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Abstract

This paper discusses the modeling and analysis of three major fault-tolerant software system architec-
tures: DRB (Distributed Recovery Blocks), NVP (N-Version Programming) and NSCP (N Self-Checking
Programming). In the system-level reliability modeling domain, fault tree analysis techniques and Markov
reward modeling techniques are combined to incorporate transient and permanent hardware faults as well
as independent and related software faults. These models are parameterized by a real-world fault-tolerant
flight control computer application for evaluations and comparisons. In particular, a series of sensitivity
analysis is performed to explore the critical components in each fault-tolerant architecture and display
their quantitative impacts to the overall system reliability.

Keywords: fault-tolerant systems, fault-tolerant software, system reliability modeling, reliability anal-
ysis, sensitivity analysis.

1 Introduction

Since the first computer was invented some forty years ago [4], human beings have been depending more
and more on computers in their daily lives. When the requirements for and dependencies on computers
increase, the crises of computer failures also increase. The impact of hardware and software failures range
from inconvenience (e.g., malfunctions of home appliances), economic loss (e.g., interceptions of banking
systems) to life-threatening (e.g., failures of flight systems). Needless to say, reliability of computer systems
becomes the major concern for our society for the 1990’s and beyond. Consequently, computer systems that
are used for critical applications are designed to tolerate both software and hardware faults by executing
multiple software versions on redundant hardware. Many such examples exist in the aerospace industry
[27, 13, 25], nuclear power industry [19, 2, 26], and ground transportation industry [9].

The system architectures incorporating both hardware and software fault tolerance are explored in three
typical approaches. The Distributed Recovery Blocks (DRB) scheme [12] combines both distributed processing
and Recovery Block (RB) [20] concepts to provide a unified approach to tolerating both hardware and software
faults. Architectural considerations for the support of N-Version Programming (NVP) [1] were addressed in
[14], in which the FTP-AP system is described. The FTP-AP system achieves hardware and software design
diversity by attaching application processors (AP) to the byzantine resilient hard core Fault Tolerant Processor
(FTP). N Self-Checking Programming (NSCP) [16] uses diverse hardware and software in self-checking groups
to detect hardware and software induced errors. The NSCP concept forms the basis of the flight control system
used on the Airbus A310 and A320 aircraft [3].

Sophisticated techniques exist for the separate analysis of fault tolerant hardware [8, 11] and software
[15, 22, 23], but few authors have considered their combined analysis [15, 24, 17]. This paper uses a combination
of fault tree and Markov modeling as a framework for the analysis of hardware and software fault tolerant
systems. The overall system model is a Markov reward model in which the states of the Markov chain
represent the evolution of the hardware configuration as permanent faults occur. A fault tree model captures
the effects of software bugs and transient hardware faults, and defines the reward structure for the overall



model. This hierarchical approach simplifies the development, solution and understanding of the modeling
process. In performing each model, the model parameters are derived from the analysis of data collected
from an experimental NVP implementation [18]. A number of sensitivity analyses are conducted to study the
quantitative behavior of the system reliability with respect to the model parameters.

2 Modeling Methodology

2.1 Assumptions

Task computation. The computation being performed is a task (or set of tasks) which is repeated peri-
odically. A set of sensor inputs is gathered and analyzed and a set of actuations are produced. Each
repetition of a task is independent. The goal of the analysis is the probability that a task will succeed
in producing an acceptable output.

Software failure probability. Software faults exist in the code, despite rigorous testing. A fault is activated
by some random input and produces an erroneous result. Each computation of a task receives a different
set of inputs which are independent. Thus, a software task has a fixed probability of producing an error
for a given task execution.

Constant hardware failure rates. The arrival (activation) rate of permanent physical faults is constant

and will be denoted by A.

