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Abstract 

To ensure an overall reliability of an integrated software 
system, software components ofthe system have to meet cer- 
tain reliability requirements, subject to some testing sched- 
ule and resource constraints. The system testing activity 
can be formulated as a combinatorial optimization prob- 
lem with known cost, reliability, effort, and other attributes 
of the system components. In this paper we consider the 
software component reliability allocation problem f o r  a sys- 
tem with multiple applications. The failure rate of compo- 
nents used to build the applicationsare related to the testing 
cost through various Vpes of reliability growth curves. We 
achieve closed-form solutions to problems where there is 
one single application in the system. Analytical solutions 
are not readily available when there are multiple applica- 
tions; however; numerical solutions can be obtained using 
a non-linear programming tool. To ease the specijication 
of the optimization problem, we develope a GUI front-end 
to existing mathematical software. We present a systematic 
outline ofthe problem formulation and solution, and apply 
this to an example of a telecommunication software system. 

1. Introduction 

Modern complex software systems are often developed 
with components supplied by contractors or independent 
teams under different environments. For systems integrated 
with such modules or components, the system testing prob- 
lem can be formulated as a combinatorial optimization prob- 
lem with known cost, reliability, effort, and other attributes 
of the system components. The best known system relia- 
bility problem of this type is the series-parallel redundancy 
allocation problem, where either system reliability is maxi- 
mized or total system testing cost/effort is minimized. Both 
formulations generally involve system level constraints on 

allowable cost, effort, and/or minimum system reliability 
levels. This series-parallel redundancy allocation problem 
has been widely studied for hardware-oriented systems with 
the approaches of dynamic programming [7, 161, integer 
programming [8, 3, 131, non-linear optimization [19], and 
heuristic techniques [17, 41. In [5]  the optimal apportion- 
ment of reliability and redundancy is considered for multiple 
objectives using fuzzy optimization techniques. 

Some researchers also address the reliability allocation 
problem for software components. The software reliability 
allocation problem is addressed in [21] to determine how re- 
liable software modules and programs must be to maximize 
the user’s utility, subject to cost and technical constraints. 
Optimization models for software reliability allocation for 
multiple software programs are further proposed in [2] using 
redundancies. These papers, however, do not take testing 
time of software components and the growth of their relia- 
bility into consideration. Optimal allocation of component 
testing times in a software system based on a particular soft- 
ware reliability model is addressed in [12], but it assumes 
a single application in the system, and the reliability growth 
model is limited to the Hyper-Geometric Distribution (“S- 
shaped”) Model [20]. 

In this paper we discuss a generic software component 
reliability allocation problem based on several types of soft- 
ware reliability models in a multiple application environ- 
ment. This is the first effort to apply reliability growth 
models for guiding component testing based on multiple ap- 
plications. We will also give the solution procedure for the 
single application environment, for general continuous dis- 
tributions, thus generalizing [ 121. We examine the situation 
where software components may interact with each other, a 
condition not considered by other studies. We also include 
scenarios for fault-tolerant attributes of a system where some 
component failures can be tolerated. The problem specifi- 
cation and solution seeking procedure, as well as a software 
tool for the automatic application of this procedure, are pre- 
sented in this paper as an innovative mechanism to handle 
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the difficult yet important reliability allocation problem. 

These projects are described in the following case studies. 
Several real projects motivate us for this investigation. 

Distributed Software Systems. Distributed telecom- 
munication systems often serve multiple application types, 
which execute different software modules, and have dif- 
ferent reliability requirements. For instance, in telephone 
switches, 1-800 calls require processing different from stan- 
dard calls, and similar examples exists in call centers, PBXs 
or voice mail systems. 

During the testing of such systems, reliability is a prime 
concern, and adequate test and resource allocation are there- 
fore very important. In the example we discuss in Section 
6.2 it will become clear that trustworthy reliability growth 
curves can help considerably in efficient testing and debug- 
ging planning of such systems. 

Fault-Tolerant Systems. Figure 1 shows a layered soft- 
ware architecture model that can be applied to many systems. 
Each layer can include several software components. Not 
all systems will necessarily include all the layers. 

We conjecture that error propagation between layers only 
occurs in one direction, namely upwards. Thus, faults in the 
hardware that are not contained can propagate up to the oper- 
ating system or to the application software; however, faults 
not contained in the middle-ware layer will not propagate 
to the operating system but can propagate to the application 
software layer. 

Error propagation occurs from layer i to layer i+ 1 if layer 
i has no fault tolerance mechanisms, i.e., the layer does not 
exhibit fail-silent behavior. From a modeling perspective, 
this layer would contribute higher failure rate to the overall 
system than a layer with error detection and recovery mech- 
anisms. Note that error detection and recovery software can 
reside in some or all of the layers. 

