
Optimization of Reliability Allocation and Testing Schedule for Software Systems

Michael R. Lyu
S amp at h Rang ar aj an

Aad P. A. van Moorsel
Bell Laboratories, Lucent Technologies

600 Mountain Avenue, Murray Hill, NJ 07974
{ lyu,sampath,aad} @ research.bel1-labs.com

Abstract

To ensure an overall reliability of an integrated software
system, software components ofthe system have to meet cer-
tain reliability requirements, subject to some testing sched-
ule and resource constraints. The system testing activity
can be formulated as a combinatorial optimization prob-
lem with known cost, reliability, effort, and other attributes
of the system components. In this paper we consider the
software component reliability allocation problem f o r a sys-
tem with multiple applications. The failure rate of compo-
nents used to build the applicationsare related to the testing
cost through various Vpes of reliability growth curves. We
achieve closed-form solutions to problems where there is
one single application in the system. Analytical solutions
are not readily available when there are multiple applica-
tions; however; numerical solutions can be obtained using
a non-linear programming tool. To ease the specijication
of the optimization problem, we develope a GUI front-end
to existing mathematical software. We present a systematic
outline ofthe problem formulation and solution, and apply
this to an example of a telecommunication software system.

1. Introduction

Modern complex software systems are often developed
with components supplied by contractors or independent
teams under different environments. For systems integrated
with such modules or components, the system testing prob-
lem can be formulated as a combinatorial optimization prob-
lem with known cost, reliability, effort, and other attributes
of the system components. The best known system relia-
bility problem of this type is the series-parallel redundancy
allocation problem, where either system reliability is maxi-
mized or total system testing cost/effort is minimized. Both
formulations generally involve system level constraints on

allowable cost, effort, and/or minimum system reliability
levels. This series-parallel redundancy allocation problem
has been widely studied for hardware-oriented systems with
the approaches of dynamic programming [7, 161, integer
programming [8, 3, 131, non-linear optimization [19], and
heuristic techniques [17, 41. In [5] the optimal apportion-
ment of reliability and redundancy is considered for multiple
objectives using fuzzy optimization techniques.

Some researchers also address the reliability allocation
problem for software components. The software reliability
allocation problem is addressed in [21] to determine how re-
liable software modules and programs must be to maximize
the user’s utility, subject to cost and technical constraints.
Optimization models for software reliability allocation for
multiple software programs are further proposed in [2] using
redundancies. These papers, however, do not take testing
time of software components and the growth of their relia-
bility into consideration. Optimal allocation of component
testing times in a software system based on a particular soft-
ware reliability model is addressed in [12], but it assumes
a single application in the system, and the reliability growth
model is limited to the Hyper-Geometric Distribution (“S-
shaped”) Model [20].

In this paper we discuss a generic software component
reliability allocation problem based on several types of soft-
ware reliability models in a multiple application environ-
ment. This is the first effort to apply reliability growth
models for guiding component testing based on multiple ap-
plications. We will also give the solution procedure for the
single application environment, for general continuous dis-
tributions, thus generalizing [121. We examine the situation
where software components may interact with each other, a
condition not considered by other studies. We also include
scenarios for fault-tolerant attributes of a system where some
component failures can be tolerated. The problem specifi-
cation and solution seeking procedure, as well as a software
tool for the automatic application of this procedure, are pre-
sented in this paper as an innovative mechanism to handle

336
1071-9458/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

http://research.bel1-labs.com

the difficult yet important reliability allocation problem.

These projects are described in the following case studies.
Several real projects motivate us for this investigation.

Distributed Software Systems. Distributed telecom-
munication systems often serve multiple application types,
which execute different software modules, and have dif-
ferent reliability requirements. For instance, in telephone
switches, 1-800 calls require processing different from stan-
dard calls, and similar examples exists in call centers, PBXs
or voice mail systems.

During the testing of such systems, reliability is a prime
concern, and adequate test and resource allocation are there-
fore very important. In the example we discuss in Section
6.2 it will become clear that trustworthy reliability growth
curves can help considerably in efficient testing and debug-
ging planning of such systems.

Fault-Tolerant Systems. Figure 1 shows a layered soft-
ware architecture model that can be applied to many systems.
Each layer can include several software components. Not
all systems will necessarily include all the layers.

We conjecture that error propagation between layers only
occurs in one direction, namely upwards. Thus, faults in the
hardware that are not contained can propagate up to the oper-
ating system or to the application software; however, faults
not contained in the middle-ware layer will not propagate
to the operating system but can propagate to the application
software layer.

Error propagation occurs from layer i to layer i+ 1 if layer
i has no fault tolerance mechanisms, i.e., the layer does not
exhibit fail-silent behavior. From a modeling perspective,
this layer would contribute higher failure rate to the overall
system than a layer with error detection and recovery mech-
anisms. Note that error detection and recovery software can
reside in some or all of the layers.

In Section 5.2 we will see how fault-tolerant mechanisms
can be included in the reliability allocation problem formu-
lation, provided that coverage factors are available.

