
An Integrated Approach to Achieving
High Software Reliability

Michael R. Lyu
Computer Science and Engineering Department

The Chinese University of Hong Kong
Shatin, Hong Kong

lyu@cse.cuhk.edu.hk
+852-2609-8429

Absrrucr- In this paper we address the development,
testing, and evaluation schemes for software reliability, and
the integration of these schemes into a unified and consistent
paradigm. Specifically, techniques and tools for the three
software reliability engineering phases will be described.
The three phases are (1) modeling and analysis, (2) design
and implementation, and (3) testing and measurement.

In the modeling and analysis phase we describe Markov
modeling and fault-tree analysis techniques. We present
system-level reliability models based on these techniques,
and provide modeling examples for reliability analysis and
study. We describe how reliability block diagrams can be
constructed for a real-world system for reliability prediction,
and how critical components can be identified. We also
apply fault tree models to fault tolerant system architectures,
and formulate the resulting reliability quantity. Finally, we
describe two software tools, SHARPE and UltraSAN, which
are available for reliability modeling and analysis purpose.

In the design and implementation phase we show specific
fault-tolerant techniques in building reliable software
systems for either single-version software or multiple-
version software. In single-version software we form a
generic platform and a set of reusable software components
to perform software fault tolerance tasks in the application.
These software fault tolerance components provide a
powerful set of building blocks to defend against software
faults in various levels of a system. In addition, we examine
multiple-version systems using design diversity, including
recovery blocks and N-version programming techniques.
We also describe a design paradigm for such systems.

In the testing and measurement phase we discuss data flow
software testing schemes as well as software reliability
measurement procedures. We describe the software testing
schemes in terms of their effectiveness and their relationship
to reliability, and provide quantitative comparison between
testing coverage and reliability measure. Furthermore, we
provide an in-depth discussion on the software reliability
modeling and measurement techniques, including their
concepts, approaches, and procedures. In particular, the
CASRE tool for automatic reliability measurement will be
described and presented in detail.

TABLE OF CONTENTS

1. INTRODUCTION
2. PHASE-BASED APPROACH: AN OVERVIEW
3. PHASE 1 : MODELING AND ANALYSIS PHASE
4. PHASE 2: DESIGN AND IMPLEMENTATION PHASE
5 . PHASE 3: TESTING AND MEASUREMENT PHASE
6. CONCLUSIONS

1. INI-RODUCTION
Our demand for complex hardwarekoftware systems has
increased more rapidly than our ability to design,
implement, test, and maintain them. When the requirements
for and dependencies on computers increase, the crises of
computer failures also increases. The impact of these
failures ranges from inconvenience (e.g., malfunctions of
home appliances), econoimic damage (e.g., interruptions of
banking systems), to loss of life (e.g., failures of flight
systems or medical software). The reliability of computer
systems has become a major concern for our society.

Within the computer revolution progress has been uneven:
software assumes a larger burden while based on a less firm
foundation than hardware. In stark contrast with the rapid
advancement of hardware technology, proper development
of software technology has failed to keep pace in all
measures, including quality, productivity, cost, and
performance. Software has become the bottleneck of system
development, and its delay and cost overrun have often put
modern complex projects in jeopardy. With the last decade
of the 20th century, computer software has already become
the major source of reported outages in many systems [I].

As an example, Figure 1 shows the causes of total outage
incidents of U.S. switching systems in 1992, in which we
can see that software accounts for 8 1 % of network outages
(including Retrofits, Scheduled Events, Software Design,
Procedural). Hardware and other faults were only
responsible for less than 20% of the outage [2] . Moreover,
severe software failures have impaired several high-visibility
programs worldwide. These critical incidents either caused
enormous revenue losses to companies, or put human lives
in danger.

0-7803-431 1-5/98/$10.00 0 1998 IEEE
123

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

Figure 1 Switching System Outage Causal Classification

To this end, many software companies see a major share of
project development costs identified with the design,
implementation, and assurance of reliable software, and they
recognize a tremendous need for systematic approaches to
assure software reliability within a system. Clearly,
developing the required techniques for software reliability
engineering is a major challenge to computer engineers,
software engineers, and engineers of various disciplines for
now and the decades to come.

2. PHASE-BASED APPROACH: AN OVERVIEW

Software reliability engineering is focused on a very
important software attribute: reliability. Software reliability
is defined as the probability of failure-free software
operation for a specified period of time in a specified
environment [3]. It is one of the attributes of software
quality, a multi-dimensional property including other factors
like functionality, usability, performance, serviceability,
capability, installability, maintainability, and documentation
[4]. Software reliability, however, is generally accepted as
the key factor in software quality, since it is aimed at
quantifying and predicting software failures - which can
make a powerful system inoperative or even deadly. Thus
reliability is an essential ingredient in customer satisfaction
for most commercial companies and governmental
organizations. In fact, IS0 9000-3 specifies measurement of
field failures as the only required quality metric: " ... at a
minimum, some metrics should be used which represent
reported field failures and/or defects form the customer's
viewpoint. ... The supplier of software products should
collect and act on quantitative measures of the quality of
these software products." (See the Section 6.4.1 of (51).

Reliability engineering is a daily practiced technique in
many engineering disciplines. Civil engineers use i t to build
bridges and computer hardware engineers use it to design
chips and computers. Using a similar concept in these
disciplines, we define sojiware reliability engineerbig as the
quantitative study of the operational behavior of software-
based systems with respect to user requirements concerning
reliability. Software reliability engineering therefore
includes [6]:

software reliability measurement, which includes
estimation and prediction, with the help of software
reliability models established in the literature;

the attributes and metrics of product design,
development process, system architecture, software
operational environment, and their implications on
reliability; and

the application of this knowledge in specifying and
guiding system software architecture, development,
testing, acquisition, use, and maintenance.

