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Abstract tions.

Prevalent Markovian and semi-Markovian methods to 1 |ntroduction
predict the reliability and performance of component-based
heterogeneous systems suffer from several limitations: they
are subject to an intractably large state-space for more in-
volved scenarios, and they cannot take into account the in-
fluence of various parameters such as reliability growth of
the individual components, dependencies among the com
ponents, etc., in a single model. Discrete-event simulation
on the other hand offers an attractive alternative to analyt-
ical models as it can capture a detailed system structure,
and can be used to study the influence of different factors
separately as well as in a combined fashion on dependabil-
ity measures. In this paper we demonstrate the flexibility
offered by discrete-event simulation to analyze such com-
plex systems through two case studies, one of a terminatin
application, and the other of a real-time application with
feedback control. We simulate the failure behavior of the
terminating application with instantaneous as well as ex-
plicit repair. We also study the effect of having fault-tolerant
configurations for some of the components on the failure
behavior of the application. In the second case of the real-
time application, we initially simulate the failure behavior
of a single version taking into account its reliability growth.
Later we study the failure behavior of three fault tolerant
systems, viz., DRB, NVP and NSCP, which are built from
the individual versions of the real-time application. Results
demonstrate the flexibility offered by simulation to study the
influence of various factors on the failure behavior of the
applications for single as well as fault-tolerant configura-

Prevalent approaches to software reliability modeling
are black-box based, i.e., the software system is treated as
a whole and only its interactions with the outside world
are modeled. The black-box based approaches have been
shown to be inadequate to capture the behavior of modern
systems built using a combination of components off-the-
shelf, components developed in-house, and components de-
veloped contractually [9]. Component-based systems are
thus developed in a heterogeneous fashion, and modeling
the failure behavior of such systems using only one of the
software reliability growth models [3] can be misrepresen-
tative. With the advancement of object-oriented systems
gdesign and web-based development, component-based soft-
ware systems have become more of a norm than an excep-
tion, and thus developing techniques to predict the reliabil-
ity of such systems taking into account their architecture
and failure behavior of the individual components is abso-
lutely essential.

Most of the existing analytical methods to predict the re-
liability and performance of component-based systems are
based on the Markovian assumption [1, 12], and rely on
exponential failure- and repair-time distributions. Semi-
Markov [14] and Markov regenerative models attempt to
relax this assumption in a restrictive manner. Both the
Markov and the semi-Markov models are also subject to
an intractably large state space. Methods have been pro-
posed to model the reliability growth of the components
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ical model which takes into account all such features is in- mo(0,t) = E[Ny(0,t)]. The notationmg(0,t) indicates
tractable. Discrete-event simulation, on the other hand, of-that the process starts at timme= 0, and the subscripa

fers an attractive alternative to analytical models as it canindicates no failures have occurred prior to that time. Pure
capture a detailed system structure, and facilitate the studybirth processes can be further classified as “finite failures”
of the influence of various factors such as reliability growth, and “infinite failures” processes, based on the value that
various repair policies, correlations among the various ver-mg(0,t) can assume in the limit. In case of a finite failures
sions etc., on dependability measures. The main contribupure birth process, the expected number of failures occur-
tion of this paper lies in demonstrating the flexibility offered ring in an infinite interval is finite (i.elim m(0,t) = q,

by discrete-event simulation to analyze complex and heteroyhereq denotes the expected number of failures that can
geneous systems through two case studies. One of the casgccur in an infinite interval), whereas in case of an infinite

studies models a terminating application, whereas the othetaijlures process, the expected number of failures occurring
one deals with a real-time application with feedback con- iy an infinite interval is infinite (i.elim mg(0,¢) = o).
t—o0

trol. o R
. . ) . Although these definitions are presented for specific initial
The rest of the paper is organized as follows: Section 2 conditions (the state of the process is @ at 0), they hold

describes the stochastic failure process, Section 3 presents .
. . . L in the case of more general scenarios.
generalized simulation procedures for a terminating and a . . .
. T . . .~ Analytical closed form expressions can be derived for
real-time control application, Section 4 describes the termi- . . ) .
X . L o . the failure process of a single component described either
nating and the real-time application studied in this paper, : :
g . : s by a pure birth and pure death NHCTMC. Now, consider
and simulates the failure profile of these two applications o
. . . a system composed @&f components. In addition to the
under different scenarios, and Section 5 presents conclu-
sions and directions for future research state of each component, we need to keep track of the
' amount of execution time experienced by each component