Object-Oriented Software. Object-oriented software
often allows for a clear delineation between different soft-
ware components. If object-oriented software methods are
being used, the relation between components and applica-
tions can be assessed, and testing time can be assigned in
the most efficient way.

Another optimization problem in object-oriented soft-
ware testing arises when the best combination of objects
must be selected to make an application as reliable as possi-
ble. This optimization problem is an example of a ‘structure-
oriented’ optimization problem, and can be solved by using
methods presented in, e.g., [21,2]. Our intent in this paper is

Figure 1. Layere!d software architecture
model.

to optimize with respect to software development and test-
ing, not with respect to software structure. The combination
of structure-oriented optimization methods in [2 1, 21 and
the development-oriented methods in this paper can provide
powerful tools in software system design.

The remaining sections of this paper are organized as
follows: Section 2 specifies the optimal reliability alloca-
tion as two related problems: a problem with fixed target
failure rate, and a problem with fixed debugging time. The
analytical solutions to these two problems are presented for
the single application environment in Section 3: Section 3.1
for the exponential distribution, and Section 3.2 for gen-
eral distributions. Section 4 discusses how the solutions
for the problems in multiple application environment can be
obtained. Our results are extended in Section 5.1 to con-
sider software failure dependencies, and in Section 5.2 to
incorporate fault-tolerant systems. Section 6 proposes the
reliability allocation problem specification and solution pro-
cedure into a step-by-step framework, and applies it to a case
study. Section 7 describer; the design and implementation of
a software tool for systernatic application of the reliability
allocation framework. Conclusions are presented in Section
8.

2. Problem Specificaition

The above case studies can be described by a general
problem of assigning failure-rate requirements (at the time
of release) to software components that will be used to
build various applications, given that the applications have
pre-specified reliability requirements. Consider the situa-
tion where a set of N software components C1, . . . , C N ,

337

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

can be used in various combinations for different appli-
cations. Let there be M such applications A I , . . . , AM,
and let each application have a pre-specified reliability
requirement R1(1), . . . , R M (~) . By investing develop-
ment/testing/debugging time in components, component
failure rates can be made such that all applications meet
their reliability requirement.

Therefore, the goal in reliability allocation is to assign
failure-rate requirements to the N components, such that all
the pre-specified reliability requirements of the M applica-
tions are satisfied, at the minimal cost. In what follows, we
will characterize the cost in terms of the component test-
ing (including debugging) time. The optimization criterion
thus is the minimization of this testing time. Furthermore,
to relate the failure rate of components with the amount of
testing time, we use reliability growth models.

A variation to the above problem formulation arises if a
fixed amount of testing time is available for each application.
This requirement may occur because of the constraint on
the cost incurred by the component developer and tester. In
that case we take as objective function minimization of the
failure rate of all the components.

In what follows we will continuously discuss these two
variations of the optimization problem, and they will be
referred to as the ‘fixed failure rate constraint’ problem and
‘fixed testing budget’ problem, respectively.

2.1. Fixed Failure Rate Constraint

In the fixed failure rate case, we assign testing time to
components such that the applications meet their reliability
requirements, and the testing time is minimized. Through-
out this paper, we assume that the failure rates of components
relate to the reliability of applications through the exponen-
tial relation Ri(t) = e - 6 z t , where 6; is the sum of failure
rates of the components in application Ai , i = 1, . . . , M .
Furthermore, we assume that the testing time Di invested in
component i decreases the failure rate X i according to some
reliability growth model. Note that we assume that once the
software components are released, their failure rates stay
constant. This is reasonable given that the application de-
veloper does not debug or change the component that is used.
In this context, we can formulate the allocation problem as
follows.
The objective function is:

Minimize D = D1 + 0 2 + . . . + D N ,

subject to the constraints:
c r l i X l + (T ~ ~ X ~ + . . . + U . I N X , Y 5 61 (forapplicationAl),
cr21XI + ~ 2 2 X 2 + . . . + 6 2 N XN 5 62 (for application A2),
. . .

C T ~ M ~ X I + O . M ~ X ~ + . . . + U M N X N 5 6~ (forapplication
i l M) >
where uij = 1 if Ai uses component Cj, and aij = 0
otherwise. Note XI,. . . , A N 2 0; D i , . . . , D N 2 0; and
51, . . . , E M 2 0. For the sake of notational simplicity, we
assume that the testing times Di are equally ’important’
(costly) among the N components. If this is not the case
one can apply weight wi to each component testing time Di
in the objective function.

Since a reliability growth curve can be very complex,
the objective function is non-linear, and hence this is a gen-
eral non-linear programming problem. In Section 3.1.1 we
consider the closed-form solution for the problem with a
single application, and in Section 4 we discuss the numeri-
cal solution of the general case. Note also that we assume
independence of components with respect to their failure
behavior. This assumption may not be appropriate when
software components may interact with each other, poten-
tially causing additional failures.

