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Abstract

In this paper, we define and formalize the concept
of software diversily, which characlerizes N-Version
Software (NVS) from four different points of view that
are designated as: structural diversity, faull diversity,
tough-spot diversity, and failure diversity. Our goals
are to find a way to quantify software diversity and
to investigate the measurements which can be applied
during the life cycle of NVS to gain confidence that op-
eration will be dependable when NVS is actually em-
ployed. The versions from a siz-language N-Version
Programming project for faull-tolerant flight control
software were used in the software diversily measure-
ment.

1 Introduction

Fault tolerance is a function of computing systems
that serves to assure the continued delivery of required
services in the presence of faults which cause errors
within the system [2]. We say that a unit of soft-
ware (module, CSCI, etc.) is fault-tolerant if it can
continue delivering the required services, i.e., supply
the expected outputs with the expected timeliness, af-
ter dormant (previously undiscovered, or not removed)
imperfections or “bugs”, called software faults, have
become active by producing errors in program flow,
internal state, or results generated within the software
unit. When the errors disrupt (alter, halt, or delay)
the service expected from the software unit, we say
that it has failed for the duration of service disrup-
tion.

An N-Version Software (NVS) untt is a fault toler-
ant software unit that depends on a generic decision
algorithm to determine a consensus result from the
results delivered by two or more (N > 2) member ver-
sions of the NVS unit. The process by which the NVS
versions are produced is called N-Version Program-
ming (NVP) [1]. The major objective of NVP process
is to minimize the probability that two or more mem-
ber versions will produce similar erroneous results that
coincide in time for a decision (consensus) action of
NVX [5]. This is the concept of design diversity [4].

The goal of design diversity is to minimize the
chances of “fault leak” among independent design ef-
forts. Furthermore, it is conjectured that the prob-
ability of a random, independent occurrence of faults
that produce the same erroneous results in two or more
versions is less when the versions are more diverse. A
second conjecture is that even if related faults are in-
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troduced, the diversity of the member versions may
cause the erroneous results not to be similar at the
NVS decision. In achieving this goal, quality control of
the individual software versions, using available soft-
ware engineering technology and within the allowable
time and cost constraints, should also be emphasized
for the very simple reason that N failed versions can
not produce a good result.

“Software diversity” is an attempt to describe the
properties of the products of the NVP efforts, with re-
gards to the goal of design diversity and the improve-
ment of the qualities of the member versions. In this
respect, software diversity can be specified in terms of
four characteristics:

1. the structural differences among the software ver-
sions;

2. the differences between the faults found among
the software versions;

3. the differences in fault-proneness among the ele-
ments of the software versions;

4. the differences in the failure behaviors among the
software versions.

We will adopt the following naming scheme for the
four characteristics of software diversity:

software diversity has the following as-
pects:

1. structural diversity;
2. fault diversity;

3. tough-spot diversity;
4. failure diversity.

The goal of this research is to formalize the concept
and notion of software diversity which quantifies the
efficiency of design diversity, and to measure the NVS
software diversity resulting from an NVP process. The
fault-tolerant flight control software developed for the
Six-Language Project [3] will be used as a case study.

The organization of the remainder of this paper
is as follows: Section 2 explains the four character-
istics of software diversity in more details; following
that in Section 3, we show the results of applying
these metrics to the programs produced during the
Six-Language Project. Conclusions and future work
are pointed out in the Section 4.
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2 Software Diversity Metrics
2.1 Structural Diversity

Software is invisible and unvisualizable in that as
soon as we attempt to depict software structure, we
find it constitutes not one, but several general directed
graphs superimposed one upon another [12]. There-
fore, to analyze the structural differences, we would
like to look at the NVS from several dimensions, per-
haps further determined by the specific application.
Also, there have been efforts to measure the program
complexity and thereby to predict the inherent fault
density. All previous efforts were done with a single
version of software in mind, gathering their statistics
from many programs, with most of them having dif-
ferent specifications [9, 8].

