
An Empirical Study of the Correlation between Code Coverage and 
Reliability Estimation * 

Mei-Hwa Che:n, Michael R. Lyu, and W. Eric Wong 
{ mhc@ cs . a1 bany. edu; lyu@research. at t . com, ewong@ bellcore. com} 

Abstract 

Existing time-domain models for software reliabil- 
ity often result in an overestimation of such reliability 
because they do  not take the nature of testing tech- 
niques into account. Since every testing technique has 
a limit to its ability to reveal faults in a gaven sys- 
tem, as a technique approaches its saturation region 
fewer faults are discovered and reliability growth phe- 
nomena are predicted from the models. Wh.en the soft- 
ware is turned over t o  field operation, significant over- 
estimates of reliability are observed. In this paper, we 
present a technique t o  solve this problem b y  addressing 
both time and coverage measures for the preddction of 
software failures. Our technique uses coverage infor- 
mation collected during testing to  extract only effective 
data from a given operational profile. Execution time 
between test cases which neither increase c,overage nor 
cause a failure as reduced by a parameterized factor. 
Ezperiments using this technique were conducted on 
a program created in a simulation enviro.nment with 
simulated faults and on an industrial automatic flight 
control project which contained several nai!ural faults. 
Results from both experiments indicate that overesti- 
mation of reliability is reduced significantl:y using our 
technique. This new approach not only helps reliabil- 
ity growth models make more accurate predictions, but 
also reveals the efficiency of a testing prcfile so that 
more effective testing techniques can be conducted. 

'Mei-Hwa Chen is an Assistant Professor in the Department 
of Computer Science, the State University of New York at Al- 
bany. Michael R. Lyu is a research scientist with AT&T Bell 
Labs. Murray Hill, NJ 07974. W. Eric Wong is a research 
scientist with Bell Communications Research, Morristown, NJ 
07960. 

0-8186-7364-8196 $5.00 0 1996 IEEE 
Proceedings of METRES '96 

133 

Keywords: time-domain models, software reliability, 
code coverage 

1 Introduction 

The reliability of a program is defined as the prob- 
ability that the program does not fail in a given en- 
vironment during a given exposure time interval [lo]. 
It is an important metric of software quality. Since 
the late 1960s, a number of analytic models have been 
proposed to  estimate software reliability [13]. Among 
them, the time-domain models, also called Software 
Reliability Growth models (SRGMs), have been the 
most popular and have been widely researched. These 
models make use of the failure history of a program 
obtained during testing and predict the field behav- 
ior of the program under the assumption that testing 
is performed in accordance with a given operational 
profile [5]. However, there are some fundamental prob- 
lems with these models, such as the saturation effect 
existing in the testing process [2], and the difficulty in 
obtaining an actual operational profile. 

Observations, both from empirical and analyti- 
cal studies, show that the predictions made by the 
SRGMs tend to be too optimistic [l, 2, 41. Many 
attempts have been made to  improve the estimation 
made by the SRGMs. Some researchers have proposed 
that the test data must be pre-processed before they 
can be used by the SRGMs. Schneidewind's optimal 
selection method [14] excludes or gives little weight 
to  the failure counts that are obtained from the early 
phase of the testing process. Li and Malaiya [7] pro- 
pose a data smoothing method by grouping data point 
with fixed group size or failure intensity lumps to fil- 
ter out short term noise and present a weighted least 
square estimation to  overcome the estimation bias. 
Chen et al. [2] define an effective test effort in terms 
of test coverage. In their model a testing effort is con- 
sidered as effective only if it  forces the program to 
exercise the uncovered portion or it causes the pro- 
gram to fail. The testing efforts that neither increase 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



any test coverage nor detect any fault in the program 
are either discarded or reduced appropriately. 

Another group of researchers postulate that cov- 
erage information should be used instead of testing 
time to overcome the difficulty of obtaining an oper- 
ational profile of the software. They investigate the 
relationship between test coverage and reliability esti- 
mation and propose reliability models that are based 
on test coverage. Vouk [lS] investigates the relation 
between test coverage and fault detection rate. He 
proposes that the fault detection rate with respect to 
coverage is proportional to the coverage and the ef- 
fective number of residual faults. In his experiment, 
the strength of fault detectability with respect to dif- 
ferent coverage criteria is compared. Piwowarski et 
al. [12] observe the coverage measurements on large 
projects during a function test and derive a coverage- 
based reliability growth model which is isomorphic to 
the Goel-Okumoto NHPP model and the Musa execu- 
tion time model. Malayia et al. [9] model the relation 
among test effort, coverage and reliability and propose 
a coverage based logarithmic model that relates a test 
coverage measurement with fault coverage. 