2.2. Fixed Testing Budget

In the fixed testing budget case, we distribute per ap-
plication a specified amount of testing time over its com-
ponents, such that the application reliability is maximized.
Consequently, the total failure rate of the components is the
objective function to be minimized, leading to the following
formulation as a mathematical programming problem.
The objective function is:

Minimize X = XI + X2 + . . . + A N ,

subject to the constraints:
allDl + nl2D2 + . . . + U I N D N 5 dl (for application

AI),

A2)>

U 2 1 0 1 + ~22D2 + . . . + U ~ N D N 5 d2 (for application

. . .
U,+I~ D1+(7~2D2+. . .+UMNDN 5 d M (for application

where d l , d?, . . , d M are the fixed amount of testing times
that are available for components used by applications
A i , AI, . . . , AM, respectively. As in the previous problem,
all variables are positive. Weight functions for the failure
rates A, can be introduced in the objective function to reflect
their impact.

Of special interest is the single application case. This
case corresponds to the optimization problem where all ap-
plications together have a budget restriction on the testing
time. The fixed testing budget problem is a variant of the
fixed failure rate problem, and can be solved by similar
means. In Section 3.1.2 and Section 4, we discuss the case
of single and multiple applications, respectively.

AM),

338

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

3. Solutions for Single Application Environ- If we expand the equation from the first condition and
take the partial derivatives w.r.t XI, Xz, . . ., A N , we can get
the following equations, respectively.

ment

When there is only a single application in the system,
an explicit solution of the reliability allocation problem can
usually be found. In this section we give the general solution
for a large class of reliability growth models (see Section
3.2). To explain the solution procedure, we first provide in
Section 3.1 the solution assuming an exponential reliability
growth model.

3.1. Exponential Reliability Growth Model

The exponential reliability growth model [9, 151 relates
the failure rate X i (for component i) with the invested testing
time Di through:

A . - Xioe-/l‘D‘ z -

Xi0 is the initial failure rate at time 0, and pi is the decay
parameter. Over an infinite time interval faults will be
found. Note that X i is a function of time, although we do not
explicitly express it in the notation. This reliability growth
model is in common use, and we will now determine the
solution for the allocation problem in the single application
environment.

3.1.1 Fixed Failure Rate Constraint

-1
-- + B = 0 .
P N X N

Given that the p and the X values are all positive, it is clear
that B > 0, satisfying the second condition. From the above
equations we also note that 1-11 A1 = ~ 2 x 2 = . . . = ~ N X N .
Together with this observation and the third condition, we
get the following solution for the obtained failure rates.

6 = + . . . + ”I’
P2 P N

PI
P N

The testing times that should be allotted to the software
components now follows from substituting the above values
into the equations for D1, D2, . . ., D N . For example, D I is

Xnr = - A] .

The fixed failure rate constraint problem can be formulated
in the single application environment, assuming exponential D, = I l n [”,lo 1 .
reliability growth curves, as: I t ~ t - + ~

to

subject to:

X 1 $ X 2 + ’ ” $ X N < 6 .

To solve this, one can use the Lagrange method as follows
[11. The optimization problem is equivalent to finding the
minimum of:

F (X I , ” . , X N) = D + B ((X i + . . . + X N) - ~) ,

where B is a Lagrange multiplier. The necessary conditions
[I] for the minimum to exist are:

1. A(F(X1, . . . , A N)) = 0 where A is the partial deriva-

2. B > 0,

3. X I + A 2 + . . ’ + X N = 6.

tive operator,

Note that DI ispositiveif .XI >. Xlo. To assure that no impos-
sible solutions arise, we present in Section 3.2 a procedure
that checks for validity conditions and guarantees that the
optimal solution follows a valid strategy.

Example 1: Consider an example where a system
has three components C1, C2, and C, and one applica-
tion A which uses all the components. All the three
components have an initial failure rate of 5 failures/year
(A10 = Azo = A30 = 5/yr). Assume that the application
requirement states that the: failure rate of the application (5)
cannot be more than 6/yr.. Also assume that all the ,U val-
ues are the same and equals 1. In this case, we note that
X I = Xz = A3 = 2/yr and D1 = D2 = 0 3 = ln(2.5). That
is, when the initial failure rates and the rate of reduction in
failure rates with debugging is the same for all the compo-
nents, then an average testing policy, where all the com-
ponents’ failure rates are lbrought down to the same value,
provides a solution that meets the application requirement
with minimum testing time spent; the testing time spent on
each component is the same.

339

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

Example 2: Now consider an example where the three
components have initial failure rates which are different
(say, X l o = 5/yr , A20 = 6/yr , A30 = 7/yr). Assume that
6 = 6/yr. Also assume that the p values are all identical
and equal to 1. In this case, again we find that the required
X values are the same and equal 2. Here again, an average
testing policy provides a solution that meets the application
requirement with minimum testing time spent. But now, the
testing time spent on each component is different because the
initial failure rates are different. In this case, DI = In(s) ,
0 2 = In(;) and D3 = In(;). The testing time spent on
each component is now proportional to the logarithm of the
initial failure rate.