While one study [18, 16] has shown that these com-
plexity measures provide little improvement over just
program size alone in predicting inherent faults re-
maining at the start of system test, another study [11]
shows that the faults found during the maintenance
phase are better predicted using measures other than
program size. The metric measurements were usually
applied at the level of separately compilable subpro-
grams called modules, with each module supporting
one or more system functions [8]. Comparison at the
level of the whole application has seldom been done
in the traditional software engineering activities. The
common practice is to collect the statistics from many
programs which have possibly related (maybe similar,
but not the same) applications in mind. It is therefore
quite interesting to measure and compare the metrics
at the same application level.

For NVS, we postulate that it is possible to look
at and compare the individual versions of software at
the subprogram (or source file) level as well as at the
whole application level. We shall only try to explore
some of the complexity metrics commonly seen in the
literature. These basic metrics are:

o Deliverable source lines (DSL)
¢ Noncommentary source lines (NCSL)
o Halstead’s Software Science [13)

— Number of unique operators (7;)

— Number of unique operands (7, )

Number of total operators (N)

Number of total operands (N3)
¢ Decision count DE [8]
e McCabe’s cyclomatic complexity V(G) [15]

The term “structural diversity” refers to some met-
rics used to compare program versions. In fact, they
include both structural metrics and size metrics
in the terminology of software metrics community.
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2.2 Fault Diversity

The purpose of fault diversily is to demonstrate the
differences between the faults introduced by the pro-
gramming teams in an NVP process. For a certain
set of programming teams and a given interval of the
development cycle, we record and compare the faults
found to determine how many kinds of faults and how
many faults are detected for the set.

Def. fault diversity (Dyautr)

Number of distinct faults found __ Nfawit
Total number of faults found = Nyaut

(for an interval AT of the NVS development cycle)

The 7jau1r and Nygun in the above definition are
similar to the ideas of 7;, 72, N1, and N5 in Halstead’s
software science. For example, the ratio Ny /72 repre-
sents the average number of times operands are used.
In a program where each operand is used only once,
this ratio is 1. Similarly, in a group of NVS where
all the faults found are different, the fault diversity is
also a 1, its maximum. For the special case where no
single fault is found in the set, the fault diversity is
defined to be equal to 1.

Different criterion for deciding if two (or more)
faults are distinct can be chosen based on which level
we would like to observe the faults. It is possible to
measure the fault diversity at the individual system
function level of the specification and at the applica-
tion level of the NVS. Furthermore, it might be inter-
esting to observe the change of the fault diversity of
the NVS as the life cycle progresses, i.e., AT increases.

2.3 Tough-Spot Diversity

In a large complex software project, the program-
mers often have difficulty with regard to certain parts
of the specification. Also, it has long been agreed
upon that human beings have certain blind spots when
building programs [ll 9]. Egoless programming was ad-
vocated as a partial solution to this problem.

A simple, though certainly not exhaustive, indica-
tion of the difficulties can be the percentage obtained
by dividing the number of faults found in the different
parts of the program by the number of faults in the
entire program. Moreover, the size of the various parts
of the application should be taken into account when
calculating the total number of faults found. One part
of the application which requires a large size of code
is likely to contain more faults than the one for which
a smaller size will be enough.

For NVS, a simple analysis based only on the per-
centage counts makes sense since we are treating each
part of the application as an abstract entity and are
interested in the diversity of the fault distributions
among the different teams. We are curious to see what
will happen when there are many teams working inde-
pendently to build NVS using the same specification.
If some amount of diversity of this phenomenon can be
observed, it is certainly one more argument for using
NVP to tolerate software design faults. Therefore, we
define the “tough spots” as representing the particular
system functions in a specification where a program-
ming team has more trouble in building their software
according to the specification.
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There have been reports in the literature about the
phenomenon of locality of faults in sections of a pro-
gram [17, 20]. What the locality implies is that the
probability of the existence of more faults in a section
of a program is likely to be high for the section where
noticeable number of faults have already been found.
It is interesting to investigate this phenomenon and its
implications in the context of NVS. Also, tough-spot
diversity is a more hierarchical view than fault diver-
sity and can be observed as the life cycle progresses.

