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Abstract—In large-scale cloud computing systems, the grow-
ing scale and complexity of component interactions pose great
challenges for operators to understand the characteristics of
system performance. Performance profiling has long been
proved to be an effective approach to performance analysis;
however, existing approaches do not consider two new re-
quirements that emerge in cloud computing systems. First,
the efficiency of the profiling becomes of critical concern;
second, visual analytics should be utilized to make profiling
results more readable. To address the above two issues, in this
paper, we present P-Tracer, an online performance profiling
approach specifically tailored for large-scale cloud computing
systems. P-Tracer constructs a specific search engine that
adopts a proactive way to process performance logs and
generates particular indices for fast queries; furthermore, P-
Tracer provides users with a suite of web-based interfaces to
query statistical information of all kinds of services, which
helps them quickly and intuitively understand system behavior.
The approach has been successfully applied in Alibaba Cloud
Computing Inc.1 to conduct online performance profiling both
in production clusters and test clusters. Experience with one
real-world case demonstrates that P-Tracer can effectively
and efficiently help users conduct performance profiling and
localize the primary causes of performance anomalies.

Keywords-Performance profiling; performance anomaly; vi-
sual analytics.

I. INTRODUCTION

Performance maintenance is one of the most essential
processes in software performance engineering [1]. One
requirement of performance maintenance is to ensure that
system performance complies with the Service Level Agree-
ment [2], [3]. However, modern distributed systems (e.g.,
cloud computing systems) are continuously growing in scale,
along with the complexity of component interactions, which
creates great challenges for operators to understand the
characteristics of system performance.

For instance, in Alibaba cloud computing platform, user
requests will pass through many kinds of service components
that are deployed on different hosts, which generates many
types of execution paths. As a result, operators have much
difficulty in knowing the system behavior. Examples include:
1) Where do the requests spend most of their time? 2)
Which types of execution paths are the critical paths that

1Alibaba Cloud Computing Inc. is a subsidiary of Alibaba Inc., one of
the largest e-commerce companies in the world. Our work is carried out in
Alibaba Cloud Computing Inc.

are most frequently passed through? 3) When the system
performance changes beyond expectation, which service
components might be the primary causes of the problem?
Therefore, it could be helpful for them to have an effective
tool to profile system performance.

Request tracing approaches [4], [5], [6], [7] are effective
to performance debugging. It can record the execution
information of individual requests, for example, the entering
and exiting time when individual requests go through service
components. These approaches are useful for operators to
understand the casual relationships of component invoca-
tions. However, they are not capable to performance profiling
for cloud systems due to the following reasons.

First, the efficiency of a performance profiling tool is of
critical concern. In cloud computing systems, thousands of
requests are served per second, which generates tremendous
trace logs. For example, more than 12 million lines of
trace logs are generated for a 350-host cluster in an hour
in Alibaba cloud computing platform. It may take a long
time for a simple query to calculate the aggregate statistical
information for one type of execution paths in the past
24 hours, which is undesirable for operators. Second, one
graph is worth a thousand logs [8]. It is more helpful to
visualize the information for operators to identify hidden
performance anormalies. However, most current approaches
do not provide visualization techniques for massive trace
logs.

To support fast performance analysis for large-scale cloud
computing systems, in this paper we propose an online per-
formance profiling tool, namely P-Tracer. P-Tracer is based
on end-to-end request tracing technologies and provides a
statistical insight into exectution time consumed by requests
in each part of the systems. The contributions of this paper
are as follows:

• A particular search engine is constructed for trace
logs, which adopts a proactive way to process trace
logs and generates particular indices for fast queries.

• Statistical profiling information for requests are visual-
ized to operators with a high readable way, which helps
them quickly understand system behaviors and reason
about performance changes.

This paper is organized as follows. In Section II, we
briefly introduce end-to-end request tracing technologies and
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Figure 1. An example of explicit instrumentation.

the structure of distributed trace logs. Section III discusses
the design details of the search engine. Section IV presents
visual dimensions of statistical information of system per-
formance. In section V, we report one real-world case to
validate the effectiveness of P-Tracer. Section VI compares
our approach with the related work. In Section VII, we
conclude this paper.