Example 3: Let us now assume that the three components
have initial failure rates which are the same (X I O = A20 =
A30 = 5/yr), and that the p values are different (say, pl = 1,
p2 = 2, ,u3 = 3). Again, assume that 6 = 6. Now,
computation tells us that to minimize the testing time, we
require X I = A4 = 3.273, A2 = k4 = 1.636 and
A 3 = &4 = 1.091. The optimal testing policy that leads
to the above failure rates will require a total testing time
of In(5 x 1 7) 834 + 5 x 1 834) + f In(-) = 1.49. An
average testing policy which assigns X I = A 2 = X3 = 2
leads to a total testing time of In(i) x 1.834 = 1.68 which
is more than that of the optimal testing policy.

3.1.2 Fixed Testing Budget

The fixed testing budget problem can be formulated in the
single application environment, assuming exponential reli-
ability growth curves, as:

Minimize X = X I + A 2 + . . . + AN,

subject to the constraint

DI + D ~ + . . . + D N 5 D

Again, this can be solved using the Lagrange method, which
uses that the optimization problem is equivalent to finding
the minimum of

where 0 is the Lagrange multiplier. Again, the necessary
conditions for a minimum to exist are:

1 . A(F(D1, Dz, . . . , D N)) = 0 where A is the partial
derivative operator,

2 . e > 0,

3. D1 + D2 + . . . + DN = D.

If we expand the equation from the first condition and
take partial derivatives with respect to Di, we get:

Xio(-Pie- PzDt) + e = 0.

Given that pi is positive, we note that e is positive and
Thus, from the hence the second condition is satisfied.

above equation, we get

. . .I x ~ ~ (- ~ ~ ~ - P N D N 1.
Using the above equation together with the constraint that
D1 + D2 + . . . + DN = D , we get

The above equations determine how the testing times
should be allocated to the different components. The min-
imum X value that is obtained follows directly from the
values for the testing times.

It is interesting to note that only if the initial failure rates
Xio's and the pi values are the same, an average testing
policy where the available testing time is equally divided
among the components will provide an optimal solution.
If either the Xio's or the pi values are different, then we
need to compute the above expressions to obtain an optimal
allocation of the testing time.

Example 4: Consider the parameters from Example 3
where the initial failure rates are the same (A10 = =
A30 = 5/yr), and the ,U values are different (say, p1 = 1,
p2 = 2, p3 = 3). Assume that the available testing time
is lyr. Then, D1 computes to 0.1567, 0 2 computes to
0.4249 and D3 computes to 0.4184. The optimized failure
rate evaluates to XI = 4.27/yr, A 2 = 2.14/yr and A3 =
1.43/yr for a total failure rate of 7.84/yr. If an average
allocation policy is used, then D1 = D2 = 0 3 = 0.333 and
the failure rates evaluate to XI = 3.58/yr, X2 = 2.57/yr
and A3 = 1.84/yr for a total failure rate of 7.99/yr which
is worse than the optimal allocation. Let us try another
allocation. Assume an allocation where D1 = 0.4, D2 =
0.4 and 0 3 = 0.2. In this case, we note that X1 = 3.35/yr,
A2 = 2.25/yr and X3 = 2.74/yr for a total failure rate of
8.34/yr.

340

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

3.2. General Reliability Growth Models

In this section we provide the procedure to obtain the
closed-form solution for generic reliability growth model.
The only restriction to the growth models is with respect
to the first and second derivatives. The solution procedure
follows directly from the solution of the Lagrange method,
except that impossible solutions must be prevented. It gen-
eralizes the procedure for the hyper-geometric model given
in [121 to general continuous distributions.

We consider the fixed failure rate constraint case. Let
the relation between the failure rate and the testing time be
given by some function f, that is:

Di = ti(&).
Now, without loss of generality, the N components can be
reordered according to the absolute values of the derivatives
at the beginning of the debugging interval, at which X i =
Xio. That is:

for i = 1 , 2 , . . . N - 1. Using this ordering, the procedure
to obtain the closed-form solution is as follows:

1. li = N;
2. For i = 1 to I<

express X i as a function
g i (x ~) of XK, by equating

3. Solve XK from C i = , g i (X ~) = 6 ;
4. If X K > X K O then

xfi(&) d = & f K (X K) ;

K

I< = li' - 1 and goto step 2;

For i = 1 to I<
else

Compute X i from gi(XK) and the
solution of XK in step 3 ;

The important feature in the algorithm is the ability to
determine which component should be assigned zero testing
time if an impossible solution is obtained (an impossible
solution arises if X i > X i0 for some component). If the first
derivatives &fi (Ai) are less than zero for all i , and the
second derivatives -&fi(Ai) are greater than zero for all
i , then it can be shown that the component ranked lowest
according to the derivatives at time zero can be discarded.
This happens in step 4 of the algorithm. In other words, the
sufficient conditions on the derivatives say that the failure
rate decreases over time, and that the rate of decrease gets
smaller if time increases. Note that if the derivatives of the
growth curve are less regular, specific conditions must be
established to determine which components should not be
assigned testing time.

The above procedure can be similarly formulated for the
fixed testing budget problem. We will not do so here.