In this paper we attack the problem of software reliability
engineering in three phases: (1) Modeling and Analysis
Phase, (2) Design and Implementation Phase, and (3)
Testing and Measurement Phase. All these phases deal with
the management of software faults and failures. In the
Modeling and Analysis Phase, reliability of the software
system is being modeled according to the structure of the
system and possible fault scenarios. The key topic of this
phase is to provide fault modeling of the system, and ask the
"what if ' questions. The available modeling approaches
include system reliability modeling block diagrams,
reliability models by Markov chains, fault tree analysis, and
stochastic Petri-nets. In the Design and Implementation
Phase, reliability of the software system is being achieved by
reliable components built into the system. The key topic of
this phase is to provide fault avoidance and fault tolerance.
The available techniques we emphasize include reusable
software fault tolerance routines, and software fault
tolerance by design diversity. In the Testing and
Measurement Phase, reliability of the software system is
being evaluated and verified by measurement and evaluation
techniques. The key topic of this phase is to provide fault
removal and fault prediction. The available techniques
include data flow testing, reliability measurement tasks, and
software reliability tools. We discuss the details of these
techniques in the following three sections.

3. PHASE 1 : MODELING AND ANALYSIS PHASE

To provide reliability modeling and analysis of a software
system during the pre-design phase, the overall system
architecture based on requirement can be modeled by
several techniques. The available modeling approaches
include system reliability modeling block diagrams, Makov-
chains reliability modeling, fault tree analysis, and stochastic
Petri-nets. These approaches can be used to establish system
reliability and performance model for the study of system
behavior under various scenarios. The reliability of the
system, for example, can be predicted in a coarse basis for
the overall system given its architectural options are defined.
Sensitivity analysis can then be performed to locate
important parameters of the system, and critical components
of the system can be identified for enforcement of each

124

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

component's individual reliability. Note that the reliability
model established in this phase can be refined and revised
for evaluation purpose in a post-design phase for the
purpose of a fine prediction and estimation.

3.1 Reliability Block Diagram

Figure 2 shows the reliability modeling and analysis using
block diagrams for an actual project. This is a military
distributed processing system which has an mean time
between failure (MTBF) requirement of 100 hours and an
availability requirement of 0.99. The overall architecture of
the system depicted in Figure 2 indicates that the system
consists of three subsystems, SYS1, SYS2, SYS3, a local
area network (LAN), and a 10 Kilo-Watts power generator
GEN. In order for the system to work, all the components
(except SYS2) have to work. In the early phase of system
testing, hardware reliability parameters are predicted
according to the MIL-HDBK-217. Above each component
block in Figure 2 two numbers are shown. The upper
number represents the predicted MTBF (in hours) for that
component, and the lower number represents its mean time
to repair (MTTR). For example, SYSl has 280 hours for
MTBF and 0.53 hours for MTTR, while SYS2 and SYS3
have 387 hours for MTBF and 0.50 hours for MTTR. Note
that SYS2 is configured as a1 triple module redundant (TMR)
system (indicated in dotted-line block), where the subsystem
will work as long as two or more modules work. Due to this
fault-tolerant capability, its MTBF increases to 5.01 x lo4
hours and M?TR becomes 0.25 hours.

I
5.01 x IO
a25

failure rates for SYS2 software and SYS3 software are both
2.52 failures per execution hour. (Note the three SYS2 S / W
are identical software copies and not fault-tolerant.) Even
without considering SXS 1 software failures, the system
MTBF would have become 11.9 CPU minutes. If assuming
MTTR is still 0.62 hours, the system availability becomes
0.24, far less than it was predicted assuming no software
failures.

3.2 Fault Tree Analysis

Fault tree models have long been used for the qualitative and
quantitative analysis of the failure modes of critical systems
[8]. A fault tree provides a mathematical and graphical
representation of the combinations of events which can lead
to system failure. The construction of a fault tree model can
provide insight into the system by illuminating potential
weaknesses with respect to reliability of the system. A fault
tree can help with the diagnosis of failure symptoms by
illustrating which combinations of events could lead to the
observed failure symptoms, so that we can attempt to
remove their root causes. The quantitative analysis of a fault
tree can further be used to determine the probability of
system failure, given the probability of occurrence for
failure events.

In the meanwhile, the construction of a fault tree provides a
systematic method for analyzing and documenting the
potential causes of system failure. The analyst begins with
the failure scenario being considered, and decomposes the
failure symptom into it!; possible causes. Each possible
cause is then investigated and further refined until the basic
causes of the failure are understood. From a system design
perspective, the fault tree analysis provides a logical
framework for understanding the ways in which a system
can fail - this is often as; important as understanding how a t bo .w

1.3 0-93 0.50

: SYSJL t- yw 7 j lo'
I -- ?do

O S
system can succeed.

A fault tree consists of the undesired top event (system or
subsystem failure) linked to more basic events by logic
gates. The top event is iresolved into its constituent causes,
connected by AND, OR and M-out-of-N logic gates, which

I

'------------------I

W

Figure 2 An Example of Predicting System Reliability

To calculate the overall system reliability, all the
components in the system have to be considered. If we
assume the software does not fail, the resulting system
MTBF would be 125.9 hours, and MTTR would be 0.62
hours, achieving system availability of 0.995. From this
calculation It looks as if the system already meets its original
requirements.