Transient hardware faults. Transient hardware faults are modeled separately from permanent hardware
faults. A transient hardware fault is assumed to upset the software running on the processor and produce
an erroneous result which is indistinguishable from an input-activated software error. We assume that
the lifetime of transient hardware faults is shorter than a task computation, and thus assign a fixed
probability to the occurrence of a transient hardware fault during a single computation.

Related software faults. A related software fault in two different variants produce similar erroneous results
on the same input. The two erroneous results match, which will be undetected if the results are compared
to each other.

For the comparisons drawn from this study, we assume that the systems are unmaintained. Repairability
and maintainability could certainly be included in the Markov reward model; we have chosen not to include
them to make the comparisons clearer.

2.2 Notation

The models of the three systems being analyzed (DRB, NVP and NSCP; see figure 1) will consist of two fault
trees and one Markov model [6]. In the case of an NVP structure, throughout the paper we use a 3-version
system as a representation. It is noted that this is only a special case of NVP. Since each of the systems can
tolerate one permanent hardware fault, there are two operational states in the Markov chain. The initial state
in each of the Markov chains represents the full operational structure, and an intermediate state represents
the system structure after successful automatic reconfiguration to handle a single hardware fault. There is
a single failure state which is reached when the second hard physical fault is activated or when a coverage
failure occurs.
The labeling used for the basic events of the fault tree models is as follows.

V# (where # is an integer between 1 and 4) For (up to) four versions of software, the input for a single
computation activates an independent fault.

D An independent fault in the decider (acceptance test, majority voter, comparator).

RV ## (where each # is an integer between 1 and 4) The input for a single computation activates a related
fault between two versions. A related fault is one that occurs in two different versions causing both to
produce the same erroneous result.

RALL A related fault affects all versions as well as the decider, caused by imperfect specifications.
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Figure 1: Structure of a) DRB, b) NVP and ¢)NSCP

H A hardware transient fault affects the task computation but does not cause permanent physical damage.

Figure 1 shows the hardware and error confinement areas [16] associated with the three architectures being
considered in this paper. The systems are defined by the number of software variants, the number of hardware
replications, and the decision algorithm. The hardware error confinement area (HECA) is the lightly shaded
region, the software error confinement area (SECA) is the darkly shaded region. The HECA or SECA covers
the region of the system affected by faults in that component. For example, since the HECA covers the
software component, the software component will fail if that hardware experiences a fault. Since the SECA
covers only the software component, no other components will be affected by a fault in that component.

2.3 System reliability model

A reliability model of an integrated fault tolerant system must include at least three different factors: com-
putation errors, system structure and coverage modeling. In this paper we concentrate on the first two, as
coverage modeling has been addressed in detail elsewhere [7].

The computation process is assumed to consist of a single software task that is executed repeatedly, such
as would be found in a process control system. The software component performing the task is designed to be
fault tolerant. A single task iteration consists of a task execution on a particular set of input values read from
sensors. The output is the desired actuation to control the external system. During a single task iteration,
several types of events can interfere with the computation. The particular set of inputs could activate a
software fault in one or more of the software versions and/or the decider. Also, a hardware transient fault
could upset the computation but not cause permanent hardware damage. The combinations of software faults
and hardware transients that can cause an erroneous output for a single computation is modeled with a fault
tree. The solution of the fault tree yields the probability that a single task iteration produces an erroneous
output.

The longer-term system behavior is affected by permanent faults and component repair which require
system reconfiguration to a different mode of operation. The system structure i1s modeled by a Markov chain,
where the Markov states and transitions model the long term behavior of the system as hardware and software
components are reconfigured in and out of the system. Each state in the Markov chain represents a particular
configuration of hardware and software components and thus a different level of redundancy. The fault and
error recovery process is captured in the coverage parameters used in the Markov chain [7].

The short-term behavior of the computation process and the long-term behavior of the system structure
are combined via a Markov reward model. For each state in the Markov chain, there is a different combination
of hardware transients and software faults that can cause a computation error. The reward for a given state
is derived from the solution of a fault tree model of the computation process in that state. The reward model
predicts, as a function of time, the probability that a single computation will result in an erroneous output.