Pareto Growth Model As an illustration, let us consider
the Pareto distribution and consider the fixed failure rate
constraint problem. The failure rate is given by & (t) =
ciO(til + t)- ' l2, where cia,, ~ i l and ti2 are constants. Hence,
we have for the testing tirne:

The Pareto class of failure-rate distributions is useful be-
cause it is a generalization of the exponential, Weibull and
gamma classes [11, 141.

One can show that the first derivative is less than zero, and
the second derivative is greater than zero, provided E , O , t i l

and ~ i 2 are all positive. Hence, taking the partial derivative
of Di w.r.t. Xi , we get in step 2 of the algorithm (I< = N in
the first iteration):

In step 3, we have to equate the total failure rate to 6. In
this case, we have to do that numerically, since a closed-form
expression using the Pareto distribution is too intricate. As
soon as we obtain a possible solution for XK, we compute
the individual failure rate using the relationship

Example 5: Assume the following parameters with
Pareto distribution. €10 =: 5, € 1 1 = 1, 612 = 3, €20 = 2,

= 1, = 6, '= 4, €31 = 1, €32 = 5. The
optimal policy requires the following failure-rate values:
XI = 3.395, X2 = 1.556, A? = 2.047. The total testing time
is 0.3236.

4. Solutions for Multiple Application Environ-
ment

When there are multiple applications in the system, the
reliability allocation problem becomes too intricate to solve
explicitly. However, in this case its solution can be obtained
using non-linear programming software such as AMPL [6].
Let us here show how this procedure works for an example
of a 3-component, 3-application system, by specifying and
solving it using the RAT tool presented in Section 7.

Example 6: There are three components CJ, C2 and Cx
which can be used to build three applications A I , A2 and A3.
A I is built using CI and C2, A2 is built using c(2 and C3 and
A3 is built using C1, C2, and Cj. Thus, there are multiple

341

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

applications, each with a failure-rate constraint. The fixed
failure rate constraint problem can thus be formulated as:

M i n i m i z e D = D1 + D2 + . . . + D N ,

under the constraints:
X I + X 2 I 61 (for application AI) ,
X2 + X3 5 62 (for application A2),
X I + X2 + X3 5 63 (for application A3).

The fixed testing budget problem can be formulated as:

Assume the parameters from Example 3 where the initial
failure rates for the three components are the same (X l o =
A20 = A30 = 5/yr), and the p values are different (say,
p1 = 1, p2 = 2 , p3 = 3). Assume that the failure-rate
requirements for the three applications are 61 = 6, 62 = 5 ,
63 = 7. Modeling this as a non-linear optimization problem
with multiple constraints in AMPL and using the MINOS
solver, weget the followingresult: XI = 3.818, A2 = 1.909
and X3 = 1.273. The total testing time for this failure-
rate allocation evaluates to 1.207 yrs; (the individual testing
times can be computed using the failure-rate allocation for
each component). It is interesting to note that the failure-
rate constraint for A3 is strictly satisfied; for AI with the
failure-rate requirement of 6/yr, it is not strictly satisfied
(XI + = 5.73), similarly for A2 whose requirement is
5/yr (A2 + X3 = 3.18). Now consider an average testing
policy where the constraint for the application A3 is strictly
satisfied without violating the other constraints. That is,
XI = 2.333, XZ = 2.333 and A 3 = 2.333. The total testing
time based on this average testing policy evaluates to 1.39
yrs, much larger than that obtained with the optimal testing
policy.

5. Software Failure Dependencies and Fault-
Tolerant Systems

The basic reliability allocation problem formulation can
be extended in various ways. Here we discuss two exten-
sions, software failure dependencies in Section 5.1 and fault
tolerance aspects in Section 5.2.

5.1. Software Failure Dependencies

In the above discussions we assume software compo-
nents fail independently. In reality, this may not be the

case. For example, the feature interaction problem[101
describes many incidents where independently developed
software components interact with each other unexpectedly,
thus causing unanticipated failures. We incorporate this ex-
tra failure incidence by introducing pair-wise failure rates.
Specifically, X i j represents the failure rate due to the inter-
action of components Ci and Cj, where i < j .

The constraints of the original problem are then modified
as :

a11X1 + anX2 + . . . + a lNXN +
E{v(i>j)l'12=I ,alJ=l} X i j 5 61 (for application A I) ,

a21X1 + a22X2 + " . + 6 2 N X N +
'{ v(i , j) I u21=1 lozJ = I 1 X i j 5 62 (for application A2),

. . .

D = Dl + D2 + . . .+ D N .

The fixed testing-time problem can be obtained by adding
the pair-wise failure rates in the objective function.

5.2. Fault-Tolerant Systems

In the situation where the system possesses fault tolerant
attributes, we can introduce coverage factors [181 into the
original problem. Coverage is defined as the conditional
probability that when a fault is activated, it will be de-
tected and recovered without causing system failure. With
ci denoting the coverage measure for the component Ci, we
can reformulate the fixed failure rate constraint case, using
p i = 1 - c i , as:

M i n i m i z e D = D1 + 0 2 + s . . + DN,

subject to:

tion >41),

cation A2),

a l l p l X i + ~ 7 1 2 ~ 2 x 2 + . . .+ a l ~ p r \ i X ~ 5 61 (for applica-

mipi X I + ~22p2X2 + . . . + U ~ N P N X N I 62 (for appli-

. . .