2.4 Failure Diversity

When we discuss the failures of a software unit,
there is always a reference to a given set X of input
cases. Such is also the case when we define failure di-
versity, which shows the diversity in failure behaviors
of a certain combination of versions. Due to diversity,
failures in the components of NVS do not necessarily
lead to failures of the NVS.

Def. failure diversity (Dyaiture) =
Number of distinct failures found __ Nfailure I
Total number of failures found — Nygiture

(This definition applies with respect to the set ¥ of
input cases.)

The Appendix presents some theorems leading to
an intuitive result about the relationships among the
failure diversity, the probabilities of failure of every
software version, and the probability of failure of the
corresponding NVS.

3 Software Diversity Measurements

3.1 Results of Fault Diversity

During the phases of the Six-Language Project, two
pairs of common faults were found: one in the unit
test phase and the other in the operation test phase.
A total of 92 faults have been found so far, making
the fault diversity of the six programs equal to 90/92.

The two pairs of identical faults involved four
teams. It is interesting to note that both the supposed
causes of the common faults were due to the specifica-
tion. Unfortunately, since only two kinds of identical
faults were found, we think that the information is
not sufficient for further analysis of the relationships
between fault diversity and other metrics of interest.

3.2 Results of Structural Diversity

By tailoring some metrics analyzers [10], special
tools were written for semi-automatically measuring
the basic program metrics for the six different pro-
gramming languages used in the Project. This has
the desirable effect that the same counting rules are
applied consistently across the six programs.

To obtain the metrics at the application level, the
metrics of each program’s source files are added to
get the application metrics. The application metrics
together with the total number of faults found (d:otar)
for each program are presented in Table 1.

Notice that except for the Prolog team, the n;
counts among the other five programs are quite close
to each other. Such is not the case for 7, counts. Fig-
ure 1 is a plot of the total number of faults found
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mettic | sde < [ moduls | pascal | prolog T oI
L 23256 1531 1562 2331 2228 1568 1.52
NCSL | 1348 936 1069 1220 1398 1230 1.49
7] 335 259 227 200 305 312 1.53
mg 599 839 593 687 1394 855 2.8
Ny | 3136 | 37132 3425 2403 3364 | 21 1.585
Ng | 2178 | 1976 1873 2047 3180 | 325 1.70
DE 107 127 81 123 88 1 1.57 |
V{G) 150 163 121 160 181 1 1.50
(Cdiotar 1 6 | 18 | 4| 12 | 29 | 23 [ 735 |

Table 1: Comparisons of Structural Metrics at the
Application Level.

after the end of all phases (d¢otqa1) against the number
of unique operands (1) for each program. The linear
regression line and the correlation coefficient (r) are
also shown.

r = 0.925 and
dtotal 3] = —12.68 + 0.03z
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17, number of unique operands

Figure 1: diotq1 vs. 72 at the Application Level.

It is quite interesting to observe that for such a
few data points, there 1s a strong linear relationship
between these two metrics. If further demonstrated
by other research, this aspect of structural diversity
can help us identify fault-prone programs in an NVS
life cycle.

The relationships between other metrics and dyotal,
including DSL, NCSL, 7 (m +7n2), DE, and V(G), are
examined in Figure 2 to Figure 6.

It should be clear that both 7 and V(G) have strong
correlations with d¢orar (The hypothesis that 7 or V(G)
is associated with d;otq; is accepted with a confidence
level greater than 0.99). NCSL is the third, while DE
and DSL perform poorly. We also define a composite
metric [8] C based on 73 and V(G): C = pn2 + (1 — p)
V(G), by varying the p between 0 and 1, to see if this
weighted metric can perform even better. Figure 7
shows a plot of the correlation coefficients between C
and dyotq; when p is varied.
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Figure 4: diota1 vs. 7 at the Application Level.
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Figure 5: dio1q1 vs. DE at the Application Level.
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Figure 6: disiqr vs. V(G) at the Application Level.
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Figure 7: Correlation Coefficient r vs. Variation of p.