The fault tree model solution produces, for each state 7 in the Markov model, the probability ¢; that an
output error occurs during a single task computation while the state is in state i. The Markov model solution



produces P;(t), the probability that the system is in state ¢ at time t. The reward model combines these two
measures to produce Q(t), the probability that an unacceptable result is produced at time ¢.

Q) =Y aP()

The reward structure for the Markov chain is defined as follows. A fault tree showing the combinations
of events which cause an unacceptable result to be produced is associated with each operational state in the
Markov model. The fault trees are solved for ¢;, the probability of occurrence of the top event in the fault
tree. The reward associated with the failure state is unity (¢sq;; = 1) as we assume that the system is unable
to produce an acceptable result while in the failure state.

2.4 The DRB model

The reliability model used for the recovery block system is shown in figure 2.

2.5 The NVP model
The reliability model used for the analysis of the NVP system is shown in figure 3.

2.6 The NSCP model
The reliability model of the NSCP system is shown in figure 4 [5].

3 Experimental Data Analysis

3.1 Description of experiment

The models in this paper will be parameterized using actual data derived from an experimental implementation
of a real-world automatic (i.e., computerized) airplane landing system, or so-called “autopilot.” The software
systems of this project were developed and programmed by 15 programming teams at the University of lowa
and the Rockwell/Collins Avionics Division. A total of 40 students (33 from ECE and CS departments at the
University of Towa, 7 from the Rockwell International) participated in this project to independently design,
code, and test the computerized airplane landing system, as described in the Lyu-He study [18].

The application used in the Lyu-He study is part of a specification used by some aerospace companies for
the automatic (computer-controlled) landing of commercial airliners. The specification can be used to develop
the software of a flight control computer (FCC) for a real aircraft, given that it is adjusted to the performance
parameters of a specific aircraft. All algorithms and control laws are specified by diagrams which have been
certified by the Federal Aviation Administration (FAA). The pitch control part of the auto-landing problem,
1.e., the control of the vertical motion of the aircraft, was selected for the project in order to fit the 14-week
software development time.

By the end of the software development phase, 12 of the 15 programs passed the acceptance test successfully
and were engaged in operational testing for further evaluations. The average size of these programs were 1564
lines of uncommented code, or 2558 lines when comments were included. The average fault density of the
program versions which passed ATI1 (the first step in the Acceptance Test) was 0.48 faults per thousand
lines of uncommented code. The fault density for the final versions was 0.05 faults per thousand lines of
uncommented code.

The operational environment for the application was conceived as airplane/autopilot interacting in a
simulated environment. During the operational phase, 1000 flight simulations were conducted. FEach flight
simulation was characterized by the following five initial values regarding the landing position of an airplane:
(1) initial altitude (about 1500 feet); (2) initial distance (about 52800 feet); (3) initial nose up relative to
velocity (range from 0 to 10 degrees); (4) initial pitch attitude (range from -15 to 15 degrees); and (5) vertical
velocity for the wind turbulence (0 to 10 ft/sec). One simulation consisted of about 5280 iterations of lane
command computations (50 milliseconds each) for a total landing time of approximately 264 seconds. For
a conservative estimation of software failures in the system, we took the program versions which passed the
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Version Id | Number of failures | Prob. by case | Prob. by time

g 510 0.51 0.000096574
¥ 0 0.0 0.0
€ 0 0.0 0.0
¢ 0 0.0 0.0
7 1 0.001 0.000000189
6 360 0.36 0.000068169
K 0 0.0 0.0
A 730 0.73 0.000138233
1 140 0.14 0.000026510
v 0 0.0 0.0
13 0 0.0 0.0
0 0 0.0 0.0

Average 145.1 0.1451 0.000027472

Table 1: Characteristics of accepted programs

Category Number of cases | Probability
1 - no errors 53150 0.8053
2 - single error 11160 0.1691
3 - two coincident errors 1690 0.0256
Total 66000 1.0000

Table 2: Errors by case in two-version configurations

AT1 for study. The reason behind this was that had the Acceptance Test not included an extra test case after
AT1, more faults would have remained in the program versions.