In Section 5.2 we will see how fault-tolerant mechanisms 
can be included in the reliability allocation problem formu- 
lation, provided that coverage factors are available. 

Object-Oriented Software. Object-oriented software 
often allows for a clear delineation between different soft- 
ware components. If object-oriented software methods are 
being used, the relation between components and applica- 
tions can be assessed, and testing time can be assigned in 
the most efficient way. 

Another optimization problem in object-oriented soft- 
ware testing arises when the best combination of objects 
must be selected to make an application as reliable as possi- 
ble. This optimization problem is an example of a ‘structure- 
oriented’ optimization problem, and can be solved by using 
methods presented in,  e.g., [21,2]. Our intent in this paper is 

Figure 1. Layere!d software architecture 
model. 

to optimize with respect to software development and test- 
ing, not with respect to software structure. The combination 
of structure-oriented optimization methods in [2 1, 21 and 
the development-oriented methods in this paper can provide 
powerful tools in software system design. 

The remaining sections of this paper are organized as 
follows: Section 2 specifies the optimal reliability alloca- 
tion as two related problems: a problem with fixed target 
failure rate, and a problem with fixed debugging time. The 
analytical solutions to these two problems are presented for 
the single application environment in Section 3: Section 3.1 
for the exponential distribution, and Section 3.2 for gen- 
eral distributions. Section 4 discusses how the solutions 
for the problems in multiple application environment can be 
obtained. Our results are extended in Section 5.1 to con- 
sider software failure dependencies, and in Section 5.2 to 
incorporate fault-tolerant systems. Section 6 proposes the 
reliability allocation problem specification and solution pro- 
cedure into a step-by-step framework, and applies it to a case 
study. Section 7 describer; the design and implementation of 
a software tool for systernatic application of the reliability 
allocation framework. Conclusions are presented in Section 
8. 

2. Problem Specificaition 

The above case studies can be described by a general 
problem of assigning failure-rate requirements (at the time 
of release) to software components that will be used to 
build various applications, given that the applications have 
pre-specified reliability requirements. Consider the situa- 
tion where a set of N software components C1, . . . , C N ,  
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can be used in various combinations for different appli- 
cations. Let there be M such applications A I ,  . . . , AM,  
and let each application have a pre-specified reliability 
requirement R1(1), . . . , R M ( ~ ) .  By investing develop- 
ment/testing/debugging time in components, component 
failure rates can be made such that all applications meet 
their reliability requirement. 

Therefore, the goal in reliability allocation is to assign 
failure-rate requirements to the N components, such that all 
the pre-specified reliability requirements of the M applica- 
tions are satisfied, at the minimal cost. In what follows, we 
will characterize the cost in terms of the component test- 
ing (including debugging) time. The optimization criterion 
thus is the minimization of this testing time. Furthermore, 
to relate the failure rate of components with the amount of 
testing time, we use reliability growth models. 

A variation to the above problem formulation arises if a 
fixed amount of testing time is available for each application. 
This requirement may occur because of the constraint on 
the cost incurred by the component developer and tester. In 
that case we take as objective function minimization of the 
failure rate of all the components. 

In what follows we will continuously discuss these two 
variations of the optimization problem, and they will be 
referred to as the ‘fixed failure rate constraint’ problem and 
‘fixed testing budget’ problem, respectively. 

2.1. Fixed Failure Rate Constraint 

In the fixed failure rate case, we assign testing time to 
components such that the applications meet their reliability 
requirements, and the testing time is minimized. Through- 
out this paper, we assume that the failure rates of components 
relate to the reliability of applications through the exponen- 
tial relation Ri(t) = e - 6 z t ,  where 6; is the sum of failure 
rates of the components in application Ai ,  i = 1, . . . , M .  
Furthermore, we assume that the testing time Di invested in 
component i decreases the failure rate X i  according to some 
reliability growth model. Note that we assume that once the 
software components are released, their failure rates stay 
constant. This is reasonable given that the application de- 
veloper does not debug or change the component that is used. 
In this context, we can formulate the allocation problem as 
follows. 
The objective function is: 

Minimize  D = D1 + 0 2  + . . . + D N ,  

subject to the constraints: 
c r l i X l  + ( T ~ ~ X ~ + . . . + U . I N X , Y  5 61 (forapplicationAl), 
cr21XI + ~ 2 2 X 2  + . . . + 6 2 N  XN 5 62 (for application A2), 
. . .  