C,wIpiXi + a ~ 2 p 2 X 2 + . . . + ~ M N ~ N X N 5 6nr (for
application A]\,).

6. Reliability Allocation Solution Framework

We have discussed the reliability allocation problem in
terms of two constraints: fixed failure rates or fixed testing
budgets. We also discussed the problem to account for

342

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

component interactions. The fault tolerant attributes in the
system to tolerate component failures are also incorporated.
In this section we describe a framework for specifying and
solving a general reliability allocation problem, and describe
how this procedure is applied to a specific application.

6.1. The Problem Specification and Solution Proce-
dure

The following procedure specifies the reliability alloca-
tion problem, and obtains solutions either analytically or
using numerical methods.

1. Determine if it is a fixed failure rate constraint prob-
lem or a fixed testing budget problem.

2. Determine if there is single application or multiple
applications in the system.

3. Set the constraints on the failure rates or testing bud-
gets.

4. Obtain parameters of the reliability growth curves of
the components.

5. Determine if the components interact with each other.
If so, obtain pair-wise failure rates.

6. Determine if there are fault tolerance features in the
system. If so, obtain coverage measures for each
component.

7. Format the problem as a non-linear programming
problem with appropriate parameters.

8. If the solution is analytically available, obtain it. Oth-
erwise, use the reliability allocation tool (see Sec-
tion 7), based on the mathematical programming tool
AMPL and solver MINOS, to obtain the results.

In the following sub-section we examine a case study
where a required reliability allocation problem is specified.
We illustrate how the above procedure is applied to the
project to obtain numerical solutions for various scenarios.

6.2. A Hypothetical Example

Let us consider a distributed software architecture that is
used for switching telephone calls. Different call types will
exercise different software modules, and we break up the
system in components such that reliability growth models
are available for all components. Of course, prerequisite to
our analysis is the availability of reliable growth models, but
the example will clearly show that i t is beneficial to make
decisions based on such models.

70

5 60

n 5 50

% 40

F 30 m

c

0

:
E

2 20
.- c

basic -
scheduling

call proc
signaling t
signaling 61 - - - -

2 4 8 16 32 64 $28 256
Total Testing Time

Figure 2. Total available testing time versus
the optimal allocation for the components.

Figure 2 shows the total amount of testing time avail-
able, versus the time allocated to the individual components.
Following the framework in Section 6.1 we solved i t as a
fixed testing budget problem with multiple applications. We
assumed, however, that the testing time is shared by all ap-
plications, that is, we conisider the special case mentioned
in Section 2.2 where the constraints map to a single con-
straint. Furthermore, applications are weighted based on
their relative frequency of occurrence given in Table 1 (the
RAT tool described in Section 7 automatically converts this
to weights on the component failure rates in the objective
function.) Using weights we thus include parts of the op-
erational profile (see, e.g.., Chapter 5 in [11 1) in the model
(see Table 1 for the relative frequencies of the different call
applications). We obtainled solutions for the testing time
ranging from 2 to 256, and assumed no failure dependency
or explicit fault-tolerant mlechanisms. We input the problem

343

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

Component Xi0 p z standard I
basic 10 1.0 in
scheduling 20 1.0 in
call proc. 200 0.2 notin
signal I 200 0.5 in
signal I1 20 1.0 in
frequency 0.5

in the RAT tool, and solved it using AMPL and MINOS.
Figure 2 shows very clearly the dependence of the optimal

schedule on the total testing time. For instance, while the
scheduling component should not be assigned debugging
time if a small budget is available, it takes the largest chunk
if the testing budget is large.

The irregular assignment of testing time to individ-
ual components in Figure 2 cannot be obtained easily by
means other than mathematical modeling. With back-of-
the-envelop calculations, one cannot expect to get such pre-
cise results, and one would be bound to make inefficient
decisions.

4

standard I1 1-8G0 I 1-800 I1
in in in
in in in
in in in
in in not in
in not in in
0.3 0.1 0.1

1000

100

10

basic - ’
scheduling

call proc
signaling I

signaling I I - - - -

0.01 I I
0.001 0.01 0.1 1 10 100

Parameter Growth Curve Scheduling

Figure 3. Parameter p in growth curve of
scheduling software, versus the optimal al-
location for all components.

Figure 3 shows the parameter X of the reliability growth
curve corresponding to the scheduling software, versus the
allocation of testing time to the components. In this case,
we took the allowed failure rates per application to be 4, and
solved the fixed failure rate constraint problem.

Clearly, the parameter value greatly influences the opti-

mal solution. If the decay parameter of the reliability growth
model of the scheduling component is small, it takes enor-
mous investments in debugging time to reach the desired
failure rates. If the decay parameter is relatively large, it
takes minor effort for the scheduling component to obey to
the failure rate restrictions.

The correlation between the optimal testing time and the
parameters of the reliability growth curve shows the im-
portance of data collection to establish trustworthy growth
models. Without such models, decisions about reliability
allocation are bound to be sub-optimal.