3.2 Failure data analysis: singular systems

Table 1 shows the software failures encountered in each single version. We examine two levels of granularity
in defining software execution errors and correlated errors: ”by case” or ”by time.” The first level was defined
based on test cases (1000 in total). If a version failed at any time in a test case, it was considered failed for
the whole case. If two or more versions failed in the same test case (no matter at the same time or not),
they were said to have coincident errors for that test case. The second level of granularity was defined based
on execution time frames (5,280,920 in total). Errors were counted only at the time frame upon which they
manifested themselves, and coincident errors were defined to be the multiple program versions failing at the
same time in the same test case (with or without the same variables and values).

In Table 1 we can see that the average failure probability for single version is 0.14508 measured by case,
or 0.00002747 measured by time.

The accepted programs were then arranged in configurations of 2, 3 and 4 programs, and the error
characteristics of each of the configurations was noted. Both the by-case and by-time error detection methods
were used. These characteristics will be used to parameterize the software failure models of DRB, NVP and

NSCP.

3.3 Failure data analysis: 2-version systems

The 12 programs accepted in the Lyu-He experiment were configured in pairs, whose outputs were compared
for each test case. Tables 2 and 3 show the number of times that 0, 1, and 2 errors were observed in the
2-version configurations.

For both the by-case and by-time scenarios, the parameters derived from the data would be applied to
the fault tree model DRB. For the by-case parameters, the fault tree model predicts a failure probability
of 0.0265, while observed failure probability is 0.0256. Using the by-time parameters, the fault tree model
predicts a failure probability of 10~ which matches the observed failure probability.



Category Number of cases | Probability
1 - no errors 348259290 | 0.999192
2 - single error 281200 | 0.000807
3 - two coincident errors 230 | 0.000001
Total 1161802400 | 1.000000

Table 3: Errors by time in two-version configurations

Category Number of cases | Probability
1 - no errors 163370 0.7426
2 - single error 51930 0.2360
3 - two coincident errors 4440 0.0202
4 - three coincident errors 260 0.0012
Total 220000 1.0000

Table 4: Errors by case in three-version configurations

3.4 Failure data analysis: 3-version systems

For each test case, the combinations of three programs (there are a total of 220 possibilities) were sampled.
The outputs from the three members of the configuration were compared. Tables 4 and 5 shows the number
of times that 0, 1, 2, and 3 errors were observed in the 3-version configurations.

For both the by-case and by-time scenarios, the parameters derived from the data would be applied to the
fault tree model for NVP (where N is 3) systems. For the by-case parameters, the fault tree model predicts a
failure probability of 0.0262, while the observed failure probability was 0.0214. Using the by-time parameters,
the fault tree model predicts a failure probability of 2.07 x 10~° while the observed failure probability was
2.3 x 1076,

3.5 Failure data analysis: 4-version systems

The same 12 programs which passed the acceptance testing phase of the software development process were
analyzed in combinations of four programs. Tables 6 and 7 shows the number of times that 0, 1, 2, 3, and 4
errors were observed in the 4-version configurations.

For both the by-case and by-time scenarios, the parameters derived from the data would be applied to
the fault tree model for the NSCP architecture. For the by-case parameters; the fault tree model predicts a
failure probability of 0.0403, while the observed failure probability was 0.0406. Using the by-time parameters,
the fault tree model predicts a failure probability of 1.23 x 107° while the observed failure probability was
1 x 1075,

3.6 Summary of software parameters

Table 8 summarizes the parameters used for the software parameters of the system models. These parameters
are derived from a single experimental implementation and so may not be generally applicable. Similar
analysis of other experimental data will help to establish a set of reasonable parameters that can be used in
models that are developed during the design phase of a fault tolerant system.