C T ~ M ~ X I  + O . M ~ X ~ + .  . . + U M N X N  5 6~ (forapplication 
i l M ) >  
where uij = 1 if Ai uses component Cj, and aij = 0 
otherwise. Note XI,. . . , A N  2 0;  D i , .  . . ,  D N  2 0; and 
51, . . . , E M  2 0. For the sake of notational simplicity, we 
assume that the testing times Di are equally ’important’ 
(costly) among the N components. If this is not the case 
one can apply weight wi to each component testing time Di 
in the objective function. 

Since a reliability growth curve can be very complex, 
the objective function is non-linear, and hence this is a gen- 
eral non-linear programming problem. In Section 3.1.1 we 
consider the closed-form solution for the problem with a 
single application, and in Section 4 we discuss the numeri- 
cal solution of the general case. Note also that we assume 
independence of components with respect to their failure 
behavior. This assumption may not be appropriate when 
software components may interact with each other, poten- 
tially causing additional failures. 

2.2. Fixed Testing Budget 

In the fixed testing budget case, we distribute per ap- 
plication a specified amount of testing time over its com- 
ponents, such that the application reliability is maximized. 
Consequently, the total failure rate of the components is the 
objective function to be minimized, leading to the following 
formulation as a mathematical programming problem. 
The objective function is: 

Minimize  X = XI + X2 + . . .  + A N ,  

subject to the constraints: 
allDl + nl2D2 + . . . + U I N D N  5 dl (for application 

AI), 

A2)> 

U 2 1 0 1  + ~22D2 + . . . + U ~ N D N  5 d2 (for application 

. . .  
U,+I~ D1+(7~2D2+. . .+UMNDN 5 d M  (for application 

where d l ,  d?, . . , d M  are the fixed amount of testing times 
that are available for components used by applications 
A i ,  AI, . . . , AM, respectively. As in the previous problem, 
all variables are positive. Weight functions for the failure 
rates A, can be introduced in the objective function to reflect 
their impact. 

Of special interest is the single application case. This 
case corresponds to the optimization problem where all ap- 
plications together have a budget restriction on the testing 
time. The fixed testing budget problem is a variant of the 
fixed failure rate problem, and can be solved by similar 
means. In Section 3.1.2 and Section 4, we discuss the case 
of single and multiple applications, respectively. 

AM), 
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3. Solutions for Single Application Environ- If we expand the equation from the first condition and 
take the partial derivatives w.r.t XI, Xz, . . ., A N ,  we can get 
the following equations, respectively. 

ment 

When there is only a single application in the system, 
an explicit solution of the reliability allocation problem can 
usually be found. In this section we give the general solution 
for a large class of reliability growth models (see Section 
3.2). To explain the solution procedure, we first provide in 
Section 3.1 the solution assuming an exponential reliability 
growth model. 

3.1. Exponential Reliability Growth Model 

The exponential reliability growth model [9, 151 relates 
the failure rate X i  (for component i )  with the invested testing 
time Di through: 

A .  - Xioe-/l‘D‘ z -  

Xi0 is the initial failure rate at time 0, and pi is the decay 
parameter. Over an infinite time interval faults will be 
found. Note that X i  is a function of time, although we do not 
explicitly express it in the notation. This reliability growth 
model is in common use, and we will now determine the 
solution for the allocation problem in the single application 
environment. 

3.1.1 Fixed Failure Rate Constraint 

-1 
-- + B = 0 .  
P N X N  

Given that the p and the X values are all positive, it is clear 
that B > 0, satisfying the second condition. From the above 
equations we also note that 1-11 A1 = ~ 2 x 2  = . . . = ~ N X N .  
Together with this observation and the third condition, we 
get the following solution for the obtained failure rates. 

6 = + . . . + ”I’ 
P2 P N  

PI 
P N  

The testing times that should be allotted to the software 
components now follows from substituting the above values 
into the equations for D1, D2, . . ., D N .  For example, D I  is 

Xnr = - A ] .  

The fixed failure rate constraint problem can be formulated 
in the single application environment, assuming exponential D,  = I l n [  ”,lo 1 .  
reliability growth curves, as: I t ~ t - + ~  

to 

subject to: 

X 1 $ X 2 + ’ ” $ X N < 6 .  

To solve this, one can use the Lagrange method as follows 
[ 11. The optimization problem is equivalent to finding the 
minimum of: 

F ( X I , ” . , X N )  = D + B ( ( X i  + . . . + X N ) - ~ ) ,  

where B is a Lagrange multiplier. The necessary conditions 
[ I ]  for the minimum to exist are: 

1. A(F(X1, . . . , A N ) )  = 0 where A is the partial deriva- 

2. B > 0, 

3. X I  + A 2  + .  . ’ +  X N  = 6. 

tive operator, 

Note that DI ispositiveif .XI >. Xlo.  To assure that no impos- 
sible solutions arise, we present in Section 3.2 a procedure 
that checks for validity conditions and guarantees that the 
optimal solution follows a valid strategy. 