separately. The failure rate of the system is denoted by

2 The stochastic failure process A(n,7,t), where the vecton = (ny,ns,...,ny), with n;
denoting the number of failures observed from compofent
In this section we provide a brief overview of the up totimet, the vectorr = (71,72, .., 7,), with 7; denot-
stochastic failure processes, and rate-based simulation fong the amount of time spent in componeénip to timet,
the process. andt is the total time spent executing the system such that
Zle 7; = t. The failure behavior of such a system can
2.1 Overview of NHCTMC processes no longer be described by a NHCTMC, and is analytically

intractable. Rate-based simulation described in the sequel

We assume that the failure behavior of each compo- offers an attractive alternative to study the failure behavior
nent is described by a class of non-homogeneous contin-of such systems.
uous time Markov chain (NHCTMC), where the behavior
of the stochastic proceqsY ()} of interest depends only 2.2 Rate-based simulation
on a rate functior\(n, t), wheren is the state of the com-
ponent_ Some of the popu|ar software re||ab|||ty models Rate-based simulation teChnique can be used to obtain a
are NHCTMC based, viz., Goel-Okumoto model, Musa- POssible realization of the arrival process of a NHCTMC.
Okumoto model, Yamada S-shaped model, Duane model The occurrence time of the first event of a pure-birth
Littlewood-Verrall, and Jelinski-Moranda model [18]. The NHCTMC process can be generated using Procedure A ex-
state of the component depends on the number of failurePressed in a C-like form [18], in Appendix A. The function
observed from the Componer{tX(t)} can be viewed as a single_event() returns the occurrence time of the event. In
pure death process if we assume that the maximum numthe code segment in Procedure dvcurs(z) compares a
ber of failures that can occur in the time interval of inter- random number witkr, and returns 1 if-andom() < w,
est is fixed, and the remaining number of failures forms the and O otherwise. Procedure A can be easily extended to
state-space of the NHCTMC. Thus, the component is saiddenerate the failure process of a multicomponent system,
to be in state at timet, if we assume that the maximum DY keeping track of the number of failures observed from
number of failures that can occur, andN — i failures ~ €very component, and the execution time experienced by
have occurred by time. It can also be viewed as a pure €Very component.
birth process, if the number of failure occurrences forms the
state space of the NHCTMC. In this case, the componentis3 Simulation procedures and assumptions
said to be in staté at timet, if i failures have occurred
up to timet. Let Ny(0,t) denote the number of failures in In this section we describe generalized simulation proce-
the interval(0, t), andm (0, t) denote its expectation, thus dures to simulate the failure profile of a terminating appli-
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cation and a real-time application with feedback control. ~ feedback control. We assume that there famnodes of
operation, and the system spends a fixed amount of time

3.1 Terminating application in each of thes& modes. Upon completion of theth
mode, the application terminates. Computations for certain

We assume that the terminating application comprising &ttributes are performed during each time frame, and the
of m components begins execution with compongrand values computed in thg — 1) st time frame are used for the

terminates upon the execution of component The ar- ~ COmputations in théth frame. We assume that the applica-
chitecture of the application is specified by the intercom- 0N terminates aftelllgtlmeframes, and it spendsiramesiin
ponent transition probabilities, denoted by ;. w; ; rep- ~ Modei, such thah _;_, [; = . The algorithm is presented

resents the probability that componenis executed upon for the case when the failure behavior of the components in
the completion of component The procedure is pre- the application is specified by one of the software reliability
sented for the case when the failure behavior of each ofgrowth models listed in Section 2, and can be generalized
the components described by one of the software reliabil-when the failure behavior is specified either by a constant
ity growth models listed in Section 2, but it can be easily failure rate or a fixed probability of failure. One of the ways
modified to take into account the scenarios when the fail- t0 test such a application is to execute the application for a
ure behavior is described either by a constant failure rate orhtumber of test cases, where each test case consistisnef

a fixed probability of failure. We assume that the applica- frames. Procedure C presented in Appendix A simulates the
tion spendsp units of time in a component per visits is failure behavior of the application during the testing phase,
assumed to be approximately 100 times that/gfwhich for one test case. For every time frame the procedure deter-
is the time step used in Procedure A in Appendix A. The mines the mode of operation, and checks if the application
failure prof”e of a terminating app”cation’ during a sin- fails in that mode of Opera'[ion in that time frame. Error
gle execution, assuming independent failures of the com-detection is performed at the end of every time frame. We
ponents, can be simulated using Procedure B in Appendixassume that every module takesme units to complete ex-