Category Number of cases | Probability
1 - no errors 1160743690 | 0.999089

2 - single error 1056010 | 0.000909

3 - two coincident errors 2700 | 0.000002

4 - three coincident errors 01 0.0

Total 1161802400 | 1.000000

Table 5: Errors by time in three-version configurations




Category Number of cases | Probability
1 - no errors 322010 0.65052
2 - single error 152900 0.30889
3 - two coincident errors 16350 0.03303
4 - three coincident errors 3700 0.00747
5 - four coincident errors 40 0.00008
Total 495000 1.0000

Table 6: Errors by case in four-version configurations

Category Number of cases | Probability
1 - no errors 2611305000 | 0.998948

2 - single error 2719200 | 0.001040

3 - two coincident errors 31200 | 0.000012

4 - three coincident errors 01 0.0

5 - four coincident errors 01 0.0

Total 2614055400 | 1.000000

Table 7: Errors by time in four-version configurations

DRB model NVP model NSCP model
BY CASE DATA
Py =0.095 Py =0.0958 Py =0.106
Pryv =0.0167 Prv =0 Prv =0
Prarr =0.003 Prarr =0
Predicted failure probability (perfect decider, no HW faults)
0.0265 0.0262 0.0403
Observed failure probability (from the data)
0.0256 0.0214 0.0406

Probability of decider failure used for system analysis

0.001 0.0001 0.0001

BY TIME DATA

Py = 0.0004 Py = 0.0003 Py = 0.00026
PRV28.4X10_7 PRVI6X10_7 Pry =0
PRALLIO PRALLILQX 10_5

Predicted failure probability (perfect decider, no HW faults)

1x10°6 2.07 x 1076 1.23 x 107°
Observed failure probability (from the data)

1x10°6 2.3 x107° 1x107°
Probability of decider failure used for system analysis

1 %1077 1x1077 1x1077

Table 8: Summary of nominal parameters used for system analysis
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Figure 5: Probability of an unacceptable result, by-case data, DRB

3.7 Hardware parameters

Typical permanent failure rates for processors range in the 107° per hour range, with transients perhaps an
order of magnitude larger. Thus we will use A, = 1075 per hour for the Markov model.

In the by-case scenario, a typical test case contained 5280 time frames, each time frame being 50 ms.,
so a typical computation executed for 264 seconds. Assuming that hardware transients occur at a rate
A: = (107%/3600) per second, we see that the probability that a hardware transient occurs during a typical
test case is

1— e—)\t><264 seconds — 7.333 % 10—6 (1)

We conservatively assume that a hardware transient that occurs anywhere during the execution of a task
disrupts the entire computation running on the host.
For the by-time data, the probability that a transient occurs during a time frame is

1— e—>\t><0.05 seconds — 14 % 10—9 (2)

If we further assume that the lifetime of a transient fault is one second, then a transient can affect as many
as 20 time frames. We thus take the probability of a transient to be 20 times the value calculated in equation
2, 0or 2.8 x 1078,

Finally, for both the by-case and by-time scenarios, we assume a fairly typical value for the coverage
parameter in the Markov model, ¢ = 0.999.