Example 1: Consider an example where a system 
has three components C1, C2, and C, and one applica- 
tion A which uses all the components. All the three 
components have an initial failure rate of 5 failures/year 
(A10 = Azo = A30 = 5/yr). Assume that the application 
requirement states that the: failure rate of the application (5) 
cannot be more than 6/yr.. Also assume that all the ,U val- 
ues are the same and equals 1. In this case, we note that 
X I  = Xz = A3 = 2/yr and D1 = D2 = 0 3  = ln(2.5). That 
is, when the initial failure rates and the rate of reduction in 
failure rates with debugging is the same for all the compo- 
nents, then an average testing policy, where all the com- 
ponents’ failure rates are lbrought down to the same value, 
provides a solution that meets the application requirement 
with minimum testing time spent; the testing time spent on 
each component is the same. 
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Example 2: Now consider an example where the three 
components have initial failure rates which are different 
(say, X l o  = 5/yr ,  A20 = 6/yr ,  A30 = 7/yr). Assume that 
6 = 6/yr. Also assume that the p values are all identical 
and equal to 1. In this case, again we find that the required 
X values are the same and equal 2. Here again, an average 
testing policy provides a solution that meets the application 
requirement with minimum testing time spent. But now, the 
testing time spent on each component is different because the 
initial failure rates are different. In this case, DI = In( s) ,  
0 2  = In(;) and D3 = In(;). The testing time spent on 
each component is now proportional to the logarithm of the 
initial failure rate. 

Example 3: Let us now assume that the three components 
have initial failure rates which are the same ( X I O  = A20 = 
A30 = 5/yr),  and that the p values are different (say, pl = 1, 
p2 = 2, ,u3 = 3). Again, assume that 6 = 6. Now, 
computation tells us that to minimize the testing time, we 
require X I  = A4 = 3.273, A2 = k4 = 1.636 and 
A 3  = &4 = 1.091. The optimal testing policy that leads 
to the above failure rates will require a total testing time 
of In( 5 x 1  7) 834 + 5 x 1  834)  + f In(-) = 1.49. An 
average testing policy which assigns X I  = A 2  = X3 = 2 
leads to a total testing time of In( i) x 1.834 = 1.68 which 
is more than that of the optimal testing policy. 

3.1.2 Fixed Testing Budget 

The fixed testing budget problem can be formulated in the 
single application environment, assuming exponential reli- 
ability growth curves, as: 

Minimize X = X I  + A 2  + . . . + AN, 

subject to the constraint 

DI + D ~ + . . . + D N  5 D 

Again, this can be solved using the Lagrange method, which 
uses that the optimization problem is equivalent to finding 
the minimum of 

where 0 is the Lagrange multiplier. Again, the necessary 
conditions for a minimum to exist are: 

1 .  A(F(D1,  Dz, . . . , D N ) )  = 0 where A is the partial 
derivative operator, 

2 .  e > 0, 

3. D1 + D2 + . . . + DN = D. 

If we expand the equation from the first condition and 
take partial derivatives with respect to Di,  we get: 

Xio(-Pie-  PzDt) + e = 0. 

Given that pi is positive, we note that e is positive and 
Thus, from the hence the second condition is satisfied. 

above equation, we get 

. . .I x ~ ~ ( - ~ ~ ~ - P N D N  1. 
Using the above equation together with the constraint that 
D1 + D2 + .  . . + DN = D ,  we get 

The above equations determine how the testing times 
should be allocated to the different components. The min- 
imum X value that is obtained follows directly from the 
values for the testing times. 

It is interesting to note that only if the initial failure rates 
Xio's and the pi values are the same, an average testing 
policy where the available testing time is equally divided 
among the components will provide an optimal solution. 
If either the Xio's or the pi values are different, then we 
need to compute the above expressions to obtain an optimal 
allocation of the testing time. 

Example 4: Consider the parameters from Example 3 
where the initial failure rates are the same (A10 = = 
A30 = 5/yr),  and the ,U values are different (say, p1 = 1, 
p2 = 2, p3 = 3). Assume that the available testing time 
is lyr. Then, D1 computes to 0.1567, 0 2  computes to 
0.4249 and D3 computes to 0.4184. The optimized failure 
rate evaluates to XI = 4.27/yr, A 2  = 2.14/yr and A3 = 
1.43/yr for a total failure rate of 7.84/yr. If an average 
allocation policy is used, then D1 = D2 = 0 3  = 0.333 and 
the failure rates evaluate to XI = 3.58/yr, X2 = 2.57/yr 
and A3 = 1.84/yr for a total failure rate of 7.99/yr which 
is worse than the optimal allocation. Let us try another 
allocation. Assume an allocation where D1 = 0.4, D2 = 
0.4 and 0 3  = 0.2. In this case, we note that X1 = 3.35/yr, 
A2 = 2.25/yr and X3 = 2.74/yr for a total failure rate of 
8.34/yr. 
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3.2. General Reliability Growth Models 

