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Abstract—Document clustering plays an important role in
large scale textual data analysis, which generally faces with great
challenge of the high dimensional textual data. One remedy
is to learn the high-level sparse representation by the sparse
coding techniques. In contrast to traditional Gaussian noise-
based sparse coding methods, in this paper, we employ a Poisson
distribution model to represent the word-count frequency feature
of a text for sparse coding. Moreover, a novel sparse-constrained
Poisson regression algorithm is proposed to solve the induced
optimization problem. Different from previous Poisson regression
with the family of ℓ1-regularization to enhance the sparse
solution, we introduce a sparsity ratio measure which make use of
both ℓ1-norm and ℓ2-norm on the learned weight. An important
advantage of the sparsity ratio is that it bounded in the range of
0 and 1. This makes it easy to set for practical applications. To
further make the algorithm trackable for the high dimensional
textual data, a projected gradient descent algorithm is proposed
to solve the regression problem. Extensive experiments have been
conducted to show that our proposed approach can achieve
effective representation for document clustering compared with
state-of-the-art regression methods.

Index Terms—document clustering, sparse coding, Poisson
regression

I. INTRODUCTION

During past decade, an explosive growth of text contents
on Internet makes Web documents become a kind of typical
“Big Data” and brings both opportunities and challenges
for knowledge discovery, text mining and information re-
trieval. Among these techniques, document clustering plays
very important role in automatic document organization, topic
extraction and fast information retrieval or filtering [2], [3],
[26]. Typically, text data is represented as a high dimensional
binary or count “bag-of-words” vector that brings a great
challenge to document clustering. Sparse coding is able to
provide a solution by using the unlabeled data to learn a high-
level sparse representation of the raw inputs for document
clustering [18], [20]. Lots of previous studies have addressed
the efficacy of such method in image classification [22], [25].

For a typical sparse coding problem, the feature values
are often assumed to be real, which can be described by a
Gaussian noise model. Moreover, Gaussian model is mainly
designed for continuous data that could take fractional, or neg-
ative values [18]. Such assumption is apparently inappropriate
for the word-counts data [5], [6], especially, the textual data.

To address this problem, in this paper, we employ a Poisson
distribution model on the sparse coding for the frequency data.
More specifically, we consider the problem of learning the low
frequency count data in the high-dimensional setting. The main
challenge of sparse Poisson coding for text clustering is how
to effectively model the nonnegative data while selecting the
salient features for the succinct model interpretation. Although
this problem has been explored in the literature, there still exist
some limitations. For web applications [4], Poisson regression
is parallelized and implemented under the Hadoop MapReduce
framework to provide a scalable and efficient solution for
behavioral targeting. The feature selection scheme is quite
heuristic, where the important features are selected based
on the frequency counted in cookie and the most frequent
entities are selected by a predefined threshold. This method
may ignore some combination features that occur rarely. In
neuroscience [14], ℓ1-regularized Poisson regression is pro-
posed to learn a sparse representation on the neural activity
data. In medical imaging applications [10], [11], sparsity-
based penalties following the idea of compressed sensing [8]
are proposed to seek a sparse Poisson regression model to
reconstruct the true function of the photon intensity. These
methods have to specify a regularization parameter to control
the sparse level of the solution in selecting the important
features. However, the range of the parameter is relatively large
and the relationship between the sparsity level of the solution
and the parameter is not directly evident. The insufficiency of
previously proposed work motivates our further exploration on
the sparse Poisson regression models in this work.

To overcome the above issues, we propose a novel Poisson
regression model, namely sparsity-constrained Poisson regres-
sion (SCPR), to build a linear model for the frequency data
while providing the sparsity solution for the salient feature
selection.

We highlight the contributions of our work in the following:
∙ Firstly, we employ a Poisson distribution model to well

describe the word-count feature of a text in sparse coding,
which can provide a high-level feature for document
clustering.

∙ Secondly, we induce a sparse prior to Poisson coding
by adopting a sparsity ratio, which is different from
previously proposed sparsity constraints [23], [24]. The
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sparsity ratio is borrowed from the sparseness constraints
for non-negative matrix factorization (NNMF) [12], [13]
and utilizes both the ℓ1-norm and ℓ2-norm on the weight.
More importantly, the ratio is bounded in the range of
0 and 1, which clearly indicates the sparsity level of the
solution. It is more intuitive and easier to be set in real-
world applications. Also, we investigate how to utilize
the sparsity ratio and elaborate different settings for it.
We therefore propose the SCPR with an equal constraint
to maintain the learned weight at a desired sparsity level.

∙ Finally, in order to make SCPR applicable for high
dimensional text data input, we design a projected gra-
dient descent algorithm for SCPR. The algorithm is very
efficient and scales with the average number of non-zero
elements, which is much less burden than the original
Poisson regression model counting all features.

II. POISSON REGRESSION FOR SPARSE CODING

In this section, we will introduce how to employ Poisson
regression to solve a sparse coding problem [7], [9], [17], [22],
[25].