But the software does fail. Both SYS2 and SYS3 software
contain 300,000 lines of source code, and following the
prediction model described in [7], the predicted initial

- -
are then further resolved until basic events are identified.
The basic events represent basic causes for the failure, and
represent the limit of resolution of the fault tree. Fault trees
do not generally use the NOT gate, because the inclusion of
inversion may lead to a non-coherent fault tree, which
complicates analysis. It is quite rare to have need for
complementation in a fault tree, so this limitation is
acceptable for the analysis of practical systems.

Figure 3 describes an example for applying fault tree
analysis to fault-tolerant software (See Section 4),
specifically, Distributed Recovery Block (DRB) 191. The
top portion of Figure 3 shows the Markov model of system
structure, where the haridware and error confinement areas
[101 associated with the DRB architecture are considered.

125

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

f o r initial state
I

[SOFITTAREFAILS I
n

__________-----____---------

Computation error model

for intermediate state -1 r,
after slxxessful reconfguratio

Figure 3 Fault Tree Analysis for Fault Tolerant Software

The system is defined by two software variants and two
hardware replications. The hardware error confinement
area is the lightly shaded region, and the software error
confinement area is the darkly shaded region. It can be
seen that originally the system is running on a full
configuration with two hardware components and two
software components. Upon a hardware failure (with
failure rate h to each component and a coverage factor c),
the system can be reconfigured to a degraded
configuration with two software variants running on one
hardware component. However, if this hardware failure is
not recoverable or if a second hardware failure happens,
then the system goes to the failure state (with probability
1 -c>.

The middle and lower portions of Figure 3 show how fault
tree models can be constructed for the initial and degraded
configurations, respectively, for the computation errors.
For the initial state, a single task computation will produce
unacceptable results if one of three events occur. First, if
both the primary and secondary fail on the same input,
because of two unrelated faults or a single related fault.
Second, if both hardware components experience faults,
then the computations being hosted will be upset and be
unable to produce correct results. Third, if the DRB's
acceptance test fails to either detect unacceptable results
or to accept correct results, then the computation fails.
Fault tree model for the intermediate state after one
hardware failure is the same except that there is only one
hardware component left.

126

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

The fault tree model provides a compact format for
describing the effects of both software and hardware
faults. For example, we can easily visualize the effects of
an acceptance test failure or a related fault between the
versions. To formulate the system behavior quantitatively,
we use the following notation for basic events in the fault
tree model:

D - An independent fault in the acceptance test (it can
also be majority voter, comparator, adjudicator).

RV - The input for a single computation activates a
related fault between two versions. A related fault is one
that occurs in two different versions causing both to
produce the same erroneous result.

RALL - A related fault affects all versions as well as the
acceptance test, caused by iimperfect specifications.

H - A hardware fault affects the task computation.

Furthermore, let Px is the probability that event X occurs,
and QX = 1 - Px, then the probability 'that an unacceptable
result is produced during a single task iteration is given by

3.3 Modeling Tools

The usage of software tools, is a must in the modeling and
analysis phase. We consider SHARPE [111 and
UltraSAN [121 as two leading tools in this arena. Both of
them run as an independent tool in the Unix environment,
and both of them are wildly used in both academia and
industry.

SHARPE (Symbolic Hierarchical Automated Reliability
and Performance Evaluator) is a very general purpose
performance and reliability modeling "tool chest" which
allows the flexibility of choosing from various model
types and hierarchically combine them, as per the
demands of a particular problem. The model types
currently supported by SHARPE include reliability block
diagrams, reliability graphs, fault trees, Markov and semi-
Markov chains, Markov and semi-Markov reward models,
product-form queueing networks, generalized stochastic

Petri nets, and series-paralllel directed acyclic graphs. The
tool enables computation of steady state as well as
transient measures. The presence of many model types
and the flexibility of model composition make SHARPE
useful as a tool for analyzing real-world problems, and as
a workbench for experimenting with modeling techniques,
especially the use of exact and approximate system or
model decomposition.

UltraSan (Ultra Stochastic Activity Networks) is a

software tool for model-based performance, dependability
and performability evaluation of computer,
communication and other systems. The tool provides
high-level modeling constructs in the form of stochastic
activity networks (SANS), and offers hierarchical
modeling by means of composed models. To specify
performance and dependability measures for these
models, reward variables are used. Given the SAN,
composed model and reward variables, the tool either
generates an executable discrete-event simulation or an
underlying stochastic process, which then is solved by
analytic methods. This tool provides six analytic solvers
and three discrete-event simulators, one based on
importance sampling. Furthermore, the report generator
facilitates the generation of graphs and tables from the
obtained performance results.

4. PHASE 2: DESIGN AND IMPLEMENTATION
PHASE

In the Design and Implementation Phase, reliability of the
software system is being achieved within the system. The
key topic of this phase is to provide fault avoidance and
fault tolerance. Fault avoidance is the subject of many
software engineering techniques and is beyond the scope
of this paper. Fault tolerance, on the other hand, is the
focus of our discussion. We examine fault tolerance
techniques used in single-version as well as multiple-
version environments.

4.1 Single-Version Sofbvare Fault Tolerance

Software fault tolerance in single-version software
environment is achieved by introducing special fault
detection and recovery features, including modularity,
system closure, atomicity of actions, decision verification,
and exception handling. One successful approach is
accomplished by reusatble software fault tolerance routines
[131. Traditionally, reliability is provided through fault.
tolerance technology in the hardware, operating system
and database layers of a computer system executing the
application software. Two trends are emerging in the
marketplace that are changing this tradition for providing
fault tolerance. First, standard commercial hardware and
operating systems are becoming more reliable, distributed,
and inexpensive. They are now off-the-shelf, commodity
items with open and evolving standards and interfaces.
Second, the proportion of failures resulting from faults in
the application sofhyare is increasing due to increased
size and complexity off software being deployed.