In this section we provide the procedure to obtain the 
closed-form solution for generic reliability growth model. 
The only restriction to the growth models is with respect 
to the first and second derivatives. The solution procedure 
follows directly from the solution of the Lagrange method, 
except that impossible solutions must be prevented. It gen- 
eralizes the procedure for the hyper-geometric model given 
in [ 121 to general continuous distributions. 

We consider the fixed failure rate constraint case. Let 
the relation between the failure rate and the testing time be 
given by some function f, that is: 

Di = ti(&). 
Now, without loss of generality, the N components can be 
reordered according to the absolute values of the derivatives 
at the beginning of the debugging interval, at which X i  = 
Xio. That is: 

for i = 1 , 2 ,  . . . N - 1. Using this ordering, the procedure 
to obtain the closed-form solution is as follows: 

1. li = N; 
2. For i = 1 to I< 

express X i  as a function 
g i ( x ~ )  of XK, by equating 

3. Solve XK from C i = , g i ( X ~ ) = 6 ;  
4. If X K  > X K O  then 

xfi(&) d = & f K ( X K ) ;  

K 

I< = li' - 1 and goto step 2; 

For i = 1 to I< 
else 

Compute X i  from gi(XK) and the 
solution of XK in step 3 ;  

The important feature in  the algorithm is the ability to 
determine which component should be assigned zero testing 
time if an impossible solution is obtained (an impossible 
solution arises if X i  > X i0  for some component). If the first 
derivatives &fi (Ai)  are less than zero for all i ,  and the 
second derivatives -&fi(Ai) are greater than zero for all 
i ,  then it can be shown that the component ranked lowest 
according to the derivatives at time zero can be discarded. 
This happens in step 4 of the algorithm. In other words, the 
sufficient conditions on the derivatives say that the failure 
rate decreases over time, and that the rate of decrease gets 
smaller if time increases. Note that if the derivatives of the 
growth curve are less regular, specific conditions must be 
established to determine which components should not be 
assigned testing time. 

The above procedure can be similarly formulated for the 
fixed testing budget problem. We will not do so here. 

Pareto Growth Model As an illustration, let us consider 
the Pareto distribution and consider the fixed failure rate 
constraint problem. The failure rate is given by & ( t )  = 
ciO(til + t)- ' l2,  where cia,, ~ i l  and ti2 are constants. Hence, 
we have for the testing tirne: 

The Pareto class of failure-rate distributions is useful be- 
cause it is a generalization of the exponential, Weibull and 
gamma classes [ 11, 141. 

One can show that the first derivative is less than zero, and 
the second derivative is greater than zero, provided E , O ,  t i l  

and ~ i 2  are all positive. Hence, taking the partial derivative 
of Di w.r.t. Xi ,  we get in step 2 of the algorithm (I< = N in 
the first iteration): 

In step 3, we have to equate the total failure rate to 6. In 
this case, we have to do that numerically, since a closed-form 
expression using the Pareto distribution is too intricate. As 
soon as we obtain a possible solution for XK, we compute 
the individual failure rate using the relationship 

Example 5: Assume the following parameters with 
Pareto distribution. €10 =: 5, € 1 1  = 1, 612 = 3, €20 = 2, 

= 1, = 6, '= 4, €31 = 1, €32 = 5. The 
optimal policy requires the following failure-rate values: 
XI = 3.395, X2 = 1.556, A? = 2.047. The total testing time 
is 0.3236. 

4. Solutions for Multiple Application Environ- 
ment 

When there are multiple applications in  the system, the 
reliability allocation problem becomes too intricate to solve 
explicitly. However, in this case its solution can be obtained 
using non-linear programming software such as AMPL [6]. 
Let us here show how this procedure works for an example 
of a 3-component, 3-application system, by specifying and 
solving it using the RAT tool presented in Section 7. 

Example 6: There are three components CJ,  C2 and Cx 
which can be used to build three applications A I ,  A2 and A3. 
A I  is built using CI and C2, A2 is built using c(2 and C3 and 
A3 is built using C1, C2, and Cj. Thus, there are multiple 
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applications, each with a failure-rate constraint. The fixed 
failure rate constraint problem can thus be formulated as: 

M i n i m i z e  D = D1 + D2 + . . . + D N ,  

under the constraints: 
X I  + X 2  I 61 (for application AI ) ,  
X2 + X3 5 62 (for application A2), 
X I  + X2 + X3 5 63 (for application A3). 