4 Sensitivity Analysis of Distributed Recovery Blocks

Figure 5 shows the probability of an unacceptable result, as a function of time, using the by-case data to
parameterize the system model. The model predicts a relatively flat probability of an unacceptable result.
Figure 6 shows the probability of an unacceptable result, as a function of time, using the by-time data to
parameterize the system model. Initially, the probability of producing an unacceptable result is much lower
than with the by-case data. This analysis dramatizes the potential improvement associated with frequent
comparisons (each time frame rather than each test case). The probability of producing an unacceptable
result increases with time, as expected, but at 1000 hours 1s still far below even the initial by-case probability.
To see which parameters are the strongest determinant of the system reliability, we increased each of
the failure probabilities in turn by 10 percent and observed the effect on the predicted unreliability. The
sensitivity of the predictions to a ten-percent change in input parameters is shown in table 9. It can be seen

11
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Figure 6: Probability of an unacceptable result, by-time data, DRB

By CASE Data

By TIME Data

Parameter Result | Percent Change || Result Percent Change
Nominal 0.0265 1.10 x 10=°

Py +10% 0.0284 | 7% 1.13 x 1075 | 2.8%

Pry +10% 0.0282 | 6.2% 1.18 x 1075 | 7.6%

Pp +10% 0.0266 | 1.9% 1.11 x 107° | 0.9%

Table 9: Sensitivity to parameter change for DRB model
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Figure 7: Probability of an unacceptable result, by-case data, NVP

By CASE Data By TIME Data
Parameter Result | Percent Change || Result Percent Change
Nominal 0.02617 2.17 x 107°
Py +10% 0.03137 | 19.9% 2.23 x 107° | 2.6%
Pry +10% 2.35x 107° | 8.3%
Prarr +10% 0.0262 | 0.1%
Pp +10% 0.02618 | 0.04% 2.18 x 107° | 0.5%

Table 10: Sensitivity to parameter change for NVP model

that the DRB model is most sensitive to a change in the probability of an independent fault for the by-case
data, and to a change in the probability of a related fault for the by-time data.

5 Semnsitivity Analysis of N-Version Programming

Figure 7 shows the probability of an unacceptable result, as a function of time, using the by-case data to
parameterize the system model. Initially, the probability of producing an unacceptable result during each
task iteration is 0.026.

Figure 8 shows the probability of an unacceptable result, as a function of time, using the by-time data to
parameterize the system model.

Table 10 shows, for both the by-case and by-time parameterizations, the change in the predicted unrelia-
bility (at t = 0) when each of the nominal parameters is increased. For the by-case data, a ten percent increase
in the probability of an independent software fault results in a twenty percent increase in the probability of
an unacceptable result. A ten-percent increase in the probability of a related or decider fault activation has
an almost negligible effect on the unreliability. For the by-time data, the proability of a related fault has the
largest impact on the probability of an unacceptable result. This is similar to the DRB model.

6 Sensitivity Analysis of N Self-Checking Programming

The fault tree models shows that this system is vulnerable to related faults, whether they involve versions in
the same error confinement area or not.

13
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By CASE Data By TIME Data
Parameter Result | Percent Change || Result Percent Change
Nominal 0.04041 1.237 x 1077
Py +10% 0.04833 | 19.6% 1.243 x 1075 | 0.5%
Prarr + 10% 1.357 x 10~% | 9.7%
Pp +10% 0.04042 | 0.02% 1.238 x 1075 | 0.08%

Table 11: Sensitivity to parameter change for NSCP model

Figure 9 shows the probability of an unacceptable result, as a function of time, using the by-case data to
parameterize the system model. The model predicts a significant deterioration of a non-maintained NSCP
system as time increases.

Figure 10 shows the probability of an unacceptable result, as a function of time, using the by-time data to
parameterize the system model. The increase in the probability of producing an unacceptable result increases
dramatically with increasing time.

7 Comparison With Nominal Parameters

Figures 11 and 12 compare the predicted behavior of the three systems. Under both the by-case and by-time
scenarios, the recovery block system is most able to produce a correct result, followed by NVP. NSCP is
the least reliable of the three. It is noted, however, that the analysis performed in this paper is based on a
reliability aspect (i.e., whether the system can deliver an acceptable result) rather than on a safety aspect
(i.e., whether the system can deliver an acceptable result or conduct a safety shutdown after detecting an
unacceptable condition). NSCP is expected to obtain a much better improvement with respect to the safety
analysis. Of course, these comparisons are dependent on the experimental data used and assumptions made.
More experimental data and analysis are needed to enable a more conclusive comparison.