II. BACKGROUND

A. End-to-end request tracing technology

Our profiling tool relies on end-to-end request tracing
technology to generate distributed trace logs. One char-
acteristic of end-to-end request tracing technology is to
record the execution information of individual requests. This
information can be utilized to profile services. Note that
the tracing technology is not our research scope in this
paper. Hence, although there have been advanced dynamic
instrumentation approaches (e.g., [9], [4]), for simplicity,
we just select the source-level instrumentation approach.
Figure 1 shows an instrumentation example of our target
system. The interface of ENABLE TRACE() invoked
in main is utilized to activate a tracing process, which
generates a global identifier for the request. The interface
of TRACE LOG() is utilized to record contextual infor-
mation into logs when instrumented methods are invoked.

B. Request trace logs

The trace logs could be utilized to profile system perfor-
mance. In large-scale cloud computing systems, a request
may span many hosts. The upper half of Figure 2 shows
an process in which a request spans three hosts and invokes
three instrumented methods. When a user request is tagged
with a global identifier (GID) that is randomly generated,
all instrumented methods that it passes through will record
contextual information into local log files, as shown in lower
half of Figure 2. When the invocation of an instrumented
method starts, a line of log is recorded that sequentially
contains the current time stamp, log level, process number,
line number of statement generating the log, GID (a unique
64-bit integer), name of the invoked method and flag signi-
fying the start of the invocation, as shown in the first line of
three local log files in Figure 2. When the invocation ends,

Figure 2. A request passes through three instrumented methods that are
in different hosts. Instrumentation points record contextual information into
logs. These logs contain the current time stamp, log level, process number,
line number of statement generating the log, GID for the request, name of
the invoked method and flag signifying the start or end of the invocation.
When the request spans between hosts, the GID for the request changes.
The first GID (i.e., 001) for the request is defined as root GID.

another line of log will be recorded. The content is almost
the same as that of the first line except that the flag changes
to signify the end of the invocation, as shown in the last line
of three local log files in Figure 2.

Former researches (e.g., Stardust [10]) always use one
global identifier to mark a request and construct call rela-
tionships of instrumented methods depending on the sorted
time-stamps in trace logs. However, it does not work in
large-scale cloud computing systems because of the clock
skews of hosts. Although the clocks of hosts have been
synchronized by Network Time Protocol [11], there are still
millisecond-level deviations between the clocks. Because re-
quests may span many hosts and the time-stamps in logs are
recorded according to local clocks, it may lead to disorder
of time-stamps when dispersed logs are merged together.
For instance, the start time-stamp of the callee in one host
is earlier than the start time-stamp of the caller in another
host. To avoid clock drift, we change the GID for a request
when it spans networks between hosts and use the parent-
child relationship of GIDs within one request to construct its
call relationship. The change process is recorded as a line
of log that has the same structure with other logs except
explicitly marking the original and new value of the GID.
For example, when the instrumented methodA makes a RPC
call for the instrumented methodB, the GID changes from
001 to 007, as shown in the second line of the lower left
part in Figure 2.

III. CONSTRUCTING SEARCH ENGINE

In order to online provide operators with the statistical
information of services, we need to construct a specific
search engine to preprocess execution paths. The challenge
is how to effectively merge distributed massive trace logs
and generate suitable indices.

In this section, we discuss the design details of the search
engine. As shown in Figure 3, it contains four parts: 1)
extract the key parameters from raw trace logs and collect
the refined logs from production and test clusters to a
analysis cluster; 2) parse the refined logs into call trees and
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Figure 3. The structure of search engine.

call sequences; 3) group structure-identical call sequences
together and generate the indices for them; 4) provide users
with web-based interfaces to do online query.

A. Collecting

A log collecting daemon that collects raw trace logs
at a controlled time interval is deployed for each host in
production and test clusters. In order to reduce the overhead
of network traffic, daemons do not send the raw logs to
the analysis cluster directly, but first extract the primary
parameters from them.

Figure 4 shows an example of the extracting process in
one host where numerous raw logs are generated. First,
the selected lines (i.e., grey parts) that are in the desired
time window are extracted by the daemon from all raw
logs; then the daemon filters out all redundancy information
(e.g., process number and log level) and puts the refined
lines into one file (called refined file). Note that the daemon
appends the host address to the refined lines in order to
keep physical information. Finally, the daemon compresses
the file and sends it to the aggregator daemon in the analysis
cluster. After refining, the volumes of network transmission
are decreased by 9/10.

B. Parsing

After collecting the refined logs together, an aggregator
uses them to generate call trees of individual requests and
corresponding call sequences. One call tree corresponds one
execution path pattern.