The fixed testing budget problem can be formulated as: 

Assume the parameters from Example 3 where the initial 
failure rates for the three components are the same ( X l o  = 
A20 = A30 = 5/yr),  and the p values are different (say, 
p1 = 1, p2 = 2 ,  p3 = 3). Assume that the failure-rate 
requirements for the three applications are 61 = 6, 62 = 5 ,  
63 = 7. Modeling this as a non-linear optimization problem 
with multiple constraints in AMPL and using the MINOS 
solver, weget the followingresult: XI = 3.818, A2 = 1.909 
and X3 = 1.273. The total testing time for this failure- 
rate allocation evaluates to 1.207 yrs; (the individual testing 
times can be computed using the failure-rate allocation for 
each component). It is interesting to note that the failure- 
rate constraint for A3 is strictly satisfied; for AI  with the 
failure-rate requirement of 6/yr,  it is not strictly satisfied 
(XI + = 5.73), similarly for A2 whose requirement is 
5/yr  (A2 + X3 = 3.18). Now consider an average testing 
policy where the constraint for the application A3 is strictly 
satisfied without violating the other constraints. That is, 
XI = 2.333, XZ = 2.333 and A 3  = 2.333. The total testing 
time based on this average testing policy evaluates to 1.39 
yrs, much larger than that obtained with the optimal testing 
policy. 

5. Software Failure Dependencies and Fault- 
Tolerant Systems 

The basic reliability allocation problem formulation can 
be extended in various ways. Here we discuss two exten- 
sions, software failure dependencies in Section 5.1 and fault 
tolerance aspects in Section 5.2. 

5.1. Software Failure Dependencies 

In the above discussions we assume software compo- 
nents fail independently. In reality, this may not be the 

case. For example, the feature interaction problem[ 101 
describes many incidents where independently developed 
software components interact with each other unexpectedly, 
thus causing unanticipated failures. We incorporate this ex- 
tra failure incidence by introducing pair-wise failure rates. 
Specifically, X i j  represents the failure rate due to the inter- 
action of components Ci and Cj, where i < j .  

The constraints of the original problem are then modified 
as : 

a11X1 + anX2 + . . .  + a lNXN + 
E{v(i>j)l'12=I ,alJ=l} X i j  5 61 ( for  application A I ) ,  

a21X1 + a22X2 + " .  + 6 2 N X N  + 
'{ v(i , j  ) I  u21=1 lozJ = I  1 X i j  5 62 (for application A2), 

. . .  

D = Dl + D2 + . .  .+  D N .  

The fixed testing-time problem can be obtained by adding 
the pair-wise failure rates in the objective function. 

5.2. Fault-Tolerant Systems 

In the situation where the system possesses fault tolerant 
attributes, we can introduce coverage factors [ 181 into the 
original problem. Coverage is defined as the conditional 
probability that when a fault is activated, it will be de- 
tected and recovered without causing system failure. With 
ci denoting the coverage measure for the component Ci, we 
can reformulate the fixed failure rate constraint case, using 
p i  = 1 - c i ,  as: 

M i n i m i z e  D = D1 + 0 2  + s . .  + DN, 

subject to: 

tion >41), 

cation A2), 

a l l p l X i  + ~ 7 1 2 ~ 2 x 2  + .  . .+ a l ~ p r \ i X ~  5 61 (for applica- 

mipi  X I  + ~22p2X2 + . . . + U ~ N P N X N  I 62 (for appli- 

. . .  

C,wIpiXi + a ~ 2 p 2 X 2  + . . . + ~ M N ~ N X N  5 6nr (for 
application A]\,). 

6. Reliability Allocation Solution Framework 

We have discussed the reliability allocation problem in 
terms of two constraints: fixed failure rates or fixed testing 
budgets. We also discussed the problem to account for 
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component interactions. The fault tolerant attributes in the 
system to tolerate component failures are also incorporated. 
In this section we describe a framework for specifying and 
solving a general reliability allocation problem, and describe 
how this procedure is applied to a specific application. 

6.1. The Problem Specification and Solution Proce- 
dure 

The following procedure specifies the reliability alloca- 
tion problem, and obtains solutions either analytically or 
using numerical methods. 