We first review the typical sparse coding problem. Let
x ∈ ℝ

𝑛 be the raw input feature vector. Sparse coding aims
to find a set of basis vectors B = {b𝑗 ∈ ℝ

𝑛}𝑑𝑗=1 and the
sparse representations/coefficients z ∈ ℝ

𝑑 with respect to the
basis for x. Moreover, it is typically based on a Gaussian
noise model: P(x∣B, z) = N(

∑𝑑
𝑗 𝑧

(𝑗)b𝑗 , 𝜎
2𝐼), where each

feature is assumed independent and identically distributed,
𝑧(𝑗) is the 𝑗-th element of z and 𝜎2 is fixed. A sparse
prior P(z) ∝ ∏

𝑗 exp(−𝜆∣𝑧(𝑗)∣) is assumed to penalize the
nonzero representations. Given an unlabeled sample x, the
basis vectors and the sparse representations are obtained by
the MAP optimization problem:

min
B,z

1

2𝜎2
∥x−

𝑑∑
𝑗

𝑧(𝑗=1)b𝑗∥22 + 𝜆

𝑑∑
𝑗=1

∣𝑧(𝑗)∣. (1)

The above problem can be efficiently solved by the alternative
minimization over B and z variables [17]. Also, the basis
vectors can be efficiently selected as the cluster centers by
running 𝑘-means clustering on all the data samples [15] or
simply selected by randomly sampling from the data [21].
Given a fixed B, z can be obtained by solving a regression
problem by minimizing the objective for both training and the
new input data samples.

The probabilistic model for the above problem assumes
that the input data features are real-valued, which is typi-
cally described by a Gaussian noise model. Obviously, it is
inappropriate for the textual data with word-counts frequency
x ∈ {0, 1, 2, ...}𝑑, which may be poorly modeled by a
continuous Gaussian distribution [18]. We try to address this
problem by introducing the Poisson distribution model in
sparse coding on the frequency data. Given a text document

0.1 0.5 0.9

Fig. 1. Illustration of different sparsity levels (0.1, 0.5, and 0.9). At low level
of sparsity (left), the weight is dense. At high level (right), most of elements
are zeros and only a few take large values.

x, we use the following Poisson distribution model:

P(𝑥(𝑖)∣B, z) = Poisson(𝑥(𝑖)∣
𝑑∑
𝑗

𝑧(𝑗)𝑏
(𝑖)
𝑗 )

=
𝜇(𝑖)𝑥(𝑖)

exp(−𝜇(𝑖))

𝑥(𝑖)!
,

(2)

where 𝑏
(𝑖)
𝑗 is the 𝑖-th element of b𝑗 and

∑𝑑
𝑗 𝑧

(𝑗)𝑏
(𝑖)
𝑗 is

simply denoted as 𝜇(𝑖). As each feature is assumed to
be independent and identically distributed, P(x∣B, z) =∏𝑛

𝑖 Poisson(𝑥(𝑖)∣𝜇(𝑖)). Note that we assume both the basis
vector and the new representation vector z to be non-negative,
which imposes a positive effect onto one-unit change in the
word count for the expected target word count [4]. Given an
unlabeled sample x and the fixed basis vectors B, the sparse
representations z can be obtained by the MLE optimization
problem:

max
z

ℒ =
𝑛∑

𝑖=1

(𝑥(𝑖) log(𝜇(𝑖))− 𝑢(𝑖) − log(𝑥(𝑖)!)). (3)

The above log-likelihood is a concave function on z and
therefore guarantees the global optimal solution for Poisson
regression. Various algorithms, e.g., gradient descent, can be
adopted to seek its optimal solution. The derivative of the log-
likelihood with respect to 𝑧(𝑗) is

∂ℒ
∂𝑧(𝑗)

=

𝑛∑
𝑖=1

(
𝑥(𝑖)

𝜇(𝑖)
𝑏
(𝑖)
𝑗 − 𝑏

(𝑖)
𝑗

)
. (4)

The multiplicative rule [16] is used to update the coefficient
vector

𝑧(𝑗) ← 𝑧(𝑗)
∑𝑛

𝑖=1
𝑥(𝑖)

𝜇(𝑖) 𝑏
(𝑖)
𝑗∑𝑛

𝑖=1 𝑏
(𝑖)
𝑗

. (5)

III. SPARSE POISSON CODING

In this section, we consider how to utilize the sparsity
prior in sparse coding problem. Then we propose an effective
sparsity-constrained Poisson regression (SCPR) approach with
a given sparsity level. To solve this problem, we design an
efficient algorithm based on the projected gradient descent and
sketch its average computational cost.

A. Sparse Poisson Regression

A sparse prior P(z) is assumed to penalize the nonzero
representations. Then, the sparse representations z are obtained
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by the MAP optimization problem:

min
z

−ℒ+ 𝜆Pen(z), (6)

where ℒ is the log-likelihood. Pen(z) is based on the sparse
prior, which can be ℓ1-regularization ∥z∥1 [14] or the hybrid
Huber penalty [10], [11].

B. Sparsity Ratio

Numerous measures can be used to evaluate for the sparsity
level of the coefficients. A good indicator function can map
a vector from ℝ

𝑑
+ to [0, 1] and quantify how much energy

maintain on the component of the coefficient. An ideal one is
to have only one non-zero element for the sparse vector and
with all elements non-zero for the least sparse case.