A. The function generate_failure(curr_comp,dt), ac- ecution.¢ is assumed to be approximately 100 times that of
cepts the current component as input, and checks if thedt, Whichis the time step used in Procedure A in Appendix
component fails ing time units, based on the num- A

ber of failures observed from that component, and the These kind of applications are typically used in critical
time spent in that component, i.e. based /dm,7,1). systems and operate in fault toIer:_:mt cor_1figurations such as
generate_failure(curr_comp, dt) calls Procedure A ev- DRB, NVP, and NSCP [11]. The simulation procedures for
ery dt time steps to check for the occurrence of a failure. these three fault tolerant systems are reported in [6], and
The procedure in its current form returns the number of time We apply these procedures to a real world case study in this
units necessary for a single execution of the application, andPaper.

can be easily modified to return the counts of the total num-

ber of faults detected, number of faults detected from every4  Project applications

component, number of time units spent in every component,

etc. The procedure can also be Suitably modified to simu- In this Section, we present two project applicationsy ohe

late the failure behavior of the application during testing, of a terminating application and the other of a real-time ap-
where test cases are executed in succession for a certain pgyjication with feedback control.

riod of time. The time period can be pre-specified if there

is a constraint in terms of a deadline, or it can also be deter-4 1 Terminating application

mined as the testing progresses based on optimizing some

measure such as cost, reliability, failure rate etc., of the in-  \y\ie se the terminating application reported in [1] as a
dividual components or the application as a whole. Various running example in this section. The application consists
enhancements to this basic model can also be made to simgs 1 components, and begins execution with compoent
ulate other scenarios such as finite debugging time, faulty,q terminates upon the execution of compor@nt The
tolerant configurations for some selected or all of the com- control-flow graph of the application is shown in Figure 1,
ponents, dependent failures etc., as will be demonstrated,nq the intercomponent transition probabilities are shown in

using a case study. Table 1. Initially we assume that the failure behavior of the
o _ components is specified by their reliabilities. We simulate
3.2 Application with feedback control the expected time to completion of the application, and the

reliability of the application. The expected number of time
In this section we develop a simulation procedure to units necessary to complete the execution of the application
capture the failure behavior of a real-time application with is 6.450346 (assumingp = 1), and the reliability of the
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debugged instantaneously upon detection, and the execution
of the application proceeds uninterrupted after the instanta-
neous debugging. Thus the expected total number of faults
detected is equal to the expected number of failures of the
application. However, in real-life testing scenarios, there is
a definite non-zero time interval that is necessary to debug
the detected fault [20]. We then introduce finite debugging
time into the simulation model, in order to obtain a real-
istic estimate of the expected total number of faults fixed
(repaired or debugged), and the expected number of faults
debugged from every component at a given time. Initially
we consider sequence dependent failures, where there is no
independent debugging for every component. A single de-
bugging facility with a constant debugging rateof= 0.1

is shared among all the components, and the faults are de-
bugged in the order of their detection. Next, we assume that
each of thel0 components has an independent debugging
facility with a debugging rate which is one-tenth of the de-
bugging rate in the case of sequence dependent repair. Thus
the faults detected from componérare being debugged at

Figure 1. Control-flow Graph of a Terminating

Application the rate ofu; = 0.01,fori =1,...,10. The expected num-
ber of faults debugged as a function of time, fox 1000

Table 1. Transition probabilities in Figure 1 time units, in case of instantaneous, shared and independent
w12 =0.60 | wis =020 | wia=020 repair is depicted in Figure 2. As seen from Figure 2, the
Zi: z?:gg w2,5 = 0.30 expected total number of faults debugged in case of inde-
was =040 | wig =0.60 pendent debugging is lower than the expected total num-
ws,7 =0.40 | ws,s = 0.60 ber of faults debugged in case of shared debugging. This
e o o 020 wes =00 | weo = 0.30 is due to the fact that all the components are not tested to
ws 4 = 0.25 | ws10 = 0.75 the same extent, resulting in an unequal expected number
wo g = 0.10 | wy,19 = 0.90

of faults being detected from all the components. As a re-
sult, the debugging mechanism belonging to certain com-
ponents would be over utilized, whereas for certain compo-
nents it will be under utilized. Results like these could aid in
making decisions regarding allocation of resources towards
ftesting and debugging of each component so as to maxi-
mize some dependability measure of interest. This could
also help towards tracking and controlling the schedule and
the budget of a project.

application is0.8811. These values are very close to the
analytical results reported in [1, 5].