In this paper we present a technique that models 
the failure rate with respect to both test coverage 
and testing time. A justification to this technique is 
as follows. Suppose a software is tested successfully 
against a suite of test cases. Without any additional 
test cases being created, this software may be continu- 
ously tested using the same test suite and not result in 
any failure. If such a failure rate which is with respect 
to the testing time only is applied to the SRGMs, an 
obvious reliability overestimate will be observed. To 
overcome this problem, our technique uses test cov- 
erage to adjust the failure rate before it is applied to  
the SRGMs. In other words, the time intervals be- 
tween failures are adjusted if any redundant testing 
effort such as repeating the same test cases is involved. 
By using this coverage enhanced pre-processing tech- 
nique, we applied the extracted test data to the Goel- 
Okumoto NHPP model [B] and the Musa-Okumoto 
Logarithmic model [ll] and observed an improvement 
of the estimation made by both models. 

The details of this technique are described in the 
next section. In Section 3 we describe the experiment 
that we conducted with an industrial program and 
we conclude our observation and list possible future 
directions in Section 4. 

2 Methodology 

The relationship between coverage and software re- 
liability has been studied by many researchers. Em- 
pirical studies have shown that fault detectability is 
correlated to  test coverage; consequently, software re- 
liability is correlated to test coverage El, 16, 171. This 
experimental evidence motivated and supported our 
belief that test coverage information should be used 
in reliability estimation. The nature of SRGMs is to 
give the estimation by using the time dependent fail- 
ure data. As testing proceeds, the test cases gener- 
ated in the latter phase are less likely to cause the 
program to execute the uncovered portion and detect 
faults in the program than in the earlier phase. There- 
fore, the time between failures increases as testing time 
increases and so do the reliability estimates made by 
the SRGMs. 

However, the reliability of the software increases 
only in the case that the number of faults in the soft- 
ware is reduced. Therefore, we can expect that the 
more redundant test efforts that are used the more 
overestimates there will be. To reduce the overesti- 
mates, we need to determine which test cases are re- 
dundant and how much test effort should be taken 
into account. In our model, the coverage information 
is used to determine the effectiveness of a test effort. 

2.1 The model 

Let T I ,  T2, ... T, be the test cases used during the 
testing process and d l ,  dz, ..., d, be the data recorded 
upon completion of each test case. The dis are repre- 
sented by ordered triples (ti, ci, f a ) ,  for i=l, ..., n, where 
t i  is the testing time spent by Ti ;  ci is the cumulative 
coverage obtained up to Ti and fa denotes cumulative 
failure experienced up to Ti. A test case Tj is consid- 
ered to be non-effective if cj = cj-1 and fj = f j - 1 ;  in 
other words, Ti is non-effective if it does not increase 
any coverage and it does not cause the execution of the 
program to fail. Two vectors va and v: are formed at 
each point dd, for i= 1, 2 ,..., n, as: 

If test case Ti+1 is a candidate for a non-effective 
test case, then di+l will be projected orthogonally onto 

134 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



Cumulative failures The rationale behind this approach is as follows. 
The w1 vector describes the failure increasing pattern 
with respect to testing time, and the wu2 vector de- 
scribes the failure increasing pattern with respect to  
coverage. Both time and coverage are crucial factors 
that affect the prediction of failures, so we incorporate 
the coverage information to  extract the effective test 
efforts. Simulation results show that through the cov- '' erage enhanced process the Goel-Okumoto model and 
the Musa-Okumoto model lead to more accurate re- 
liability estimates. These results are discussed in the 
next section. 

2.2 Validat ion 

Ir 

Time 

In this section we describe the experiments which 
we have conducted under a simulation environment, 

GO TERSE [3]. Symbols M-0 and G-0  represent the 
Musa-Okumoto [lo] and the Goel-Okumoto [6] mod- 

Figure 1: Coverage enhanced data processing tech- els for reliability estimation, respectively. The proce- 
nique. dures used in our study are listed below. 