To implement application-level software fault tolerance,
we need a mechanism to detect and restart a failed
processes at the minimum. The next higher level is to
checkpoint and recover the internal state of a process
when it fails. Addlitionally, logging and replaying
messages may also be employed. It may happen that some

127

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

part of the environment will change during recovery and
replay in a way that the process will not fail upon re-
execution. Another method is to reorder the messages
during replay so that errors due to unexpected event
sequences are masked. The next higher level is on-line
replication of application files at a remote site in addition
to the previous tasks.

In addition to reactive recovery procedures described
above, there is a complementary pro-active approach,
called sojiware rejuvenation, to handle transient software
errors. Software rejuvenation prevents failures from
occurring by periodically, and gracefully, terminating an
application and immediately restarting it at a clean
internal state. Restarting an application involves queuing
the incoming messages, re-spawning the application
processes at an initial state, reinitializing the in-memory
volatile data structures, and logging administrative
records.

A middleware platform containing a set of reusable
software components (watchd, libft, REPL, libckp, and
addrejuv) to perform these reactive and pro-active
software fault tolerance tasks can be seen in Figure 4. The
original implementation of these components was targeted
for the Unix environment, which was later ported to the
Windows NT platform. They are currently tailored to the
emerging stardards including CORBA and DCOM. The
hardware platform for using these reusable software
components is a network of standard computers where
each computer provides a back-up facility for another one
on the network. The components provide mechanisms to
checkpoint, log messages, watch, detect, rollback, restart,
and recover from failures and rejuvenate to avoid failures.
They are described as follows:

I Application 1- Application I

application process to watchd. When watchd detects that
an application process crashed or failed, it recovers that
application at an initial internal state or at the last
checkpointed state. It is recovered on the primary node if
that node has not crashed, otherwise on the backup node
for the primary as specified in a configuration file. If libft
is also used, watchd sets the restarted application to
process all the logged messages from the log file
generated by libft.

Warchd also facilitates restoring the saved values and re-
executing the logged events. In addition, it provides
facilities for rejuvenation, remote execution, error
reporting, remote copy, distributed election, and status
report production.

Libft

Lib8 is a user-level library of C functions that can be used
in application programs to specify and checkpoint critical
data, recover the checkpointed data, log events, locate and
reconnect to a backup server. It provides a set of functions
to specify critical volatile data (Le., data in the memory)
in an application. These critical data items are allocated in
a reserved region of the virtual memory and are
periodically checkpointed on primary and backup nodes.

Libji also provides reliable read and write operations to
automatically log messages. The logged data is then
duplicated and logged by the watchd daemon on a backup
machine. The replication of logged data is necessary for a
process to recover from a primary machine failure.

REPL

REPL is a file replication mechanism for on-line
replication of critical files of an application. It usually
runs on a pair of machines, one for active and one for
back-up. The mechanism uses dynamic-shared libraries to
intercept file system calls. When a user program issues a
file update, the shared library intercepts the request,
performs the update locally, and passes the update
message to a remote REPL server. Upon receiving the
message, the remote REPL server replays the message and
performs the file update. The critical files are specified
through an environment variable. REPL is built on top of
standard file systems, requiring no change to the
underlying operating system. Speed, robustness and
replication transparency are the primary design goals of

Figure 4 Software Fault Tolerance: Platform and
Components

Watchd

Watchd is a watchdog daemon process that runs on a

the REPL replication mechanism.

Libckp

Libckp is a user-transparent checkpointing library. It can
be linked with a user’s program to periodically save the
program state on stable storage (e.g., disks) without
requiring any modification to the source code.

single machine or on a network of machines, whose
purpose is to detect application process failures and
machine crashes. It determines whether a process is hung
by either polling the application or checking an “I-Am-
Alive” heartbeat message periodically sent from the

128

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

Software UnIt Enhancements for Fault-'l'olermt Exeeutfon

Figure 5 The N-Version Software (N V S) Model with N =: 3

The checkpointed program state includes program
counter, stack pointer, program stack, open file
descriptors, the global/static variables and dynamically
allocated memory of the program and the libraries linked
with the program Libckp has two unique features. First,
the library allows a user to include files as part of the
process state that is checkpointed and recovered. More
specifically, when a process rolls back, all the
modifications it has made to the files since the last
checkpoint are undone so that the states of the files are
consistent with the checkpointed state. The second unique
feature of libckp is that it provides application-initiated
checkpoint and rollback facilities within a program. This
facilitates restoration of global/static variables,
dynamically allocated memory, and user files.

Addrejuv

Addrejuv is an added feature of watchd to do software
rejuvenation by stopping a.nd restarting a process at a
certain interval or when a particular event happens in the
application process. The interval or event for periodic
rejuvenation is determined through analysis and
experience with the application [141. When the addrejuv
feature is used, watchd creates a rejuvenation shell script
and registers the starting time or the event for execution of
that script with a system daemon to rejuvenate the
process. The shell script takes systematic steps to stop the
process. Once the process i s terminated, watchd takes a
recovery action to re-spawn the process in the same
manner as it does when it detects a failure.

4.2 Multiple-Version Sofnyare Fault Tolerance

Multiple, redundant coimputing channels (or "lanes") have
been used to build fault-tolerant hardware systems. To
make a simplex software unit fault-tolerant, the
corresponding solution is to form a set of N 2 2 units,
where each simplex unit in the fault-tolerant set of N units
needs to be built separately and independently of the
other members of the set. This is the concept of software
design diversity [151.