We then assign time-dependent failure rates to each o
the 10 components. Without loss of generality, we as-
sume that the failure rate of each of the components is
given by the failure rate of the Goel-Okumoto model, i.e.

A(n,t) = ae, wherea is the expected number of faults Expected Number of Faults vs. Time
that would be detected from the component if it were to be 1500 . (Detecied and Debuoge)

tested for infinite time, and is the failure occurrence rate T e (Shared Repain)

per fault [3]. The parameteis andb are estimated from 4——2 Debugged (Independent Repa

the field data reported in [4], and the failure rate is given by
34.05%0.0057 xe~9957*t The objective now is to simulate

the failure profile of the application given the failure rates
of its components, and the transition probabilities between
them for a typical testing scenario, where the application is
tested by executing several test cases one after the other, for

100.0 -

50.0

Expected Number of Faults

a certain specified duration éfnits. The failure profile of 00 ‘ ‘ ‘ ‘
the application is given by the expected number of failures ORGS0 e e
observed as a function of time. Figure 2. Shared and independent repair

Initially, we assume that the failure of any of the compo- ~ We now simulate the failure behavior of the application
nents is regarded as failure of the application. The faults areassuming fault-tolerant configurations for some of the com-
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ponents. Suppose if the correct functioning of compoBent; | sarometric —

is critical for the successful completion of the application, | fawd., * — Had® [

and we wish to conduct a “what-if” analysis to determine |

which of the two configurations, namely, NYP/1 [11] "] ommand - om
with three parallel versions of compon@nmtinning on three : | : T

hardware hosts, or a RR/1 [11], i.e., Distributed Recov- '-| M x| Mo | Cootrets Lc
ery Block (DRB) configuration, with two hardware hosts | - Filer i L

running two recovery blocks [17] is more effective. For = 5
both the configurations we assume that the hardware hosts = Dy
running the software versiopalternates do not fail, and : ¢ ¢ ¢

the voter in the NVP system is perfect. The failure raté—| g (2 I: Flae 4 x v 2

of the acceptance test (AT) in case of the DRB was set | ©™- 7
to two orders of magnitude lower than the failure rate of

Legend: | = Airplane Sensor Inputs

the alternates. We simulate the failure behavior a0 LC = Lane Command
units of time beyond = 1000, with NVP and RB con- i
figurations for componeri, for two values of correlation Figure 4. Autoland system functions and data

among the two alternates in case of DRB configuration,  flow diagram
and two versions in case of NVP configuration, viz.Q

and0.2. The expected number of failures observed from
the entire application, with different levels of correlation

among the alternatgsersions of component 2 are shown The real-time application with feedback control under
in Figure 3. As the probability of a related fault among the consideration is thautopilotproject which was developed

versiongalternates increases, the expected number of fail-bhy multlpkle |r|1|o}ecpelr|1.dentt§arr_ls at Fh_e _Umveer;sr[y (I')1f Iowalc_":md
ures of the application increases, due to an increase in thd e Rockwe -Ollns AVIOI’]IC.S D_'V'S'on [16]. T € appll-
number of failures of componedt The expected number cation program is an automatic flight control function (also

of failures with the NVP configuration are slightly higher KNOWn as thewtopilot) for the landing of commercial air-
than the expected number of failures with the DRB config- liners th_at has been mp_lemented by the avionics industry.
uration for component 2. A second way of guarding the ap- The major system functions of theutopilot and its data
plication against the failures of componénis to cover the HOV\_’ are shown in Flgure _4' In this appll_cat_lon, t_he au-
failures of componerit with a certain probability known as .to_p_|lo.t |s.engaged in the ﬂ'_ght CO”",O' beginning with the
coverage [2]. Figure 3 shows the expected number of fail- |n|t_|aI|zat|on _Of the system in the altitude hold mo_de, ata
ures of the application for different values of coverage for pomt_ a_p_prom_matel_y ten milesg800 feet) from_th_e_ airport.
componeng. Normally, coverage is the ability of the sys- The initial altitude is about500 feet, and the initial speed