7. RAT The Reliability Allocation Tool

We have designed and built a reliability allocation tool
(RAT) with a CUI based on a Java Applet. The tool allows
multiple applications to be specified and allows optimiza-
tions to be performed both under the fixed failure rate and
fixed testing budget constraints. The user inputs the model
using the GUI and the input is converted into AMPL files
and is solved using the MINOS solver, called by AMPL.
Figure 4 shows the GUI. The tool chooses the optimization
criteria, where optimizing failure rate implies that the con-
straint is fixed testing budget and optimizing testing time
implies that the constraint is fixed failure rate. Components
can be specified in the field named “Components” and appli-
cations can be specified in the field named “Applications.”
The reliability growth distribution can be chosen for each
components independently; parameters for these distribu-
tions can be specified in the box named “Parameters.” At
present exponential and Pareto distributions are allowed, but
we plan to extend the options to specifying other distribu-
tions. In case of a fixed-failure rate constraint, the allowed
failure rate for the applications can be specified in the field
named “Allowed Failure Rate”; similarly, if testing time is
fixed, then this can be specified in the field named “Allowed
Debugging Time.” Information about the components that
have been specified and the applications that have been input
are shown in two separate areas.

344

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

th D m bution

Parameters Model Name

M o d e l l

Meilaqei
Start Ipecdfying Components

Allowed Debuqqlng Time Al lowed Failure Rate A l l w e d Weigh!

YourChuiieof 4 p p I cations sofar
ADp&ton come&n!i Allowed iatlure%tcoxe<kF^"^^ -"" "I-

Your Choice of Components 50 far

Exponential 5 1
Exponential 5 2
txponentlal 5 3

Figure 4. The reliability allocation tool.

YourChuiieof 4 p p I cations sofar
ADp&ton come&n!i Allowed iatlure%tcoxe<kF^"^^ -"" "I-

Your Choice of Components 50 far

Exponential 5 1
Exponential 5 2
txponentlal 5 3

Figure 4. The reliability allocation tool.

As an example of the use of this tool, we consider the
fixed-failure rate problem with multiple applications that we
considered in Example 6. Figure 4 shows the interface after
the components have been chosen and the configurations of
the applications have been specified. In Example 6, there
were three components C1, Cl and C3, each of which fol-
lows an exponential reliability growth model with X = 5
and 11 values of 1 , 2 and 3 respectively. This is shown in
the area titled "Your Choice of Components so far." Three
applications are configured where application AI uses com-
ponents CI, C2, application A2 uses C2,C3 and application
A? uses CI, C2 and C3. The applications have a failure-rate
requirement of 6, 5 and 7 respectively. This is shown in
the area titled "Your Choice of Applications so far." This
model when solved produces the result as shown in the
"Message" area in Figure 5. As presented in Example 6, the
results show that the failure rates of C1, C'2 and C, should be
brought down to 3.8 18, 1.909 and 1.273 respectively. This
will minimize the total testing time used, while at the same
time satisfying the failure rate requirements of all the appli-
cations. The "Message" area also shows the testing times
that need to be spent on each of the components to bring the
failure rates of the components down to the above values. It
is seen that the total testing time for the three components is
as computed in Example 6.

8. Conclusions

We consider the software component reliability alloca-
tion problem for a system with single or multiple applica-
tions, each with a pre-specified reliability requirement. The
system testing activity is formulated as a combinatorial op-
timization problem for overall system failure rate or testing
time and cost. The relation between failure rates of compo-
nents and cost to decrease this rate is modeled by various
types of reliability growth curves.

We achieve closed-form solutions to problems with only
one single application in the system, and we describe how
to solve the multiple application problem using non-linear
programming techniques We also examine the interactions
between the components in the system, and include inter-
component failure dependencies into our modeling formula.
In addition to regular systems, we extend the technique to
address fault-tolerant systems. We further develop a proce-
dure for a systematic approach to the reliability allocation
problem, and describe its (application in acase study. Finally,
we present the design and implementation of a reliability al-
location tool for an easy specification of the problem and an
automatic application of 1 he technique.

The presented methodology gives the basic solution ap-
proach to the optimization of testing schedules, subject tore-

345

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

)ptimlzation Criteria

ompenenti

RBI ability Crowth Distribution

parameters ADDlItatlonl Model Hama
I
r 5 Li --- p--"".- -1 I "

c 3

'OmDonant Set allowed Debugging Time Allowed Failure Rats

C1 C2 C3

Allowed Weight , 11"1
I

G
t 3 .81818
2 1 9 0 9 0 9

p ebug.t~me.m.b~.resnt.on~sxponent~al..tomDo

3 0456092

VOW Choke of ~ ~ p i l c a t i o n r so tac

'Appll&tkn' Cdmponentr Allowed Failure rate a Wecght ' ' w
c1 c 2 6
52 c 3 5
c 1 c 2 c 3 A3 7

A i
a 2

V O U ~ Cholie of Componentr sofar
:Component Dirtdbui ion Pirameterr

Exponential 5 1
Exponential 5 2
Exoenentlai 5 3

:c 1
. c 2
;c3

Figure 5. Display of reliability allocation results.