It can be seen that the correlation coefficient of C
reaches its maximum when p is around 0.1, with an
excellent r value. This combination which takes into
account both the 7 size count and V(G) logic struc-
ture complexity might be a better predictor for dsrar
for similar kinds of applications, regardless of the pro-
gramming languages being used.
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By going into the the source file level for each pro-
gram, we can obtain similar pairs of diota1 vs. the
metrics of interest for every source file. In particular,
we tried 777, 7, V(G), and NCSL. Table 2 summarizes,
for each metric category and for each program, the
correlation coefficients (r) with those of the applica-
tion level in the last column for comparisons. The
results show that the metrics measured at the source
file level are not as impressive as those obtained at
the application level. This implies the traditional ap-
proach of using source-file-level metrics (due to the
lack of multiple occurrences of ezact apphcations) to
establish a predictive model for faulty density could
be misleading, and as a result, inconclusive.

v ada < | moduls | pascal Tolog 1 | appl
7Y 0.436 0.359 0.753 0.667 0.357 0.144 0.928
w | 0.419 | 0.382 0.745 0.619 0.455 .21 0.902
V. G) 0.159 0.113 0.644 0.299 0.579 0.03 0.890
NCSL | 0.2862 | 0.308 0.669 0.455 0.571 0.38, 0.408
max(r) g " ng ) V{G) | NCSL ”

Table 2: Summary of r for Each Metric Category at
the Source File Level.

A complexity metric describes what it is, not what
it has to be. An interesting implication of the corre-
lations between the number of faults and structural
metrics of either source files or application programs
is that the structural diversity of the different levels
of redundancies present in the NVS can be taken ad-
vantage of in the life cycle to concentrate our testing
resources and therefore to increase the reliabilities of
the corresponding parts.

3.3 Results of Tough-Spot Diversity

Let us first examine the total faults found after all
the phases. Figure 8 shows six histograms which plot
the percentage of faults against all the system func-
tions (from Main to Interface) for each team.

The Ada and Modula teams’ histograms are flat
because in each case, there is only one fault found
in the corresponding system function. It is not clear
whether to call them the tough spots or not.

Table 3 summarizes the top two tough spots for
each team. Whenever there is a tie for the top two all
the ties are listed. The interface is not considered here.
Please note that the existence of the tough spot for a
team is marked by a bullet (e) in the corresponding
system function. For the cases where we are not sure of
the existence of a tough spot, a circle (o) is presented.

It should be clear that tough-spot diversity also ex-
ists among the programming teams. If we summa-
rize the top two tough spots for each team and for
all six teams together before the operation test, the
same results as in Table 3 are obtained (except for
the Modula team) and the top two tough spots for all
six teams occur in the Main, GSCF, and Inner Loop
system functions.

It is interesting to note that the identical fault com-
mitted by two teams (T and Prolog) and the faults
found in the C team by flight simulations during the
operation test all resided in Inner Loop, which is the




most common tough spot for this particular project.
We postulate that the distributions of tough spots for
each team and for all the teams together can guide
us in allocating appropriate resources in the testing
process and in the configuration of NVS system.

Ada

Function | ada | c [ modula | pascal | prolog
Main ) o e
BACF o o
RACF
GSCF o [ . .
Mode Logic ofe o
AH Outer
GS Outer
Flare Outer
Inner Loop ofe . °
Monitor
Display o .

|

TTrrT

N

TerTTT
1111111

Modula

It is postulated that there are at least three reasons
which contribute to the tough-spot diversity among
the programming teams:

rTrrrTT
A1 1Lt al

o differences of their difficulties in grasping the con-
cept of the application at the specification level;

e differences in their designs at the system function
level (may rush forward with their first idea with-
out giving further thoughts to other options [7]);

Pascal

UL
1111l

e differences in their implementations at the file or-
ganization level (may choose different mappings
between a system function and the source files).