tem to tolerate faults, and is provided by the fault-tolerant is abouﬂ2Q knot? QhOO feet lperdsecolr_1d)._ developed
capability built into the system. The effectiveness of the 15 versions of the autoland application were develope

fault-tolerant capability to guard against failures will de- independently b_y 1_5 programming tea”?s at Ullowa a_nd
pend on the correlation among the versions which consti-the Rockwell AV|0n_|cs Division. The details of the experi-
tute the fault-tolerant configuration. Thus, intuitively, a low mhent are rep](c)rtr?d in [16]. Th(ej fallur_e datafcollectgd from
correlation among the versions should result in high cover- € testing of the 12 accepted versions of theopilot,
age. As seen from Figure 3, the expected number of faultsservetd as a gul|dell|ne to assign failure raFes to_the mod-
observed assuming complete independence among the veHIeS in the application for the purpose of simulation. The
sions constituting the NVP configuration, (correlatio of _number_ of faults detected from_ each of the modules dur-
among the versions), and when the coveragessare ap- ing testing was used as an estimate of the paranaetdr
proximately the same. Thus, we can roughly say that a cor-the qul-Okumoto mod_el [4]. The. paramebarflects the
relation 0f0.0 for the NVP configuration, corresponds to sensitivity of faults to failures. Arpnrary values for param-
a coverage 00.8. Although, no mathematical relationship eterb were chosen in a degreasmg order, for th_e modules
exists between correlation and coverage, simulation can bé(\:AOde Il_c(>)g|c, IEterfa(fl _rom:jtmgs,ldlrger LOLOD’ Glgdg. SIFO.Fe
thus used to determine an approximate empirical relation- ontro uter_ °‘?|p* titu e'l 0 uter 0(;)p, adio I-d
ship between two related variables, for a particular system.ter’ Barometric Filter, GS Filter, Command Monitor, an

Studies like these, which help assess the sensitivity of theDiSplay' There are sixteen different modes in which the

parameters to the behavior of the system can be of grea{jata can be displayed, and the complexity. of the display
increases from mode 1 to mode 16. The display modules

importance in carrying out “what-if” analysis to enable a : - .
were not tested in the original experiment, and hence no

choice among a set of alternatives. ) . . .
failure data were available. As a result, we assign arbitrary

4.2 Application with feedback control
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Figure 3. Operational scenarios of fault tolerance and coverage
box, and error detection is performed at the end of every
test case. A fixed probability of failure per test case is
assigned to everyutopilot version. We assume that the
hardware hosts running thestopilot versions are perfect.
In addition, we also assume that the probability of activa-
tion of a related fault between any two autopilot versions
is fixed for every test case. Initially, the probability of a
failure of a single version for every test case is assumed to
be0.0195, and the probability of a related fault among two
software versions is assumed toh@167. These two val-
ues have been guided by a systematic parameter estimation
case study for thewutopilot reported in [2]. The results
obtained using simulation procedures using these parame-
h ter values are in close accordance with the ones reported in
[2] for all the three systems. We then study the effect of
correlation among the alternagegrsions on the failure be-
havior of the DRB, NVP and NSCP systems. Starting from
a value 0f0.0167 for the correlation, we simulate the ex-
pected number of failures that would be observedLfif0
A single run of theautopilot consists 0f5582 frames, runs for correlations 0.3, 0.4, 0.6 and0.8_. Th? probabil-
ity of a related fault among all the versions is assumed to

with each frame of 50 ms duration for a total landing time be th th bability of lated fault ¢
of approximately 264 seconds. Thus a single test case in € the same as e probabllity of a refated fault among two

this context consists df582 frames. We assume that soft- Vo' oloN>: The Tﬁpected;gmber of ffz;l;gest;]ncreasel W'tr:r']n'
ware error detection is performed at the end of each frame';:r:easmgbcorr? ? !:)n, anth Irt] Cas? dob ' ;—Jy dafre ess than
For every frame, the display mode is generated randomly, € humber of failures that wou'd be expected rom a sin-