*@ 
&' 

a point & which is on the plane formed by the point 
(ti,  ci, fa) and the two vectors, w: and w;. Figure 1 
depicts the geometrical interpretation of this projec- 
tion, where (t i ,ci ,f i)  and (t i+l,ci ,f i)  axe test data 
and (ti+l, fi)  is the projection of (tj+l, C i ,  fi) on the 
Cumulative failureLTime plane. The derived form of 
the new sequence di, for i= 1, 2 ,..., n, is given below. 

(dl,dZ,...,dn) - (21 ,&,...,&) 
where 

dj = ( t i ,  ci, fi) 
(pi * t i ,  ci, fi) otherwise 

if Ti is effective Ji = 

and 
a * st; * p * sc; + at; 

ast; + p * scp + ( a  * stp * p * se;> pi = 

The pi is the compression ratzo indicating the effective 
portion of the time interval ti and a and p are two 
smoothing parameters which are program and model 
dependent and need to  be adjusted for different data 
and models. To adjust these two parameters, we com- 
pare the difference between the reliability and its es- 
timate at a given time instance. This instance can be 
any time during the the testing for small applications 
but it has to  be after one half of the testing time for 
large applications. The time and the c p u l a t i v e  fail- 
ures components of the new sequence di are the data 
to  be used by the SRGMs. 

(1) Generate a program flow graph F with 1000 
nodes. 

(2) Annotate F with faults by assigning fault infec- 
tion probability and fault propagation probability 
to each node. 

(3) Test F by using the random testing technique 
with respect to  a uniform profile. Faults that are 
responsible for the failure are removed during the 
debugging. 

(4) Apply the failure data collected in Step (3) to  
SRGMs to obtain reliability estimates. 

(5) Use a coverage enhanced technique to exclude 
non-effective testing efforts in Step (3) and then 
apply such extracted failure data to  the models 
for reliability estimation. 

(6) Compute reliability by simulating the execution 
of F with respect to  the same profile used in Step 
(2)- 

The two smoothingfactors, a and p, were computed at 
240,000 units of testing time, and the two models, G-0  
model and M-0 model were used to estimate the relia- 
bility of F .  Figure 2 shows the reliability estimates ob- 
tained by applying the original data to the G-0  model 
(labeled G-0) and the M-0 model (labeled M-0) and 
by applying the extracted data to  both models (la- 
beled G-0" and M-0"). The estimates were compared 
with the reliability computed in Step (6) (labeled R). 

135 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



reliability rithms and control laws in the application are specified 
by diagrams which have been certified by the Federal 
Aviation Administration. The pi tch  control part of the 
automatic landing problem, i.e., the control of the ver- 
tical motion of the aircraft, is selected for the project. 
The major system functions of the pitch control and 
its data flow are shown in Figure 3. 

In this application, the autopilot is engaged in the 
flight control beginning with the initialization of the 
system in the altitude hold mode, at a point approxi- 
mately ten miles (52800 feet) from the airport. Initial 
altitude is about 1500 feet, initial speed 120 knots (200 
feet per second). Pitch modes entered by the autopi- 
lot/airplane combination, during the landing process, 
are the following: altitude hold, glide slope capture, 
glide slope track, flare, and touchdown. 

ceives airplane sensor inputs (denoted by ”I” in the 
> As shown in Figure 3,  the autopilot application re- 

execution time 

Figure 2: Reliability and its estimates obtained from 
the G - 0  model and the M-0 model for a program flow 
graph with 1000 nodes. 

The results show that at 270,000 units of testing time 
our technique reduces the overestimate made by the 
G-0 model from 0.23 (33.7%) to  0.004 (0.55%), and 
that made by the M - 0  model from 0.073 (10.55%) to  
0.00 (0%). Similarly, at testing time equal to 300,000 
units, the overestimate is reduced from 0.205 (28.3%) 
to 0.0013 (0.18%) and 0.057 (7.8%) to  -0.01 (-1.37%), 
respectively, for the G-0  and M - 0  models. We con- 
clude that the reliability overestimates made by the 
Goel-Okumoto model and the Musa-Okumoto model 
can be significantly reduced by considering only the 
effective testing efforts. 