In multiple-version software fault tolerance systems, an
execurion environment (EE) is required for overall
operation. The simplex units and the EE have to meet
three requirements: (1) the EE must provide the support
functions to execute the N 2 2 member units in a fault-
tolerant manner; (2) the specifications of the individual
member units must define the fault tolerance features that
they need for fault-tolerant operation supported by the EE;
(3) the best effort must be made to minimize the
probability of an undetected or unrecoverable failure of
the fault-tolerant software unit that would be due to a
single cause.

The evolution of techniques for building fault-tolerant
software out of simp1e:x units has taken two forms. The
two basic models of fault-tolerant software units are N-
version software (NVS), shown in Figure 5 and recovery
blocks (RB) shown in Figure 6. The common property of
both models is that two or more diverse units (called
versions in N V S , and alternates and acceptance tests in
RB) are employed to form a fault-tolerant software unit.

129

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

I j-th Rerovery Block Software UnIt I f EE I I

j Executlon EnrIronment I I I

I

I

Recovery
Cache t

I I I I I

I 1 I I

I I

I I I No I I

I
I I Take. Next I I Functions I I I I

I Execution Suppart I I ; I

I 1 0 1

I I
I I

Alternate I I
I I
I I

Software Unit En han remen ts for Fad t -'l'olerant Em cud on

Figure 6 The Recovery Block (RB) Model

The most fundamental difference is the method by which
the decision is made that determines the outputs to be
produced by the fault-tolerant unit. The N V S approach
employs a generic decision algorithm that is provided by
the EE and looks for a consensus of two or more outputs
among N member versions. The RB model applies the
acceptance test to the output of an individual alternate;
this acceptance test must be specific for every distinct
service, i.e., it is customer-designed for a given
application, and is a member of the RB fault-tolerant
software unit, but not a part of the EE.

As a special case, N = 2 is the so called fail-safe software
units with two versions in N V S , and one alternate with
one acceptance test in RB. They can detect disagreements
between the versions, or between the alternate and the
acceptance test, but cannot determine a consensus in N V S ,
or provide a backup alternate in RB. Either a safe
shutdown is executed, or a supplementary recovery
process must be invoked in case of a disagreement.

Both RB and N V S have evolved procedures for error
recovery. In RB, backward recovery is achieved in a
hierarchical manner through a nesting of RBs, supported
by a recursive cache, or recovery cache that is part of the
EE. In N V S , forward recovery is done by the use of the
community error recovery algorithm that is supported by
the specification of recovery points and by the decision
algorithm of the EE. Both recovery methods have
limitations: in RB, errors not detected by an acceptance
test are passed along and do not trigger recovery; in N V S ,
recovery will fail if a majority of versions have the same
erroneous state at the recovery point.

It is evident that the RB and N V S models converge if the
acceptance test is done by N V S technique, Le., when the
acceptance test is specified to be one or more independent
computations of the same outputs, followed by a choice of
a consensus result. Note that the individual versions of
N V S usually contain error detection and exception
handling (similar to an acceptance test), and that the N V S
decision algorithm takes the known failures of member
versions into account. The procedure to develop
diversified software units for RB and N V S is formulated
in an N-version programming (NVP) design paradigm
[16], as shown in Figure 7.

The purpose of the paradigm is to integrate the unique
requirements of NVP with the conventional steps of
software development methodology. The objectives of the
design paradigm are:

to reduce the possibility of oversights, mistakes, and
inconsistencies in the process of software
development and testing;

to eliminate most perceivable causes of related design
faults in the independently generated versions of a
program, and to identify causes of those which slip
through the design process;

to minimize the probability that two or more versions
will produce similar erroneous results that coincide in
time for a decision (consensus) action.

130

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

J
System RequIrenient

Ph me
I
4

I

Software Requirement .5

Phase

SoRaare Spedffcation .e I- Phase

Coding Phase

Exploru
Presence of NSS

I

Testing Phase t-
4

L

Dependabilfty of NVS
I

Evaluation and
Acceptance Phase t-
Operational Phase

I [e-)
Figure 7 A Design Paradigm for NVP

The application of a proven software development
method, or of diverse methods for individual versions, is
the foundation of the NVP]paradigm. The chosen method
is supplemented by procedures that aim: (1) to attain
suitable isolation and independence (with respect to
software faults) of the N concurrent version development
efforts, (2) to encourage potential diversity among the N
versions of an N-version software unit, and (3) to
elaborate efficient error detection and recovery
mechanisms. The first two procedures serve to reduce the
chances of related software faults being introduced into
two or more versions via potential “fault leak“ links, such
as casual conversations or mail exchanges, common flaws
in training or in manuals, use of the same faulty compiler,
etc. The last procedure serves to increase the possibilities
of discovering manifested errors before they can cause an
incorrect decision and consequent failure.

5. PHASE 3 : TESTING AND MEASUREMENT PHASE

In this phase the reliability of the software system should
be evaluated and verified, and testing and measurement
techniques are available to achieve this goal. Testing
techniques are for fault removal purpose, and reliability
assessment techniques are for fault prediction purpose.
We discuss each of them in the following sections.

5.1 Software Testing ,Scheme and Tool

There are many ways of testing software. The terms
functional, regression, integration, product, unit,
coverage, user-oriented, are only a few of the
characterizations we encounter. These terms are derived
from the method of software testing or the development
phase during which the software is tested. The testing

131

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

methods “functional,” “coverage,” and “user-oriented,”
indicate respectively that the functionality, the structure,
and the user view of the software are to be tested. Any of
these methods might be applied during the unit,
integration, product, or regression phases of the software‘s
development.