346

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

liability constraints. This adds interesting new optimization
opportunities in the software testing phase to the existing
optimization literature that is concerned with structural op-
timization of the software architecture. Merging these two
approaches will further improve the planning opportunities
in software design and testing.

9. Acknowledgement

We wish to thank Chandra M. Kintala of Lucent Bell
Labs, for many of his valuable suggestions and comments
for this work.

References

[11 M. Avriel, ”Nonlinear Programming,” in Mathemat-
ical Programming for Operations Researchers and
Computer Scientist, A. G. Holzman (Ed.), Chapter 11,
Marcel Dekker Inc., New York, 1981.

[2] 0. Berman and N. Ashrafi,“Optimization Models
for Reliability of Modular Software Systems,” IEEE
Transactions on Software Reliability, vol. 19, no. 11,
November 1993, pp. 1119-1123.

[3] R.L. Bulfin and C.Y. Liu, “Optimal Allocation of Re-
dundant components for Large Systems,” IEEE Trans-
actions on Reliability, vol. R-34, 1985, pp. 241-247.

[4] D.W. Coit and A.E. Smith, “Reliability Optimiza-
tion of Series-Parallel Systems Using A Genetic Al-
gorithm,” IEEE Transactions on Reliability, vol. 45,
1996.

[5] A.K. Dhingra, “Optimal Apportionment of Reliability
and Redundancy in Series Systems Under Multiple
Objectives,” IEEE Transactions on Reliability, vol.
41, no. 4, December 1992, pp.576-582.

[6] R. Fourer et. al., “AMPL: A Modeling Language For
Mathematical Programming,” The Scientific Press,
1993.

[7] D.E. Fyffe, W.W. Hines, and N.K. Lee, “System Rc-
liability Allocation and a Computational Algorithm,”
IEEE Transactions on Reliability, vol. R-17, 1968, pp.
64-69.

[8] P.M. Ghare and R.E. Taylor, “Optimal Redundancy for
Reliability i n Series System,” Operational Research,
vol. 17, 1969, pp. 838-847.

[9] A.L. Goel and K. Okumoto, “Time-Dependent Error
Detection Ratc Model for Softwarc and othcr Perfor-
mance Measurcs,” IEEE Transactions on Reliability,
vol. R-28, no. 3, August 1979, pp.206-2 11.

[lo] N. Griffeth and Y’.-J. Lin (ed.), IEEE Communica-
tions Magazine, Special Issue on Feature Interactions
in Telecommunications Systems, August 1993.

[111 M. Lyu (ed.), ‘‘Handbook of Software Reliability En-
gineering,” McGraw-Hill and IEEE Computer Society
Press, 1996.

[121 R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang, “Efficient Al-
location of Testing; Resources for Software Module
Testing Based on ithe Hyper-Geometric Distribution
Software Reliability Growth Model,” Proceedings of
the 7th International Symposium on Software Relia-
bility Engineering, October/November 1996, pp. 289-
298.

[131 K.B. Misra and U. Sharma, “An Efficient Algorithm to
Solve Integer Programming Problems Arising in Sys-
tem Reliability Design,” IEEE Transactions on Relia-
bility, vol. R-40, 1991, pp. 81-91.

[14] J. Musa, A. Ianniino, and K. Okumoto, “Software
Reliability: Measurement, Prediction, Application,”
McGraw-Hill, 1985‘.

[151 J. Musa, “Validity of Execution-Time Theory of Soft-
ware Reliability,” irEEE Transactions on Reliability,
vol. R-28, no. 3, August 1979, pp. 181-191.

[161 Y. Nakagawa and S. Miyazaki, “Surrogate Constraints
Algorithm for Reliability Optimization Problems with
Two Constraints,” :IEEE Transactions on Reliability,
R-30, 1 9 8 1 , ~ ~ . 17.5-181.

[17] L. Painton and J. Clampbell, “Genetic Algorithms in
Optimization of System Reliability,” IEEE Transac-
tions on Reliability, vol. 44, 1995, pp. 172-178.

[18] D.P. Siewiorek and R.S. Swarz, Reliable Computer
Systems: Design and Evaluation, Digital Press, 2nd
edition, 1992.

[191 EA. Tillman, C.L. Hwang, and W. Kuo, “Determining
Component Reliability and Redundancy for Optimum
System Reliability,” IEEE Transactions on Reliability,
vol. R-26, 1977, pp. 162-165.

[20] Y. Tohma, K. Tokunaga, S. Nagasc, and Y. Murata,
“Structural Approach to the Estimation of the Num-
ber of Residual Software Faults Based on the Hyper-
Geometric Distribution,” IEEE Transaction on Soft-
ware Engineering, vol. 15, no. 3, March 1989, pp.
345-355.

[21] E Zahedi and N. Ashrafi, “Software Reliability Allo-
cation Based on Structure, Utility, Price, and Cost,”
IEEE Transactions on Software Engineering, vol. 17,
no. 4, April 1991, pp. 345-355.

347 Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore. Restrictions apply.