3 Application 

3.1 The Autopilot Project 

In order to  demonstrate our technique for real world 
applications, we selected the autopilot project which 
was developed by multiple independent teams at the 
University of Iowa and the Rockwell/Collins Avionics 
Division [8]. The application program is an automatic 
flight control function for the landing of commercial 
airliners that has been implemented by the avionics 
industry. The specification can be used to  develop the 
software of a flight control computer (namely, autopi- 
lot) for a real aircraft, given that it is adjusted to the 
performance parameters of a specific aircraft. All algo- 

figure) for its processing: These inputs include alti- 
tude, altitude rate, vertical acceleration, radio alti- 
tude, glide slope deviation, model valid flag, pitch at- 
titude, pitch attitude rate, flight path, equalization, 
and signal display indicator. A subset of these in- 
puts is processed by each of the eight autopilot major 
components: barometric altitude complementary fil- 
ter, radio altitude complementary filter, glide slope 
deviation complementary filter, mode logic, altitude 
hold control, glide slope capture and track control, 
flare Control, command Monitor, and display. 

The complementary  f i l ters preprocess the raw data 
from the aircraft’s sensors. The barometric alt i tude 
and radio altitude complementary  f i l ters provide es- 
timates of true altitude from various altitude-related 
signals, where the former provides the altitude refer- 
ence for the altitude hold mode, and the latter pro- 
vides the altitude reference for the flare mode. The 
glide slope deviation complementary  f i l ter provides es- 
timates for beam error and radio altitude in the glide 
slope capture and track modes. Pitch mode entry and 
exit is determined by the mode logic equations, which 
use filtered airplane sensor data to  switch the control- 
ling equations at the correct point in the trajectory. 

Each control law consists of two parts, tke outer 
loop and the inner loop, where the inner loop is very 
similar for all three control laws. The altitude hold 
control law is responsible for maintaining the reference 
altitude, by responding to turbulence-induced errors 
in attitude and altitude with an automatic elevator 
command that controls the vertical motion. As soon 
as the edge of the glide slope beam is reached, the air- 
plane enters the glide slope capture and track mode 
and begins a pitching motion to  acquile and hold the 

136 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



beam center. A short time after capture, the track 
mode is engaged to reduce any static displacement to- 
wards zero. Controlled by the glide slope capture and 
track control law, the airplane maintaim a constant 
speed along the glide slope beam. Flare logic equa- 
tions determine the precise altitude (about 50 feet) a t  
which the Flare mode is entered. In response to the 
flare control law, the vehicle is forced along a path 
which targets a vertical speed of two feet per second 
at touchdown. 

Each program checks its final result (elevator com- 
mand of each lane, or land command) against the re- 
sults of the other programs. Any disagreement is in- 
dicated by the command monitor output, so that a 
supervisor program can take an appropr:iate action. 
The display continuously shows information about the 
autopilot on various panels. The current pitch mode 
is displayed for the information of the pilots (mode 
display), while the results of the command monitors 
(fault display) and any one of sixteen possible signals 
(signal display) are displayed for use by the flight en- 
gineer. 

Upon entering the touchdown mode, the automatic 
portion of the landing is complete and the system is 
automatically disengaged. This completes the auto- 
matic landing flight phase. In summary, this appli- 
cation could be classified as a computation-intensive, 
real-time system. 

K 

1251 
640 

17 
38 
31 

7 
376 
367 
286 

3.2 Program Characteristics arid Fault 
Description List 

x U 

2520 1070 
1366 810 

17 24 
80 35 

626 106 
0 423 

402 258 
1132 473 
357 237 

Five program versions developed in the autopilot 
project were used in our experiments. Table 1 shows a 
comparison of these five versions with respect to some 
common software metrics such as the: (1) number of 
lines excluding comments and blank lines (LOC); (2) 
number of executable statements (STMT) (3) num- 
ber of programming modules (MOD); (4) niean num- 
ber of statements per module (STM/M); (5) number 
of calls to modules (CALL); (6) number of global vari- 
ables (GVAR); (7) number of local variables (LVAR); 
(8) number of blocks (BLOCK); and (9) number of 
decisions (DECI). 

Table 2 shows the details of the faults found in these 
versions. The first column represents the id of a fault, 
which is composed of the program version (in Greek) 
and a sequence number. The second column indicates 
the testing phase in which the fault was detected in- 
cluding UT for unit testing, IT  for integration testing, 

thetical faults. The next column identifies t,he source 
AT for acceptance testing, and FI for injected hypo- 

Table 1: Software metrics for the five Program ver- 
sions. 