White-box, or coverage, testing uses the structure of the
software to measure the quality of testing. This structural
coverage and its measurement is believed to be connected
with reliability estimation. These testing schemes include
statement coverage testing, decision coverage testing, and
data-flow coverage testing.

Statement coverage testing directs the tester to construct
test cases such that each statement or a basic block of
code, is executed at least once.

Decision coverage testing directs the tester to construct
test cases such that each decision in the program is
covered at least once. A decision refers to a simple
condition. Thus, for example, the C language statement if
(a d II p>q) ... consists of two simple conditions, a<b and
p>q, and one compound condition. We say that a decision
is covered if during some execution it evaluates to true
and in the same or another execution it evaluates to false.
In the above example, the two simple conditions must
evaluate to true and false during some execution for the
decision coverage criterion to be satisfied.

Data jlow coverage testing directs the tester to construct
test cases such that all the define-use pairs are covered.
Consider a statement SI:x=f() in program P , where f is an
arbitrary function. Let there be another statement
S2:p=g(x, *) in P where g is an arbitrary function of x and
any other program variables. We say that SI is a definition
and Sz a use of the variable x. The two occurrences of x
constitute a define-use pair. If the use of a variable
appears in a computational expression, then such a pair is
termed as a c-use. If the use appears inside a predicate
then the pair is termed as a p-use. A path from S, to Sz is
said to be definition free if no statement along this path,
other than SI and S,, defines x. Such a path is considered
feasible if there exists at least one d E D such that when P
is executed on d the path is traversed.

All statements in P that can possibly be executed
immediately after the execution of some statement S, are
known as successors of S. We say that a c-use or a p-use
is covered if the execution of P on some set of test cases
causes at least one definition free path to be executed
from the defining statement to the statement in which the
use occurs and to each of its successors.

Coverage measures from the above testing criteria are
obtainable from the ATAC tool. ATAC (Automatic Test
Analysis for C) is a software testing tool for the

measurement of data flow coverage for C programs during
their execution. Using ATAC, we show the relationship
between testing and reliability using two real-world
applications. The first application is an automatic (Le.,
computerized) airplane landing system, or so-called
autopilot, developed and programmed by 15 programming
teams at the University of Iowa and the Rockwell/Collins
Avionics Division [171, using the W P design paradigm
described in Figure 7. 12 versions of the autopilot
program were produced and accepted at the end of the
project. The coverage measures obtained from this project
and the fault detection history are depicted in Figure 8.

b,
h

4
Q
3

0

7 100

90 -

_*.-

block coverage -
decision coverage

c-usc coverage - - - -
?-use coverage

known f a u l t s de t ec t ed -
40

I
0 5000 lOO@O 1500@ ZOO00 2 5 0 0 0

Number of Executions

Figure 8 Relationship between Coverage Improvement
and Fault Detection during Testing Phases

Figure 8 shows the progress of software testing from unit
testing (1 complete flight simulation test case), integration
testing (960 test cases), to acceptance testing (2 1600 test
cases). The dash lines depict the accumulation of test
coverage, while the solid line depicts the increased
percentage of fault detection. The data points are taken
from the average of the resulting 12 programs. It can be
seen from Figure 8 that as the number of program
executions increases, the data flow coverage increases,
and the number of detected faults also increases. Both the
coverage and the detected faults, however, do not increase
linearly with respect to the number of program executions.

Figure 9 displays data from another experiment to
compare the statement coverage of unit tests for 28
modules of a single system to the number of system test
faults found for each module [18]. From this figure,
again, we can see a clear relationship between high
statement coverage in unit testing and low number of
faults detected in system test.

132

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

t

B

Figure 9
System Test Faults for One System

Relationship of Unit Coverage Testing to

5.2 SofnYare Reliability Measurement and Tool

Software reliability measurement is the application of
statistical inference procedures to failure data taken from
software testing and operation to determine software
reliability. We have established a framework for software
reliability measurement purpose, as described in Figure
10. It can be seen from Figure 10 that there are four major
components in this software reliability measurement
process, namely,

(1) reliability objective,
(2) operational profile,
(3) reliability modeling and measurement, and
(4) reliabiliv validation.

According to this framework, quality is first defined
quantitatively from the customer's viewpoint by defining
failures and failure severity, by determining a reliability
objective, and by specifying balance among key quality
objectives (e.g., reliability, delivery date, cost). Second,
customer usage is quantified1 by developing an operational
profile. Operational profile is a set of disjoint alternatives
of system operation and their associated probabilities of
occurrence. The construction of an operational profile
encourages testers to select test cases according to the
system's operational usage, which contributes to more
accurate estimation of software reliability in the field. In
this procedure, quality objectives and operational profile
are employed to manage resources and to guide design,
implementation, and testing of software. Moreover,
reliability during testing is tracked to determine product
release, using appropriate software reliability
measurement models and tools. This activity may be
repeated until a certain reliability level has been achieved.
Finally, reliability can be analyzed in the field to validate
the reliability engineering effort and to provide feedback
for product and process improvements.

Colkct Failun Data

--

Select Appvpiiarc Softwan L Rrliability Models

-- L
Use Sofiwatr Reliability Models
tu Cakuhtr Current Reliability

1)
I- -- 1 Statt to D;pby I

1

'Validate Rtliabi lit? Fedbackto
in thc Field Next Relcasc [I

Figure 10 Software R.diability Measurement Procedure

Reliability modeling is an essential element of the
reliability estimation process. It determines if a product
meets its reliability ob,jective and is ready for release. It is
required to use a reliability model to calculate, from
failure data collected during system testing (such as
failure report data and, test time), various estimates of a
product's reliability as a function of test time. Several
interdependent estimates make equivalent statements
about a product's reliability. They typically include the
product's failure intensity (failure rate, i.e., the number of
failures per unit time) as a function of test time t, the
number of failures expected up to test time t, and the
MTBF at test time f . These reliability estimates can
provide the following information useful for product
quality management:

(1) The reliability of the product at the end of system
testing.

