure for Software Fault Tol-
erance”. IEEE Trans. on Software Engineering, SE-
1(2):220–232, June 1975.

[18] R. C. Tausworthe and M. R. Lyu.Handbook of Soft-
ware Reliability Engineering, M. R. Lyu, Editor, chap-
ter Software Reliability Simulation, pages 661–698.
McGraw-Hill, New York, NY, 1996.

[19] L. A. Tomek and K. S. Trivedi.Software Fault Tol-
erance, Edited by M. R. Lyu, chapter Analyses Using
Stochastic Reward Nets, pages 139–165. John Wiley
and Sons Ltd., New York, 1995.

[20] A. Wood. “Software Reliability Growth Models: As-
sumptions vs. Reality”. InProc. of Eigth Intl. Sympo-
sium on Software Reliability Engineering, pages 136–
141, Albuquerque, NM, November 1997.

Appendix A: Simulation Procedures

Procedure A: Single Event Simulation Procedure

/* Input parameters and functions are assumed
to be defined at this point */
double single_event (double t, double dt,

double (*lambda) (int,double))
{

int event = 0;
while (event == 0) {

if (occurs (lambda (0,t) * dt))
event++;

t += dt;
}
return t;

}

Procedure B: Simulation Procedure for Terminating
Application

double time_to_completion(double dt, double w)
{

int curr_comp = 1; double t = 0;
while (curr_comp != n)
{

generate_failure(curr_comp,dt);

/* Calls procedure A and checks if a failure
occurs based on Lambda(n,tau,t) */

t += phi;
temp = random(); sum = 0.0;
for (i=1;i<=n;i++)
{

sum += w(curr_comp,i);
if (temp <= sum)

break;
}
curr_comp = i;

}
return t;

}

Procedure C: Simulation Procedure for Real-Time
Application with Feedback Control

void control_appl(double dt)
{

int time_frame_num = 0;
while (time_frame_num <= n)
{

/* Check for failure in mode 1*/
if (n_1 <= time_frame_num < n_1

+ n_2)
check_fail_mode_1(dt);

/* Check for failure in mode 2 through k*/
}

}

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:38 UTC from IEEE Xplore. Restrictions apply.