STM/M 
CALL 
GVAR 
LVAR 179 
BLOCK 711 
DECI 250 

531 
320 

Table 3: A Complete flight simulation scenario. 

1 Flight Mode I Time I Distance I Altitude 
(ft) 

1500 
I (sec) 1 (ft) I 

Altitude hold I 0.00 1 52800 I 
Glide slope capture 86.70 35460 
Glide slope track 96.65 33470 

Touchdown 264.10 
1 Flare 1 258.95 1 1000 1 ''i 

component where the fault is located, and the last col- 
umn provides a short description of the fault. 

3.3 Testing and Debugging 

Flight simulation testing of the autopilot applica- 
tion represents various execution scenarios in a feed- 
back loop, where different flight modes will be entered 
and exercised. Table 3 shows the different flight modes 
that will be encountered in a complete flight (a dura- 
tion of about 264 seconds). The second column shows 
the time when the flight mode is entered. The dis- 
tance (with respect to the expected touchdown point 
a t  the airport) and the altitude of the airplane appear 
in the last two columns, respectively. 

The initial conditions for each flight in our exper- 
iments are determined by the five variables listed in 
Table 4. Based on these variables, a test case com- 
posed of about 5280 autopilot program iterations can 
be constructed. Airplane sensor inputs for each itera- 
tion are generated from an airplane model to simulate 
the complete duration of a flight. 

A super program which consists of the five versions, 
shown in Table 1, was used in our experiments to col- 
lect the failure data. The sequence of testing and de- 
bugging is given below. 

137 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



Fault 
identifier 

7.1 
7 . 2  
7.3  
7.4 
7 . 5  
7 . 6  
7.7 
7 .8  
7.9 

7.10 
7.11 
7.12 
7.13 
7.14 
E.1 
€.2 
€.3 
€.4 
€3 
6.1 

16.2 
K.3 
K.4 
X.1 
x.2 
x.3 
x.4 
x.5 
u.1 
v.2 

Detection 
phase 

IT 
IT 
AT 
AT 
FI 
FI 
FI 
FI 
FI 
FI 
FI 
FI 
FI 
FI 
UT 
AT 
AT 
IT 
AT 
IT 

IT 
IT 
AT 
IT 
IT 
AT 
U T  
U T  
IT 
AT 

Source 
file 

glides1p.c 
bae-gscf .c 

flare.c 
flare.c 
flare.c 

alt ho1d.c 
auto1and.c 
inner1p.c 
inner1p.c 
inner1p.c 
inner1p.c 

mathutil.c 
r a d c  
racf.c 

mode1ogic.c 
modecont1.c 
modecont1.c 

fi1ters.c 
main.c 

CL1nner.c 

GSCF.c 
GSCT0uter.c 

macr0s.h 
autoland. c 
c0mpFil.c 

fCl0l.C 
inner1oop.c 

ut3.s.c 
GS-0uter.c 

1nner.c 

Brief Description 

Innerloop not initialized when first executed 
I8 not initialized when first entered 
Incorrect computation of a switch condition in flare outer loop 
RAE instead of HO used when computing the value of THCI 
Flare flag is not checked when doing a computation 
FPDC is subtracted instead of added in computing THCI 
Wrong parameter when calling VOTEINNER 
FPEC is subtracted instead of added in computing SU3 
Wrong predicate condition (">" instead of "<") 
Wrong predicate condition instead of '<") 
Wrong predicate condition (missing negation "!") 
Wrong math operator ("-" instead of '+") 
Wrong constant value 
Wrong math operator ( a-n instead of "+") 
Incorrect initialization of filter FI 
Incorrect initialization of Ho and Hdo 
Incorrect initialization of I1 at flare 
KO.K2.K3 values not set to static 
Wrong' sequence voteinner during TOUCHDOWN 
Wrong initialization of variable from glide slope capture mode to 
glide slope track mode 
Wrong algorithm for different modes 
Wrong initialization algorithm for variables for mode change - - - 
Wrong algorithm in rate limiter LR1 
Incorrect initialization sequence in the altitude hold mode 
< instead of <= in comparison of frame counter 
Incorrect computation of switch condition in flare outerloop 
Wrong computation sequence for SW2 in innerloop 
Incorrect logic branch 
Incorrect computation of SW3 during mode transition 
Incorrect initialization of LR2 during mode transition 

Table 2: Fault classification and characteristics for the program versions. 