(2) The amount of (additional) test time required to reach
the product's reliability objective.

(3) The reliability growth as a result of testing (e.g., the
ratio of the value of the failure intensity at the start of
testing to the value: at the end of testing).

(4) The predicted reliability beyond the system testing
already performed. This can be, for example, the
product's reliability in the field, if the system testing
has already been completed, or the predicted
reliability at the end of testing, if the system testing
has not yet been completed.

133

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

To screen.
printer. or

printer. or
disk Component models.

weighting schemes

Figure 11 High-Level Architecture for CASRE

There are as many as 40 software reliability models
proposed in the literature. Despite the existence a large
quantity (and variation) of these models, the problem of
model selection and application is manageable.
Experience has shown that it is sufficient to consider only
a dozen models, including Jelinski-Moranda Model,
Generalized Poisson Model, Goel-Okumoto Model, Musa
Basic Model, Musa-Okumoto Model, Schneidewind
Model, Non-Homogeneous Poisson Process Model,
Delayed S-Shape Model, and Littlewood-Verrall Bayesian
Model, etc.

Using these statistical methods provide in [ti) (Chapter 3).
"best" estimates of reliability can be obtained during
testing. These estimates are then used to project the
reliability during field operation in order to determine if
the reliability objective has been met. This procedure is an
iterative process since more testing will be needed if the
objective is not met. When the operational profile is not
fully developed, application of a test compression factor
can assist in estimating field reliability. A test
compression factor is defined as the ratio of execution
time required in the operational phase to execution time
required in the test phase to cover the input space of the
program. Since testers during testing are trying to "break"
the software by searching through the input space for
difficult execution conditions, while users during
operation only execute the software at a normal pace, this

=-+-

factor represents the reduction of failure rate (or increase
in reliability) during operation with respect to that
observed during testing.

Finally, the projected field reliability has to be validated
by comparing it with the observed field reliability. This
validation not only establishes benchmarks and
confidence levels of the reliability estimates, but also
provides feedback to the software reliability measurement
process for process improvement and better parameter
tuning. For example, the model validity could be
established, the growth of reliability could be determined,
and the test compression factor could be refined, etc.
Since the engagement and application of software
reliability models and the evaluation and interpretation of
model results involve tedious computation-intensive tasks,
we believe the only practical usage of reliability models is
through software tools. For this purpose, we designed and
implemented a software reliability modeling tool, called
Computer-Aided Software Reliability Estimation
(CASRE) system [19], for an automatic and systematic
approach in estimating software reliability.

CASRE is implemented as a software reliability modeling
tool that addresses the ease-of-use issue as well as other
issues. Figure 11 shows the high-level architecture for
CASRE.

134

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

CASRE is currently executed in a Windows environment.
The command interface is menu driven; users are guided
through the selecting of a set of failure data and executing
a model by selectively enabling pull-down menu options.
Modeling results are also presented in a graphical manner.
Users can select multiple models from two categories
depending on failure data format: Time-Between-Failures
models (for inter-failure times) or Failure-Count models
(for failure intensities). After one or more models have
been executed, the predicted failure intensities or inter-
failure times are drawn in a graphical display window.
Users can manipulate this window’s controls to display the
results in a variety of ways, including cumulative number
of failures and the reliability growth curve. Users may
also display the results in a tabular fashion if they wish.
The performance of each model is evaluated using
multiple criteria to assess model accuracy, model bias,
model bias trend, and model noise. Based on these
criteria, the best model or models can be selected for
reliable prediction of the software reliability.

In addition, CASRE is facilitated with a useful
functionality. Namely, results from different models can
be combined in various ways to yield reliability estimates
whose predictive quality is better than that of the
individual models themselves [191. CASRE incorporates
our findings that prediction accuracy may be increased by
combining the results of several models in a linear
fashion. Moreover, CAS= allows users to define their
own combinations and record them as part of the tool’s
configuration. Weights for the components of the
combination may be static or dynamic, and may be based
on statistical techniques used to determine the
applicability of a model to a set of failure data. Once
combination models have been defined, the steps required
to execute them are no different than executing a simple
model. CASRE have been used by major corporations
including AT&T, Lucent, Microsoft, NASA, IBM,
Motorola, Nortel, etc. It is available through NASA
Cosmic software distribution center, and included in a
software diskette in [6].

6. CONCLUSIONS

Developing reliable software systems is a formidable task,
which involve the best of‘ our knowledge in software
reliability techniques. This paper surveys the current
schemes in the planning, design, testing, and evaluation of
software reliability. We integrate these techniques in a
unified paradigm, consisting three software reliability
engineering phases: (1) modeling and analysis, (2) design
and implementation, (3) testing and measurement. We
describe the reliability techniques associated with each of
these three phases for fault management, fault avoidance
and fault tolerance, as well as fault removal and fault
prediction. We also discuss, the software tools available in
each phase, including SHARPE, UltraSAN for phase (l) ,

watchd, libft, libckp, KEPL, addrejuv for phase (2), and
ATAC, CASRE for phase (3). We examine CASRE in
detail for its capabiliity to apply multiple software
reliability models and to choose the most appropriate
model for project-specific environments. While cost is
the limitation factor in applying these techniques, we
recommend the usage of each of them in various phases.
With the availability of tools to encapsulate these
techniques, the application of these software reliability
engineering techniques should become handy and
seamless.

bFERENCES

[I] J. Gray, “A Census of Tandem System Availability
Between 1985 and 1990,” IEEE Transactions on
Reliability 39:4,409-418, October 1990.