The process is as follows. First, the aggregator traverses
all refined logs to generate one temporary file, which is a
pair list of parent GIDs and child GIDs. The GIDs without
parent GIDs are the root GIDs. Second, the aggregator
assigns them to distributed computing nodes, together with
the temporary file of parent-child GID relationships. Those

Figure 4. An example of refining raw logs in one host. All related lines
under the desired time window (i.e., the grey parts) are merged into a
refined log in an ascending order of time stamps.

(a) Example one (b) Example two

Figure 5. Examples of generating call sequences from call trees. without
the depth information, the same signature will be constructed for the two
call trees.

computing nodes use a map-reduce [12] process to generate
call trees and corresponding call sequences.

Call sequences are constructed by adopting a depth-first
traversal of call trees. Elements in the call sequence are
comprised of the nodes in the call tree plus corresponding
depths. Through concatenating the method name and the
depth of each node, we can get a string representation that
is the signature of the call tree. Using the logs in Figure 2,
Figure 5(a) plots a call tree and its corresponding signature
where X is short for methodX . Without adding the depths
of the nodes, different the call trees may generate the same
signature. For instance, Figure 5(b) plots another the call tree
and its corresponding signature. If removing the depths of
the nodes, the two call trees shown in Figure 5 will generate
the same signature 〈ABC〉.

C. Indexing

Next, the aggregator makes an index for the call sequences
of requests. Recall that each call trees (i.e., execution path
pattern) has a unique signature that is the string repre-
sentation of invoked methods. For each time interval of
log collecting, all kinds of signatures are merged together
and stored into a meta file. Call sequences with the same
signatures are kept into one data file. Figure 6 shows an
example of the structures of a meta file and three data files.

506506509511
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Figure 6. The structure of indexing.

SX in the meta file is short for the value of signature X .
TX in the data files is the time stamps of requests when
they enter the system. Elements in one call sequence are
kept sequentially into a row of one data file. LX and HX

denote the response latency and host address of the invoked
method respectively. Meta and data files are stored into the
distributed file system of the analysis cluster.

D. Querying

Last, the search engine provides users with web-based
interfaces to facilitate query operations. It not only supports
the query of statistic information for a time window (e.g.,
types of call sequences and the latency distribution), but
also allows users to compare performance changes between
any two time periods. It is quite useful for operators to find
differences between two load tests. The result is represented
in a user-friendly way, which will be introduced in the next
Section in detail.

IV. VISUALIZATION FOR PERFORMANCE PROFILING

P-Tracer provides users with web-based interfaces to
construct ad hoc queries, which makes it easy to access
and retrieve information from the search engine. Figure 7
displays the primary interfaces and parts of results that match
the query parameters. Additionally, users can modify any
of the parameters (e.g., filter out requests with latencies
smaller than 100 millisecond) to the current query to create
a detailed profile view.

P-Tracer supplies multi-dimensional statistical informa-
tion to help operators in-depth understand the system per-
formance. For space consideration, we introduce two typical
metrics. Note that all figures are drawn according to the
application of mail service. Call trees in figures have been
simplified and all real method names are also replaced. To
facilitate the presentation, we will use the term of call tree
to refer to the execution path pattern.

A. Call Tree Overviews

In cloud computing systems, for a kind of service, there
will involve thousands of requests per second that may
take different kinds of call trees. Different call trees imply
different semantics. For example, two call trees can be
constructed depending on whether the required file is in the

cache or not. P-Tracer supplies users to query the statistical
information of overall call trees for one kind of service in a
desired time range. The left part of Figure 7 shows a query
result for the ListMail service, which includes statistical
information about each call tree, such as the request count
in each type, frequency and average latency. The types are
listed in the descending order of frequency. From this figure,
operators can easily observe which call trees are the critical
paths. Ideally, requests within the same call tree should have
approximate latencies, however, many factors may cause
latency fluctuation. Types in which latencies of requests are
over dispersed are defined to be suspicious. We use the
measure of coefficient of variation (by default, the threshold
is set to be 1) [13] to pick suspicious types and highlight
them. As shown in the left part of Figure 7, there are two
suspicious types (i.e., type C and type E) that are labeled
as red color.

B. Shape and Statistics of a Particular Call Tree

When users click on a particular call tree, P-Tracer not
only visualizes its shape, but also shows statistical infor-
mation of each node in the call tree, including maximum,
minimum, average latency and the ratio of the average
latency of the node to that of the call tree. The latency
of root node is defined as the latency of corresponding
call tree. The latency ratios of nodes in one call tree are
plotted as swimlanes, which helps users observe statistical
time consumption in every part of invocation and provides
an intuitive way of understanding the bottlenecks of the
services, as shown in the right part of Figure 8.