138 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



I 

I CM 

I U: 

D 

I 

Legend I = Airplane Sensor Inputs 
LC Lane Command 
CM = Command Monitor Outputs 
D = Display Outputs 

Table 4: Initial flight conditions. 

Initial pitch attitude 
Initial height 1500 ft 
Initial distance 52800 ft 

[ -15', 15' ] 

the same t more than one time. For example, sup- 
pose the first execution of P on t fails at time equals 
to  p. After the faults responsible for this failure are 
removed, P is executed again on t .  Suppose it fails at 
time equals to  q, with q > p. Since the simulation is 
not yet completed, P should be re-executed against t 
after debugging. Such a process continues until P suc- 
ceeds on t .  Hereafter, we refer to  the super program 
as the program. 

diagram. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Figure 3: Pitch control system functions and data flow 
3.4 Reliability estimation 

Generate a test pool 2) 

Set the flag TEST-REPEAT to false 

i f  (TEST-REPEAT is fa l se)  
then  (a) Select a test case t from 

2) according to  a uniform 
distribution profile 

else (b) Re-use the test case t saved 
in Step (5)(d) 

Test the super program against t by 
executing one of the five versions 
(say P )  selected according to a 
uniform distribution profile 

i f  ( P  fails on t )  
then (a) Find the fault(s) which is (are) 

responsible for the failure 
(b) Remove the fault(s) detected 

above 
(c) Set the flag TEST-REPEAT 

to true 
(d) Save t for re-use in Step (3)(b) 

e l s e  Set the flag TEST-REPEAT 
to false 

Goto Step (3) 

Figure 4 shows the reliability estimates obtained by 
applying the original data, collected from the testing 
and debugging process described in the previous sec- 
tion, and the data, processed by using the coverage 
enhanced technique, to the G-0 model and the M- 
O model. The exposure time used in the estimation 
process was the maximum flight time: 265 seconds. 

Reliabilities measured as the ratio of the number of 
failures to  the number of executions were computed 
at testing time equal to  6274.7,7857.2 and 8025.1 sec- 
onds, respectively. These three points were selected 
because it was at these that the last three fault cor- 
rection activities occurred. While such reliability was 
computed, the program was executed against inputs 
generated based on the same operational profile as 
used in the testing process. Such execution contin- 
ued until the reliability converged to a 95% confidence 
interval. 

In applying the coverage enhanced technique, we 
used block coverage measurement. For the two 
smoothing constants, (Y was 1000 and 3000, /? was 
0.005 and 0.00046, for the G-0 model and the M - 0  
model, respectively. In the early phase of the test- 
ing, we observed that the estimation was not stable 
even using the data which had been processed by our 
technique. The number of data points was not large 
enough to  support the estimation process, so we com- 
pared the reliability and its estimates only after 6000 
seconds. 

One important characteristic of this testing and de- 
bugging process is that P may be executed against 

For the G-0 model the differences between the re- 
liability and its estimates ranged from -0.03 to  0.105 

139 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



Y 0.45 

applying our technique to avoid redundant test efforts. - 
execution time 

lish the criteria that will meet a reliability threshold 

Figure 4: Reliability and its estimates obtained from 5 Acknowledgments 
the G-0 model and the M - 0  model for the autopilot 
project. We express our special thanks to Dr. J .  R. Hor- 

gan at Bellcore and Professor A. P. Mathur at Pur- 

(4% to 13%). If the coverage enhanced technique was 
applied, they ranged from -0.08 to 0.012 (-10.8% to 
1.5%). For the M-0 model, the differences ranged 
from -0.02 to 0.06 (-2.8% to 7.5%) and the results ob- 
tained after applying the technique were -0.06 to 0.018 
(-8.4% to 2.3%). Comparing the differences at the end 
of the testing process, we observed that the overesti- 
mates made by the G-0  model reduced from 13% to 
1.5%, and those made by the M - 0  model reduced from 
7.5% to 2.3%. 

The results obtained from this study show that the 
coverage enhanced technique did improve the reliabil- 

due University for their guidance, advice and valuable 
comments on this work. 