[2]
Team Report, June 1993.

National Reliability Council (NRC) Switch Focus

[3] Institute of Electrical and Electronics Engineers,
ANSIAEEE Standard Glossary of Software Engineering
Terminology, IEEE Std. 729-1991, 1991.

[4] R.B. Grady, Practical Sojiware Metrics for Project
Management and Process Improvement, Prentice-Hall,
Englewood Cliffs, New Jersey, 1992.

[5] International Standard Organization, “Quality
Management and Quality Assurance Standards - Part 3:
Guidelines for the Application of IS0 9001 to the
Development, Supply and Maintenance of Software,” I S 0
9000-3, Switzerland, June 199 1.

[6] M.R. Lyu (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill and IEEE Computer Society
Press, New York, 1996.

[7] Rome Laboratory, Methodology for Software
Reliability Prediction and Assessment, Technical Report
RL-TR-92-52, volumes 1 and 2, 1992.

[8] E.J. Henley and H. Kumamoto, Probabilistic Risk
Assessment, IEEE Press, New York, 1982.

[9] K.H. Kim and H.0. Welch, “Distributed Execution of
Recovery Blocks: An Approach for Uniform Treatment of
Hardware and Software Faults in Real-Time
Applications,” IEEE Transactions on Computers, 385,
626-636, May 1989.

[lo] J.-C. Lsprie, J. Arlat, C. Beounes, and K. Kanoun,
“Definitiona and Analysis of Hardware- and Software-
Fault-Tolerant Architectures,” IEEE Computer, 23:7, 39-
51, July 1990.

135

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

[l l] R.A.Sahner, K.S. Trivedi, and A. Puliafito,
Perfomnce and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the
SHARPE Software Package, Kluwer Academic
Publishers, Boston, MA, 1996.

[I21 J. Couvillion, R. Freire, R. Johnson, W.D. Obal,
M.A. Qureshi, M. Rai, W.H. Sanders, and J.E. Tvedt,
“Performability Modeling with Ultrasan,” IEEE Software,
8:5,69-80, Sept. 1991.

1131 Y. Huang, C.M.R. Kintala, L. Bemstein, and Y.-M.
Wang, “Components for Software Fault Tolerance and
Rejuvenation,” AT&T Technical Journal, 29-37,
MarcWSpril 1996.

[I41 Y. Huang, C.M.R. Kintala, N. Kolettis, and N.D.
Fulton, “Software Rejuvenation: Analysis, Module and
Applications,” Proceedings of 25th Intemational
Symposium on Fault-Tolerant Computing (FTCS-25),
38 1-390, Pasadena, California, June 1995.

[I51 A. Avizienis, “The Methodology of N-Version
Programming,” Chapter 2 of Software Fault Tolerance,
M. R. Lyu (ed.), Wiley, 23-46, 1995.

[16] M.R. Lyu, “A Design Paradigm for Multi-Version
Software,” Ph. D. Dissertation, UCLA, Computer Science
Department, May 1988.

[17] M.R. Lyu and Y. He, “Improving the N-Version
Programming Process Through the Evolution of a Design
Paradigm,” IEEE Transactions on Reliability, 422, 179 -
189, June 1993.

~ i c h a e i R. LYU is currently a n
Associate Professor at the
Computer Science and
Engineering Department of the
Chinese University of Hong
Kong. He worked at the Jet
Propulsion Laboratory as a
Member of the Technical Staff
from 1988 to 1990. From 1990
to 1992 he was with the
Electrical and Computer
Engineering Department at the
University of Iowa as an Assistant Professor. From I992
to 1995, he was a Member of the Technical Staff in the
Applied Research Area of the Bell Communications
Research (Bellcore). From 1995 to 1997, he was a
Member of the Technical Staff at Bell Labs Research,
which was originally part of AT&T and later became part
of Lucent Technologies. Dr. Lyuk research interests
include software reliability engineering, software process
and metrics, distributed systems, and fault-tolerant
computing. He has published over 60 refereed journal
and conference papers in these areas. He initiated the
jirst International Symposium on SofhYare Reliability
Engineering (ISSRE) in 1990. He was the program chair
for ISSRE’96, and has served in program committees for
many conferences. He is the editor for two book volumes:
Software Fault Tolerance, published by Wiley in 1995
and the Handbook of Software Reliability Engineering,
published by IEEE and McGraw-Hill in 1996. He is an
associated editor of IEEE Transactions on Reliability and
a guest editor for IEEE Transactions on Knowledge and
Data Engineering. He is a senior member of IEEE.

[I$] S.R. Dalal, J.R. Horgan, and J.R. Kettenring,
“Reliable
Software and Communication: Software Quality,
Reliability, and Safety,” Proceedings of the 15th
International Conference on Sof iare Engineering,
Baltimore, MD, May 1993.

[I91 M.R. Lyu and A. Nikora, “ C A S E - A Computer-
Aided Software Reliability Estimation Tool, ”
Proceedings of Computer-Aided Software Engineering
Workshop, 264-275, Montreal, Canatla, July 1992.

[20] M.R. Lyu and A. Nikora, ‘‘Usin6 Software Reliability
Models More Effectively,” IEEE $ofhyare, 43-52, July
1992.

136

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:13:52 UTC from IEEE Xplore. Restrictions apply.