C. Shape Comparison between Call Trees

P-Tracer supports to distinguish shape differences be-
tween call trees. Figure 9 shows a comparison of two call
trees for the ListMail service. We can see the first type
has two more RPC call processes than the second type.
Through comparing the differences between execution paths,
operators can learn whether methods are being invoked as
their expectation and further infer whether the latency of one
call tree is suspicious or not.

V. VALIDATION

P-Tracer has been successfully applied in Alibaba Cloud
Computing Inc. to employ online performance profiling both
in production clusters and test clusters. These clusters are
under different workloads and load conditions. All clusters
are equipped with the Alibaba cloud computing platform,
which contains a series of service components, such as dis-
tributed scheduler, storage, communication, monitor. There
are about one hundred instrumented points in the systems.
Default sampling policy for tracing in clusters is at 1 out
of 200 requests. All the trace logs from those clusters are
dumped into a 10-host analysis cluster at every controlled
time interval (1 hour by default). There are about 2 million
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Figure 7. The main page of P-Tracer contains primary interfaces to let users query what they are interested in. Users can query a specific metric within
a desired time range. It also supplies links for users to modify parameters of the current query, such as, filtering out requests with latencies smaller than
100 millisecond.

Figure 8. Shape and statistical information for a particular call tree.

Figure 9. Shape comparison of two call trees.

lines of raw logs generated in a 100-host cluster. It costs less
than 5 minutes to construct new call sequences and import
them into distributed file system of the analysis cluster.
In this section, we introduce one experience of using P-
Tracer to do performance profiling for the mail service in
production and test clusters.

After a system upgrade, an operator utilized P-Tracer to
do performance profiling and found a design defect. When
checking the overall call trees of the SendMail service (used

to send mails), he observed that there was a call tree that
contained a method labeling the transaction aborted. The
frequency of this call tree was more than 25 percent and
the average latency was about 3 times larger than those of
other call trees. After trying different scales of time windows
(from one hour to two weeks), he found the ratio of this call
tree was steady.

He presented this result to the relevant developers. They
were surprised and created a bug report to investigate it.
Afterwards, they found that the root cause was a design
defect of sending group mails. When sending mails to a
group, the redundancy mails were not wiped off in the
application level but directly dispatched to the system level.
In the system level, each sending mail would invoke a
transaction to store the content. When a mail was kept by the
former transaction, other transactions to store the same mails
would be aborted. After the developers transferred the logic
of wiping off redundancy mails to the application level, the
performance of the SendMail service increased about one
fifth.

Not like functional problems that will directly cause break
down of the systems, performance problems are hard to
detect as they are influenced by many factors. Without P-
Tracer, developers have much difficulty in understanding the
behavior of requests in a fine granularity and inferring hiding
performance bottlenecks. Furthermore, P-Tracer supports
user to online profile system performance in a large time
scale, which can statistically reflect the system behavior
more precisely.

VI. RELATED WORK

Diverse single process-oriented performance profiling
tools are proposed to help developers identify time-
consuming parts of the computation within one node. DTrace
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[4] and DARC [14] visualize the execution of systems as
call graphs to signify where requests spend time in a single
node. Misailovic et al. [15] uses a loop perforation approach
to optimize the tradeoff between execution time and quality
of service. Our work builds on some ideas from these
researches, however more factors have to be considered in
cloud computing systems, such as large volumes of trace
logs, clock drift and complex execution paths.

There are many tracing approaches [6], [16], [17] that fo-
cus on performance debugging and diagnosing in distributed
systems. The most related work to P-Tracer is Dapper [16],
which is a distributed performance analysis tool in Google.
There is a major difference between Dapper and P-Tracer.
Dapper keeps trace logs of one request into Bigtable as a
row, with the global identifier as the primary key; whereas,
P-Tracer groups the requests with the same type into a data
file and designs an index to search them, which is more
efficient to compute statistical information.

VII. CONCLUSION

Currently, distributed systems are continuously growing
in scale and complexity of component interactions, which
poses great challenges for operators to online capture the
characteristic of system performance. This paper presents P-
Tracer, an approach to support the proformance profiling in
cloud computing systems. Experience with one real-world
case demonstrates P-Tracer can effectively help users do
performance profiling and localize the primary causes of
performance anomalies.
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