An intuitive hypothesis that can be made about the
effect of tough-spot diversity on the failure diversity
is that a larger failure diversity might be expected us-
ing the program versions which, together, have higher
tough-spot diversity. The reason is that if two soft-
ware versions have faults left after all the testing and
during the NVS operation, but the faults reside in
the different system functions of the application, the
chances of these two software versions both failing on %g

LILBLELBLIREL
1111111

Table 3: Tough Spot Distributions of Each Team. %g

the same input case with identical results should be
very rare. Even if the faults reside in the same system
function, different faults are more likely to cause the
system to fail in a different way.

141 111

rrrrrT

Main — Interface

Figure 8: Histograms of the Percentage Distribution
of Faults among the System Functions.
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3.4 Results of Failure Diversity

Failure diversity metric is an intuitive measure of
the degree by which different combinations of software
versions may fail differently. After the acceptance test,
many simulations matching the actual flight profile
were executed during the operation test. A failure
is declared if any of the intermediate or output vari-
ables deviate from those of the gold version beyond
the threshold. No failures were found for the Ada,
Modula, and Pascal versions. However, failures were
identified for the other three versions during simula-
tion. It was found that the Prolog and T versions had
an identical fault which caused the two programs to
fail identically, not counting the numerical differences
introduced by the programming languages.

Identical failure is defined as two for more) versions
failing at the same time in the airplane flight path for
the same input case. This is a loose criterion since the
ability of NVS to mask and recover from the effects
caused by faults is neglected.

In the Appendix we have established a criterion
for deciding if the failure diversity for a certain NVS
configuration is acceptable or not. Being acceptable
means that the probability of failure of the NVS will
be lower than the average probability of failure of the
N versions of software.

Among the C(6,3) = 20 possible 3-version configu-
rations, ten have either no failures or D (failure diver-
sity) = 1. Among the other ten configurations, there
are three equivalence classes with different D, as shown
in Table 4 using the 1000 flight simulations performed
so far after the acceptance test (with abbreviations A
for Ada, C for C, M for Modula-2, Pa for Pascal, Pr
for Prolog, T for T, and N.C. for Number of Configu-
rations). Typically, each flight simulation takes more
than 250 seconds of simulation time, with one execu-
tion through the flight control laws every 0.05 second.
Thus, each successful flight requires more than 5000
executions.

‘Equivalence Class D N.C.
Pr+ T+ (A, M, or Pa) 0.5 3
C+ (ProrT)+ (A, M, or Pa) | 0.972 6
C+Pr+T 0.629 1

Table 4: 3-version Configurations with Prob. of Fail-
ure > 0.

There are C(6,5) = 6 possible 5-version configura-
tions in Table 5.

Of the possible twenty 3-version configurations,
there are four configurations with unacceptable diver-
sity and probabilities of failure greater than zero. Of
the six 5-version configurations, three configurations
gmarked with a “*”) have a positive probability of

ailure, due to thirty identical failures found so far for

the C, Prolog, and T programs. Each of these three
configurations has acceptable diversity, with diversity
equal to 0.629.

Tt is interesting to point out that among the thirty
identical failures of the C, Prolog, and T programs,
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Conhguration D

+C+M+Pat+Pr 0.972
A¥C+M+Pa+T 0.972
" A+ C+M+Pr+T [0.629
*A+C+Pa+Pr+ T [0.629
AF+-M+Pat+Pr+T 0.5
*C+M+Pa+Pr+T]0.629

Table 5: 5-version Configurations.

twenty-nine occur before 7 seconds of flight time have
elapsed. One identical failure occurs at 43.30 sec-
onds. This might suggest that for this kind of history-
sensitive application which requires mainly real num-
ber computations, it is more likely that different faults
will cause the versions to fail at the same time early in
the simulation rather than late. Moreover, although
there are thirty cases of C, T, and Prolog failing at the
same time, we have not found any cases where they
fail on identically the same combination of variables.