1. Determine if it is a fixed failure rate constraint prob- 
lem or a fixed testing budget problem. 

2. Determine if there is single application or multiple 
applications in the system. 

3. Set the constraints on the failure rates or testing bud- 
gets. 

4. Obtain parameters of the reliability growth curves of 
the components. 

5. Determine if the components interact with each other. 
If so, obtain pair-wise failure rates. 

6. Determine if there are fault tolerance features in the 
system. If so, obtain coverage measures for each 
component. 

7. Format the problem as a non-linear programming 
problem with appropriate parameters. 

8. If the solution is analytically available, obtain it. Oth- 
erwise, use the reliability allocation tool (see Sec- 
tion 7), based on the mathematical programming tool 
AMPL and solver MINOS, to obtain the results. 

In the following sub-section we examine a case study 
where a required reliability allocation problem is specified. 
We illustrate how the above procedure is applied to the 
project to obtain numerical solutions for various scenarios. 

6.2. A Hypothetical Example 

Let us consider a distributed software architecture that is 
used for switching telephone calls. Different call types will 
exercise different software modules, and we break up the 
system in  components such that reliability growth models 
are available for all components. Of course, prerequisite to 
our analysis is the availability of reliable growth models, but 
the example will clearly show that i t  is beneficial to make 
decisions based on such models. 

70 

5 60 

n 5 50 

% 40 

F 30 m 

c 

0 

: 
E 

2 20 
.- c 

basic - 
scheduling 

call proc 
signaling t 
signaling 61 - - - - 

2 4 8 16 32 64 $28 256 
Total Testing Time 

Figure 2. Total available testing time versus 
the optimal allocation for the components. 

Figure 2 shows the total amount of testing time avail- 
able, versus the time allocated to the individual components. 
Following the framework in Section 6.1 we solved i t  as a 
fixed testing budget problem with multiple applications. We 
assumed, however, that the testing time is shared by all ap- 
plications, that is, we conisider the special case mentioned 
in Section 2.2 where the constraints map to a single con- 
straint. Furthermore, applications are weighted based on 
their relative frequency of occurrence given in Table 1 (the 
RAT tool described in Section 7 automatically converts this 
to weights on the component failure rates in the objective 
function.) Using weights we thus include parts of the op- 
erational profile (see, e.g.., Chapter 5 in [ 11 1) in the model 
(see Table 1 for the relative frequencies of the different call 
applications). We obtainled solutions for the testing time 
ranging from 2 to 256, and assumed no failure dependency 
or explicit fault-tolerant mlechanisms. We input the problem 
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Component Xi0  p z  standard I 
basic 10 1.0 in 
scheduling 20 1.0 in 
call proc. 200 0.2 notin 
signal I 200 0.5 in 
signal I1 20 1.0 in 
frequency 0.5 

in the RAT tool, and solved it using AMPL and MINOS. 
Figure 2 shows very clearly the dependence of the optimal 

schedule on the total testing time. For instance, while the 
scheduling component should not be assigned debugging 
time if a small budget is available, it takes the largest chunk 
if the testing budget is large. 

The irregular assignment of testing time to individ- 
ual components in Figure 2 cannot be obtained easily by 
means other than mathematical modeling. With back-of- 
the-envelop calculations, one cannot expect to get such pre- 
cise results, and one would be bound to make inefficient 
decisions. 

4 

standard I1 1-8G0 I 1-800 I1 
in in in 
in in in 
in in in 
in in not in 
in  not in in 
0.3 0.1 0.1 

1000 

100 

10 

basic - ’ 
scheduling 

call proc 
signaling I 

signaling I I  - - - - 

0.01 I I 
0.001 0.01 0.1 1 10 100 

Parameter Growth Curve Scheduling 

Figure 3. Parameter p in growth curve of 
scheduling software, versus the optimal al- 
location for all components. 

Figure 3 shows the parameter X of the reliability growth 
curve corresponding to the scheduling software, versus the 
allocation of testing time to the components. In this case, 
we took the allowed failure rates per application to be 4, and 
solved the fixed failure rate constraint problem. 

Clearly, the parameter value greatly influences the opti- 

mal solution. If the decay parameter of the reliability growth 
model of the scheduling component is small, it takes enor- 
mous investments in debugging time to reach the desired 
failure rates. If the decay parameter is relatively large, it 
takes minor effort for the scheduling component to obey to 
the failure rate restrictions. 

The correlation between the optimal testing time and the 
parameters of the reliability growth curve shows the im- 
portance of data collection to establish trustworthy growth 
models. Without such models, decisions about reliability 
allocation are bound to be sub-optimal. 