: ; le version with the same failure probability. However, in
assuming that all6 modes are equally likely. The expected 9 . '
number of failures of thautopilot for 4 flight simulations case of NVP and NSCP, beyond a certain threshold value of

from all the 12 versions. which consist 22328 frames is correlation, the expected number of failures that would be
shown in Figure 5 ' observed from a single version with the same failure prob-

Having analyzed the reliability growth of the individual ability as tha_t of one of thg versions consiituting the fault
. . . tolerant configuration are in fact lesser than the number of
versions in the testing phase, we then proceed to evaluat(? .
. . ) . ailures that would be observed from the NVP and NSCP
the failure behavior of three fault-tolerant configurations of

theautopilotin operation. Thus the failure behavior is ana- configurations. The effect of the failure behavior of the ac-

lyzed at two levels: the first level being the analysis of the ceptance test (AT) in case of the DRB system and voter in

failure behavior during testing, and the second one is to ana2s¢ of NVP and NSCP systems is studied next. The ex-

lyze the failure behavior in three FT configurations, namely, pected number of failures for /(Woter failure probabilities

RB/1/1, NVP/1/1, and NSCP1/1 [11] during operation. of 0.001, 0.0:_[ and(_).l are _S|mulated. Th.e increase in the
oo . : number of failures is significant as the failure probability of
We do not address performability issues in this study,

; . the AT/voter increases frorf.01 to 0.1, than the increase
and the interested reader is referred to [19] for performa- . . i
- : . . - observed when the failure probability of the Afoter in-
bility analysis. Each of theutopilot versions comprising

the fault-tolerant configuration is now treated as a black- creases frond.001 to 0.01. Thus for higher values of the

400.0 600.0 800.0 200.0

Time

1000.0

Expected Number of Faults vs. # frames

150.0

100.0

50.0 -

Expected Number of Faults

0.0

L L
0 10000 200000

# frames

Figure 5. Failure profile for 4 simulations
failure rates to the sixteen modes of display module, wit
a higher failure rate reflecting higher complexity of the dis-
play. The failure rate of the display in mode assumed to
be3.0%0.00001 % (10+ (i — 1) x5) s (~0-00001x(10+(i=1)x5))
The number of faults detected from each of the modules for
the 12 versions are summarized in Table 2.
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Table 2. Summary of faults detected from 12 versions of Autopilot

Module b Faults Detected
Blylel¢n|b0 || A|[plv][E|lw
Mode Logic 0.0009 2 1 6 5 1 1 0 0 0 0 0 0
Interface Routines| 0.0008 1 0 2|0 1 0 2 2 0 0|2 1
Radio Filter 0.0003 1 0 2 2 1 0 1 2 0 0 0 0
Barometric Filter 0.0002 0 0 0 0 0 0 0 0 0 0 0 0
GS Filter 0.0001 0 1 0 0 0 0 2 0 4 0 0 0
AHD Outer Loop 0.0004 0 0 0 0 1 1 0 0 1 0 2 0
GSCD Outer Loop| 0.0006 2 1 0 0 0 0 1 0 1 2 2 1
Flare Outer Loop 0.0005 2 2 0 1 0|0 1 2 1 0|0 0
Inner Loop 0.0007 2 1 0 1 3 3 2 2 2 2 | 4 0
Command Monitor | 0.00009 0 1 olo|lo]o]o 0 0 1 0 0
failure probabilities of ATvoter, failures of the Afvoter Effect of Version Reliabilities and Correlation
dominate the system analysis. The expected number of fail- 1000 ‘ ‘ ‘ ‘
ures for DRB, NVP and NSCP systems, for different corre- TLoRewoy
lations, and the failure probabilities of AVoter are shown 800 . Loy
in Figure 6. N0y
i i 60.0 T\ e =--a NVP (0.01)
Failures experienced by a fault tolerant system can be -~ +NVP (0.05)
g --4 NVP (0.1)

classified into two categories, viz., detected and undetected.
Undetected failures lead to an unsafe operation of the sys-

Expected Number of Failures

tem, and it could be highly undesirable if the system is a 200

part of a safety-critical application. The two sources of un- = .
detected failures are: a related fault among two or more au- °%%0 o2 0w ok 0o =
topilot versions, and a related or an independent fault in the Reliabilty of Indlvidual Versions