4 Conclusions and Future Work

Software diversity is a multi-dimensional concept.
Our goals in the investigations of this concept have
been to first formalize it, then to study the software
diversity of the Six-Language NVS products resultin
from a well-defined NVP software process [1, 14, Gf.
Our two major concerns, besides the assessment of the
NVP products, are the intra-relationships of software
diversity and the relationships between software diver-
sity and other software attributes which can facilitate
the building of NVS and increase the dependability of
the final product.

Fault diversity of the six programs (90/92) is close
to its maximum. No instance where a common fault
occurred in more than two versions was found. While
the structural diversity of the programs does not bear
significant relationships with the other software diver-
sity metrics, strong correlations between some struc-
tural metrics (172, V(G), and C = p~n2+%1 -p)V(G))
and the number of defects found in the software at the
application level have been observed. As explained
before, both the failure diversity and the reliabilities
of the component versions can affect the reliability of
NVS. What structural diversity can provide is to indi-
cate the potential fault ridden software component to
us so that appropriate resources can be given in the
NVS life cycle to improve the reliabilities of the com-
ponent versions. Incidentally, the three versions which
failed in the flight simulations after the acceptance test
have the highest values of the three structural metrics
12, V(G), and C = p -2 + (1 = p)V(G). ,

A fair degree of tough-spot diversity also exists
among the six programs. Several reasons for tough-
spot diversity were suggested. The faults which caused
the three versions to fail in the flight simulations all
resided in the Inner Loop system function, the most
common tough spot among the six programs. While
structural diversity has the potential to help improve
the reliability of the application, tough-spot diversity
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might indicate possible spots (system functions) in-
side the application where improvements can be very
beneficial.

The interplay between tough-spot (in)diversity and
failure diversity was observed during the flight simula-
tions where the tough-spot indiversity contributed to
the failures of three versions at the same simulation
time. From the data, it was suggested that for this
application, the coincidental failures tend to happen
more often in the early phase. The implication for the
recovery mechanisms is that it might be more effective
to spend resources in recovery in the early phase since
coincidental failures caused by different faults may be
the triggers.

Besides the reliabilities of the component versions,
the failure diversity of the NVS is the final determin.-
ing factor of the dependability of NVS. Just as in the
traditional software engineering activities where we
observed the growth of software reliabilities through
fault removal, failure diversity of NVS will also change
through time, though not necessarily growing. Study
needs to be done on this aspect of diversity change
through time.
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Appendix

In the following discussion, we will simply use D, n,
and N instead of Dfailure; Nfailure, and N,failure for
the purpose of conciseness.

Def. A = extra number of identical references for a
bad version to reach majority

e.g., for three-version software (m = 3), A = 1; for m
=3, A = 2; in other words A = majority - 1, assum-
ing mis odd, A = 21,
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Theorem 1 Let Fyys denote the probability of fail-
ure of the NVS system:

(i-0 N

F <
VS =T [runs)

Proof of Theorem 1I:

Notice that N — 7 is the summation of all
the extra number of bad votes from all the
versions of software. For a failure to occur on
a certain input, the number of bad versions
must constitute the majority, so that we have

in general:
X 1-D)yx% (1-D) N
Fnvs S A — ( ) A ( )X
|runs| [runs| A [runs|

( “=" happens when every occurrence of
multiple failures is just enough to nullify the
functioning of the NVS system, i.e., the num-
ber = A+1)

Q.E.D.

From the above theorem, it should be clear that the
probability of failure of the NVS system is related to
the failure diversity, the reliabilities of the individual
versions, and the number of versions employed.

Theorem 2 —’1—‘ < D < 1, where m is the number of

versions employed in the NVS system and is an odd
number.

Proof of Theorem 2:

The upper bound 1 is obvious, it happens
when every failure is unique in its own cat-
egory, i.e., every failure occurs exactly once.
The lowest value D can take on occurs when
every failure replicates itself in all the other
versions, i.e., it occurs m times. Every other
case will have a value of D greater than %

Q.E.D.

The above theorem also applies to Dygui, the fault
diversity.