Figures 13 and 14 give a closer look at the comparisons between the NVP and DRB systems during the first
200 hours. The by-case data shows a crossover point at the 25th hour, where NVP is initially more reliable
but 1s later less reliable than DRB. Using the by-time data, there is no crossover point, but the estimates are
so small that the differences may not be statistically significant.
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8 Decider Failure Probability

The probability of a decider failure may be an important input parameter to the comparative analysis of the
NVP and DRB systems. In this section we vary the decider failure probability in an attempt to demonstrate
its importance. Figures 15 and 16 show, for the by-case and by-time parameterizations, the unreliability of
the three systems as the probability of decider failure is varied. For this analysis, we set the probability of
failure for the decider to the same value for all three models, and show the probability of an unacceptable
result at time ¢ = 0.

For the parameters derived from the experimental data, it seems that DRB and NVP are nearly equally
reliable, if both have the same probability of decider failure. However, it 1s not reasonable for this application
to assume equally reliability deciders for both DRB and NVP. The decider for the DRB system is an acceptance
test, while that for the NVP is a simple voter and NSCP a simple comparator. For this application, it seems
likely that an acceptance test will be more complicated than a majority voter. The increased complexity is
likely to lead to a decrease in reliability, with a corresponding impact on the reliability of the system. In fact,
reliability of DRB will collapse if the acceptance test in DRB is as complex and unreliable as its primary or
secondary software versions. For example, if the probability of failure in acceptance test (Pp) is close to Py,
which is 0.095 by case or 0.0004 by time, then both Figures 15 and 16 indicate that DRB will initially perform
the worst comparing with NVP and NSCP.

Figures 17 and 18 highlight the above point. Figure 17 shows how the comparison between DRB and
NVP is affected by a variation in the probability of failure for the acceptance test, for the parameterization
associated with the by-case data. The parameters for the NVP analysis were held constant, and the parameters
(other than the probability of acceptance test failure) for the DRB model were also held constant. Figure 18
shows the effect of a variation in the acceptance test failure probability, for the by-time data. Figure 17 and
18 show that the acceptance test for a recovery block system must be very reliable for it to be comparable in
reliability to a similar NVP system.

9 Conclusions

We have proposed a system-level modeling approach to study the reliability behavior of three types of fault-
tolerant architectures: DRB, NVP and NSCP. Using a recent fault-tolerant software project data, we pa-
rameterized the models and displayed the resulting system (un)reliability. The comparisons of the three
fault-tolerant architectures were done not only from directly applying the estimated parameters, but from
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varying the baseline parameters as a sensitivity analysis. Several interesting results were obtained:

1. A drastic improvement of reliability could be observed if a finer and more frequent error detection
mechanism could be performed by the decider for each architecture.

2. From the by-case data, varying the probability of an independent software fault had the major impact
to the system reliabilty, while from the by-time data, varying the probability of a related fault had
the largest impact. This could be due to the fact that the by-time data compares results in a finer
granularity level, and 1s thus more sensitive to related faults among program versions.

3. In comparing the three different architectures, DRB performed better than NVP which in turn was better
than NSCP. DRB also enjoyed the feature of relative insensitivity to time in its reliability function. DRB
might perform worse than NVP to begin with, but in the long run it could become better.

4. The acceptance test in DRB had to be very reliable for (3) to remain true. If the acceptance test in
DRB is as unreliable as its application versions, DRB loses its advantage to NVP and NSCP.

5. NSCP did not seem to perform very well in the reliability analysis. However, it is expected to gain more
improvement and close the gap to the other two architectures if a safety analysis is performed.

Needless to say, more data points are wanted for the validation of our models and for more evidences of
the advantages and disadvantages of the three fault-tolerant system architectures.
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