References 

[l] M. H. Chen, P. Garg, A. P. Mathur, and V. J .  
Rego, “Investigating cover age-reli abili t y relation- 
ship and sensitivity of reliability estimates to er- 
rors in the operational profile,” Computer Sci- 
ence and Informatics Journal - Special Issue on 
Software Engineering, 1995. 

ity estimation made by the SRGMs and brought the 
estimates much closer to the actual reliability. [2] M. H. Chen, J .  R. Horgan, A. P. Mathur, and 

V. J .  Rego, “A time/structure based model for 

4 Conclusions and E’uture Plan 

We have introduced a technique that incorporates 
test coverage measurement in the estimation of soft- 
ware reliability. This technique improves the applica- 
bility and performance of software reliability growth 
models, which gives the user a better understanding 
of the software quality and helps the developer con- 
duct a more effective testing scheme. It indicates to 
the tester when a testing technique becomes ineffec- 

estimating software reliability,” Technical Report 
SERC-TR-117-P, Purdue University, July 1992. 

[3] M. H. Chen, M. K. Jones, A. P. Mathur, andV. J .  
Rego, “TERSE: A tool for evaluating software 
reliability estimation,’’ in Proceedings of fourth 
International Symposium on software reliability 
engineering, 1993. 

[4] M. H. Chen, A. P. Mathur, and V. J .  Rego, “Ef- 
fect of testing techniques on software reliability 
estimates obtained using time-domain models,” 

140 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE transactions on reliability, 44( l ) ,  March 
1995. 

[5] M. R. Lyu (ed.), Handbook of Software Reliability 
Engineering, McGraw-Hill Publishing Company 
and IEEE Computer Society Press, New York, 
1995. 

[6] A. L. Goel and K. Okumoto, “Time-dependent 
error-detection rate model for software reliability 
and other performance measures,” IEEE Trans- 
actions on Reliability, R-28(3):206-2:11, 1979. 

[7] N .  Li and Y. K. Malaiya, “Enhancing accuracy of 
software reliability prediction,” in Proceedings of 
fourth International Symposium on software reli- 
ability engineering, 1993. 

[8] M. R. Lyu and Y. He, “Improving the N-version 
programming process through the evolution of a 
design paradigm,” IEEE Transactions on Relia- 
bility, 42(2):179-189, June 1993. 

[9] Y. K. Malaiya, N .  Li, J. Bieman, R. Karcich, and 
R. Skibbe, “The relationship between test cover- 
age and reliability,” in Proceedings olfifth Inter- 
national Symposium on software reliability engi- 
neering, 1994. 

[lo] J .  D. Musa, A. Iannino, and K. Okuinoto, Soft- 
ware Reliability: Measurement, Prediction, Ap- 
plication. McGraw-Hill, New York, 1987. 

[ll] J .  D. Musa and K. Okumoto, “A logarithmic 
Poisson execution time model for software relia- 
bility measurement ,” in Proceedings Seventh In- 
ternational Conference on Software Engineering, 
pages 230-238, Orlando, 1984. 

[12] P. Piwowarski, M. Ohba, and J .  Caruso, ((Cov- 
erage measurement experience during function 
test,” in Proceedings of the fifteenth International 
conference on Software Engineering, pages 287- 
300, 1993. 

[13] C. V. Ramamoorthy and F. B. Bastani, “Soft- 
ware reliability - status and perspectives,” 
IEEE Transactions on Software Engineering, SE- 
8(4):354-371, 7 1982. 

[15] M. A. Vouk, “Using reliability models during 
testing with non-operational profile,” in Proceed- 
ings of the second Bellcore/Purdue Symposium 
on Issues in software reliability estimation, pages 
103-110, 1993. 

[16] W. E. Wong, J. R. Horgan, S. London, and A. P. 
Mathur, “Effect of test set size and block coverage 
on fault detection effectiveness,” in Proceedings 
of the Fifth IEEE International Symposium on 
Software Reliability Engineering, pages 230-238, 
Monterey, CA, November 1994. 

[17] W. E. Wong, J. R. Horgan, S. London, and 
A. P. Mathur, “Effect of test set minimization 
on fault detection effectiveness,” in Proceedings 
of the 17th IEEE International Conference on 
Software Engineering, pages 41-50, Seattle, WA, 
April 1995. 

[14] N.  F. Schneidewind, “Optimal selection of failure 
data for predicting failure counts,” in Proceed- 
ings of fourth International Symposizim on soft- 
ware reliability engineering, pages 142-149, 1993. 

141 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:29:09 UTC from IEEE Xplore.  Restrictions apply. 