Theorem 3 Let m = 2A + 1, where m is defined as
above, and if f;, 1 <i < m, represents the probability
of failure of the ith version, then we have the following
relationship:

2 m
< Fyvs < =S
0< st_me

i=1

Proof of Theorem 3:

FNVSIE;—Dx‘Z;f;, in the worst case
1 m-—1
—<D<1=20<(1-D)<
m m
1_L m 9 m
= 0< Fyvs < m—T'Zfi:OSFNVSS;'Zfi
T2 =1 i=1
Q.E.D.

An intuitive explanation for this phenomenon: in
order to beat the NVS system’s capabilities of fault
tolerance, every failure must occur in over half the
number of versions. This means that when the indi-
vidual probabilities of failures are summed up to de-
termine the total system probability of failure, we have
actually overestimated by half the number of versions,

i.e., a factor of approximately at most - for the com-
pensation. There is a smoothing effect involved in
NVS operation.

A still more accurate upper bound for Fyys can
be found:

Theorem 4 Fyvs < min(1Z2, D) - 3", fi (Re-
vised Theorem 1)

Proof of Theorem 4:

Fnvs would be overestimated by Theo-
rem 1 in the case that it contains more than
enough (1 + A) bad versions to nullify the
NVS system at the same time. A more accu-
rate bound for this case should be:

m
n n N
F < = — - =D. :
Nvs = [runs| N |runs| lz_:lf'

1-D =
ie., Fyvs < min(——, D) Sk
i=1

Q.E.D.

Let R (risk) be the multiplication factor
min(1Z2, D). Then a curve can be drawn of R vs.
D (from % to 1) for an m-version system in Figure 9.

From the curve, it is clear that for diversity greater
than %’—1, the multiplication factor, i.e., the R value,
will always be lower than the R value of a multiple-
hardware-channel system running the same software,
which has a D value of # This leads to the following
definition:

Def. An NVS system with D (failure diversity)
greater than ﬂzmﬂ is called diversity-acceptable. An
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T0) P
Figure 9: Relationship between Risk and Failure Di-
versity.

NVS system with D not greater than %ﬁi—l is diversity-
unacceptable.

Note that the definition of diversity-acceptable and
diversity-unaccepiable is only based on the multipli-
cation factor in the formula of Theorem 4, i.e., the
min(1Z2, D) in Fyys < min(3Z2, D) - Y7 £ It
would be interesting to take into account the individ-
ual failure probabilities as well as the failure diversity
of the NVS system.

Suppose that fmi, = min(f;,i = 1,. ..,m). We
want to consider the following two NVS systems:

e NVS1: using m identical versions with probabil-
ity of failure fiuin;

e NVS2: using m different versions with proba-
bilities of failure f;,i = 1,...,m (assume it is
diversity-acceptable).

Clearly, then

Fyvs) = # . mfmin

Fnvsa = 152 . "7 fi, in the worst case =
% . mfa.,y, where favg is the average probability of
failure.

Now, for Fnyvss < Fnvs:

%'mfang#'mfminﬁl-DS%;_lM

2 avg

>D>1- ";—,—nl'ﬂy where fnin =ﬁfaug,os g<1

=

For the special case when f=1=>D>1- ";—,'n’ =
mtl

2m

Let us consider the curve of R vs. D in Figure 10,
with the the added broken line representing the diver-
sity threshold when § equals 1, i.e., when every version
has the same probability of failure.

It should be clear that for 8 equals 1, "‘T;fni is the
diversity threshold beyond which the NVS system con-
sisting of m different versions of software pays off, but
as 3 decreases, the threshold moves to the right. In
particular, when § equals 0, the NVS system of m
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Diversity threshold
e =1.
- or 3

%)

60 D

Figure 10: Relationship between Risk and Failure Di-
versity. (Revised)

different software needs a diversity of 1 to be com-
petitive. Putting aside the fact that NVS enables us
to detect disagreement between versions during the
operation, what this implies is that in configuring an
NVS system, we should make the best effort to choose
the versions with the maximum failure diversity and
with as low and as compatible failure probabilities as
possible.
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