AT /voter. Next we study the effect of a related faultamong ~ F1gure 7. Effect of reliability and correlation

two or more software versions on the percentage of unde-ability of a related fault among the AT and the alternates
tected faults for the DRB, NVP and NSCP systems. The in case of a DRB is set to the same value as the probabil-

failure probability of the voter is assumed to @601 and ity of a related fault among the alternates. The probability
that of the versions is assumed to&95. The probabil-  of a related fault among all the three versions in case of
ity of a related fault among any two versions, and among NVP, and three and four versions in case of NSCP is set
all the versions was set 0167, 0.2, 0.4, 0.6, and0.8 re-  t0 0.01. Figure 7 shows the effect of these two parameters

spectively. The percentage of undetected faults increasesn the failure behavior of the three fault-tolerant architec-
significantly in case of NVP, as the correlation increases, tures. As expected, for a fixed probability of a related fault
whereas the increase in the percentage is not so dramatigmong the alternatgsersions, and alternatéAT, the ex-

in case of NSCP. ThUS, NVP is more vulnerable to related pected number of failures far000 runs decreases, as the

faults from the safety view point than NSCP. Comparison ajternategversions and AT become more reliable. The fig-
with the results obtained for the DRB system also indicates yre indicates that the NVP system is more reliable followed
that the NSCP exhibits least vulnerability to related faults by the DRB system, followed by the NSCP system. It is
among the three fault tolerant systems. noted however, that the AT in case of the DRB system is

We then study the combined influence of two parameters.assumed to have the same failure probability as that of the
viz., the reliabilities of an individual version, and the prob- 2lternates, which is a very pessimistic view. From safety
ability of a related fault among two versions on the failure POt of view, NSCP would be better than DRB and NVP.

behavior of the DRB, NVP, and NSCP systems. A single  Suppose the reliability objective is specified as the ex-
experimentin this case consisted of varying the reliability of pected number of failures that would be tolerated 0
the individual versions from.90 to 0.995 for a fixed value runs of theautopilot system, and that this objective could

of the probability of a related fault among twastopilot be achieved by adjusting two parameters, viz., the reliabili-
versions. The failure behavior was simulated with correla- ties of the individual versions, and the correlation among the
tion among two versions set €001, 0.05 and0.1, for 1000 versions. Let us assume that the versions are available with

runs of theautopilot. Since the AT in case of the DRB a basic reliability 0f).90. For every additional % increase
system is significantly more complex than the voter in case in the reliability, we incur a cost af, prp in case of DRB,

of the NVP/NSCP system, and in the extreme case could ¢; yvp in case of NVP, and; nyscp in case of NSCP, for

be another alternate, we assume the failure probability ofevery alternatéversion. Similarly, the basic probability of
the AT to be the same as one of the alternates. The proba related fault among the two alternates, and alternates and
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Figure 6. Effect of correlation and failure behavior of AT /Voter
AT in case of DRB, and any two versions in case of NVP
and NSCP i9).2, and it Costs», prp for DREB, CQ’NVP.for Table 3. DRB, NVP and NSCP systems’ costs
NVP, ¢z nscp for NSCP, for every additional reduction by System | R O T ers [ can | Car)vorer | Total Cost
0.01. In addition, it costs: 41 to build the AT in case of the DRB_ | 0.939 | 0.0L | 500 | 300 50 127.5
DRB system. Thus, the cost of the DRB system denoted by [P | 0.922 | 0.0l [ 500 | 300 0 63.0

NSCP 0.96 0.05 500 300 0 165
cprB, cost of the NVP system denoted byy p, and the
cost of the NSCP system denoteddays p are given by:
cprB = 2% (Rprp — 0.90) x ¢1 prB + cAT )
+(Cpre — 0.30) * c2 DrB 0.939, and a correlation of.01 among the alternates, and
the alternates and the AT, (2) NVP with version reliabilities
ecnve = 3% (Rnvp —0.90) x c; Nvp of 0.922 and a correlation 0f.01 among any two and all
+(Cnvp — 0.30) % ¢ Ny (2) three versions, and (3) NSCP with version reliabilities of
’ 0.96 and a correlation dd.05 among any two versions, and
enscp =4 (Rnscop — 0.90) * ¢, nscp a correlation 0f0.01 among all four versions, as indicated
3) in the Figure 7. We note that many more possibilities exist
+(Cnscp = 0.30) x e2nscp than the ones listed here, however, we consider these three
In Equations (1), (2), and (3Rprp denotes the reliabil-  possibilities merely to illustrate the use of simulation to aid