7. RAT The Reliability Allocation Tool 

We have designed and built a reliability allocation tool 
(RAT) with a CUI based on a Java Applet. The tool allows 
multiple applications to be specified and allows optimiza- 
tions to be performed both under the fixed failure rate and 
fixed testing budget constraints. The user inputs the model 
using the GUI and the input is converted into AMPL files 
and is solved using the MINOS solver, called by AMPL. 
Figure 4 shows the GUI. The tool chooses the optimization 
criteria, where optimizing failure rate implies that the con- 
straint is fixed testing budget and optimizing testing time 
implies that the constraint is fixed failure rate. Components 
can be specified in the field named “Components” and appli- 
cations can be specified in the field named “Applications.” 
The reliability growth distribution can be chosen for each 
components independently; parameters for these distribu- 
tions can be specified in the box named “Parameters.” At 
present exponential and Pareto distributions are allowed, but 
we plan to extend the options to specifying other distribu- 
tions. In case of a fixed-failure rate constraint, the allowed 
failure rate for the applications can be specified in the field 
named “Allowed Failure Rate”; similarly, if testing time is 
fixed, then this can be specified in the field named “Allowed 
Debugging Time.” Information about the components that 
have been specified and the applications that have been input 
are shown in  two separate areas. 
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Figure 4. The reliability allocation tool. 
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Figure 4. The reliability allocation tool. 

As an example of the use of this tool, we consider the 
fixed-failure rate problem with multiple applications that we 
considered in Example 6. Figure 4 shows the interface after 
the components have been chosen and the configurations of 
the applications have been specified. In Example 6, there 
were three components C1, Cl and C3, each of which fol- 
lows an exponential reliability growth model with X = 5 
and 11 values of 1 ,  2 and 3 respectively. This is shown in 
the area titled "Your Choice of Components so far." Three 
applications are configured where application AI  uses com- 
ponents CI,  C2, application A2 uses C2,C3 and application 
A? uses CI, C2 and C3. The applications have a failure-rate 
requirement of 6, 5 and 7 respectively. This is shown in 
the area titled "Your Choice of Applications so far." This 
model when solved produces the result as shown in the 
"Message" area in Figure 5. As presented in  Example 6, the 
results show that the failure rates of C1, C'2 and C, should be 
brought down to 3.8 18, 1.909 and 1.273 respectively. This 
will minimize the total testing time used, while at the same 
time satisfying the failure rate requirements of all the appli- 
cations. The "Message" area also shows the testing times 
that need to be spent on each of the components to bring the 
failure rates of the components down to the above values. It 
is seen that the total testing time for the three components is 
as computed in  Example 6. 

8. Conclusions 

We consider the software component reliability alloca- 
tion problem for a system with single or multiple applica- 
tions, each with a pre-specified reliability requirement. The 
system testing activity is formulated as a combinatorial op- 
timization problem for overall system failure rate or testing 
time and cost. The relation between failure rates of compo- 
nents and cost to decrease this rate is modeled by various 
types of reliability growth curves. 

We achieve closed-form solutions to problems with only 
one single application in the system, and we describe how 
to solve the multiple application problem using non-linear 
programming techniques We also examine the interactions 
between the components in  the system, and include inter- 
component failure dependencies into our modeling formula. 
In addition to regular systems, we extend the technique to 
address fault-tolerant systems. We further develop a proce- 
dure for a systematic approach to the reliability allocation 
problem, and describe its (application in acase study. Finally, 
we present the design and implementation of a reliability al- 
location tool for an easy specification of the problem and an 
automatic application of 1 he technique. 

The presented methodology gives the basic solution ap- 
proach to the optimization of testing schedules, subject tore- 

345 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:00:51 UTC from IEEE Xplore.  Restrictions apply. 



)ptimlzation Criteria 

ompenenti  

RBI ability Crowth Distribution 

parameters ADDlItatlonl Model Hama 
I 
r 5  Li --- p--"".- -1 I "  

c 3  

'OmDonant Set  allowed Debugging Time Allowed Failure Rats 

C1 C2 C3 

Allowed Weight , 11"1 
I 

G 
t 3 .81818  
2 1 9 0 9 0 9  

p ebug.t~me.m.b~.resnt.on~sxponent~al..tomDo 

3 0456092 

VOW Choke of ~ ~ p i l c a t i o n r  so tac 

'Appll&tkn' Cdmponentr Allowed Failure rate a Wecght ' ' w 
c1 c 2  6 
52 c 3  5 
c 1  c 2  c 3  A3 7 

A i  
a 2  

V O U ~  Cholie of Componentr sofar 
:Component Dirtdbui ion Pirameterr 

Exponential 5 1 
Exponential 5 2 
Exoenentlai 5 3 

:c 1 
. c 2  
;c3 

Figure 5. Display of reliability allocation results. 
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liability constraints. This adds interesting new optimization 
opportunities in the software testing phase to the existing 
optimization literature that is concerned with structural op- 
timization of the software architecture. Merging these two 
approaches will further improve the planning opportunities 
in software design and testing. 
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