ity of a single alternate of the DRB systefiy p denotes  decision making under such scenarios. Thus for costs sum-
the reliability of a single version of the NVP system, and marized in Table 3, the cost of the DRB alternativé4§.0
Ryscp denotes the reliability of the individual version of units, NVP alternative i90.0 units, and NSCP alternative
the NSCP system. Similarlg;p g, denotes the correlation is 165.0 units. The choice according to a minimum cost
among the two alternates, and the alternates and the AT ircriteria would then be the NVP alternative. This is a very
case of the DRB system, arfdyyp andCyscp denote simplistic cost model, and can certainly be enhanced to in-
the correlation among any two versions of the NVP and clude other costs. However, we do emphasize, that this was
NSCP systems respectively. For example, if the expectedused merely as an illustration to demonstrate the fact that
number of allowable faults in000 runs is specified to be  studies like the one described cannot be easily obtained an-
approximately20, and we have to choose among three op- alytically, but can be incorporated into the basic simulation
tions, viz., (1) DRB with individual version reliabilities of  procedures very easily.
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5 Conclusions and Future Research

In this paper, we have demonstrated the utility of sim-
ulation to study the failure behavior of a software system

(4]

based on its architecture through two case studies. One 5
case study was of a terminating application and the other [5]

was of a real-time application with feedback control. Sim-

ulation was also used to assess the sensitivity of the three

fault tolerant systems, viz., DRB, NVP, NSCP to various

(6]

parameters such as the probability of a related fault among

the two or more versions, failure behavior of the /Aidter,

etc. Combined influence of two parameters on the failure
behavior was also studied using simulation. A simple cost

model was developed to demonstrate the effectiveness of
simulation to study trade-offs and to choose among a set of [7]

competing alternatives. Results demonstrate the flexibility
offered by simulation to study the influence of various fac-
tors on the failure behavior of the applications for single as
well as fault-tolerant configurations. Simulation thus holds
a lot of promise for modeling a detailed system structure,
however, it may be expensive in case of some systems.

(8]

As demonstrated in this paper, simulation techniques are

not restricted to the assessment of fully functional systems.

In fact, one of the biggest advantages of these techniques,

is that they can be used to evaluate the reliability and per- [9] J. R. Horgan and A. P. MathurHandbook of Soft-
formance, as early as the architecture phase in the life-cycle

of the software. This can aid in decision-making such as

which components should be re-used, and which should be

developed in-house, and allocation of reliabilities to the in-

dividual components so that the overall reliability objective [10]

is met. It can also help in the identification of reliability

and performance bottlenecks, so that remedial actions can

be taken before it is too late¢oo expensive.

In order for these techniques to be used widely on large
scale systems, they need to be encapsulated and made ava
able in a systematic, user-friendly form. Future research in-
cludes the design and implementation of a tool, to facilitate

L4

reliability and performance assessment of component-based

software systems.
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Appendix A: Simulation Procedures }

Procedure A: Single Event Simulation Procedure

/* Input parameters and functions are assumed

to be defined at this point */

double single_event (double t, double dt,
double ( *lambda) (int,double))

{
int event = 0;
while (event == 0) {
if (occurs (lambda (0,t) * dt))
event++;
t += dt;
}
return t;
}
Procedure B: Simulation Procedure for Terminating
Application

double time_to_completion(double dt, double w)

{
int curr_comp = 1; double t = 0;
while (curr_comp != n)
{

generate_failure(curr_comp,dt);

/* Calls procedure A and checks if a failure
occurs based on Lambda(n,tau,t) */

t += phi;
temp = random(); sum = 0.0;
for (i=1;i<=n;i++)

{
sum += w(curr_comp,i);
if (temp <= sum)
break;
}
curr_comp = i
}
return t;

Procedure C: Simulation Procedure for Real-Time

Application with Feedback Control

void control_appl(double dt)

int time_frame_num = 0;
while (time_frame_num <= n)
{
/* Check for failure in mode 1*
if (n_1 <= time_frame_num < n_1
+ n_2)
check_fail_mode_1(dt);

/* Check for failure in mode 2 through k*/

}
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