Hence, we adopt the sparsity ratio defined in [13] for NNMF
in this paper:

spr(z) :=
1√

𝑑− 1

(√
𝑑− ∥z∥1∥z∥2

)
. (7)

In Eq. (7), the defined sparsity ratio is different from the
previously proposed sparse Poisson regression mainly utilizing
the ℓ1 regularization. Based on the relationship between the ℓ1
norm and the ℓ2 norm. Moreover, this ratio contains a good
property, bounding in the range of 0 and 1. We summarize
this property of the sparsity ratio in the following proposition:

Proposition III.1. ∀z ∈ ℝ
𝑑
+, z ∕= 0, we have

0 ≤ spr(z) ≤ 1. (8)

The above proposition can be proved by the following
relationships:

1√
𝑑
∥z∥1 ≤ ∥z∥2 ≤ ∥z∥1. (9)

The first inequality follows the Cauchy-Schwarz inequality.
The second inequality is obvious when putting square on both
sides. Although Proposition III.1 is valid for negative z, we
still keep the non-negative condition. This is mainly due to that
we only consider non-negative coefficient vectors. In Eq. (9),
the lower bound is reached when a vector with equal non-zero
elements. On the other hand, the upper bound is obtained when
a vector with all but one vanishing elements. Hence, this ratio
is intuitive and easy to set the sparsity level of a given vector
z, see more illustrated examples in Fig. 1.

C. Proposed Model

We consider how to employ the above defined sparsity ratio
to obtain the sparse solution. An intuitive setting is to bound
the sparsity ratio as follows:

spr(z) ≤ 𝑟. (10)

An advantage of this setting is to maintain the convexity of
the domain. This can be shown that the domain of the learned
coefficient in Eq. (10) is equivalent to

∥z∥2 ≤ 1

𝑐𝑑,𝑟
∥z∥1,

where
𝑐𝑑,𝑟 =

√
𝑑(1− 𝑟) + 𝑟. (11)

This is exactly a second-order cone, or Lorentz cone [1].
Combining the restriction of z ∈ ℝ

𝑑
+, i.e., z ≥ 0, we can

define the domain of learned coefficient in a convex set. Fig. 2
shows the different examples.

(a) 0.1 (b) 0.5 (c) 0.9

Fig. 2. Illustration of the set of the learned weight bounded on different
levels (0.1, 0.5, and 0.9). The larger the bounded sparsity ratio, the larger the
domain of learned weight is.

It seems that we can define the learned coefficient by
bounding the sparsity ratio as in Eq. (10) and yield a convex
optimization problem. As illustrated in Fig. 2, a large bound,
i.e., spr(z) = 1, the defined domain of the learned coefficient
will recover the whole domain of the learned coefficient, which
is exactly the original domain of Poisson regression. Moreover,
defining z on the conic set in Eq. (10) also cannot yield sparse
solution.

Hence, we borrow the idea of the sparsity constraints pro-
posed for NNMF in [13] and propose the sparsity-constrained
Poisson regression (SCPR) as follows:

max
z∈ℝ𝑑

+

ℒ, s.t. spr(z) = 𝑟. (12)

Note that our proposed SCPR requires the learned coefficient
at a certain sparsity level via the pre-defined parameter 𝑟. For
the different sparsity levels, we can refer to the charts shown in
Fig. 3. It can be found that the larger spr(z), the smaller valid
set is. Extremely, the set consists of several isolated points on
the corresponding axis, when the sparsity ratio is set to one.

(a) spr(w) == 0.1 (b) spr(w) == 0.5 (c) spr(w) == 0.9

Fig. 3. Illustration of the sparsity-constraint set in a 3D wireframe mesh
for different sparsity levels (0.1, 0.5, and 0.9). The set consists of the mesh
except the green region. The set becomes small as the sparsity ratio increases.

D. Algorithms

In order to make our proposed SCPR applicable for the
high-dimensional textual data, we design an efficient projected
gradient descent algorithm for the minimization problem in
SCPR. The whole algorithm consists of two main steps: 1) the
first step mainly follows the “multiplicative update rule” as in
Eq. (5) to update the coefficient vector; 2) the second step is to
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Algorithm 1 Projected gradient descent for SCPR
Input: The raw feature x and the fixed basis vectors B, the
sparsity ratio 𝑟;
Output: The coefficient vector of SCPR z.

1: Compute 𝑑 = dim(z);
2: Compute 𝑐𝑑,𝑟 by Eq. (11);
3: Initialize z to random positive vector;
4: Set 𝐿2 to the square of ℓ2-norm on z, i.e., 𝐿2 = ∥z∥22;
5: Set 𝐿1 to the ℓ1-norm value corresponding to the desired

level of sparsity, i.e., 𝐿1 = 𝑐𝑑,𝑟 × ∥z∥2;
6: Call Projection(z, 𝐿1, 𝐿2) to update z;
7: repeat
8: Calculate z by Eq. (5);
9: Set 𝐿2 to the square of ℓ2-norm on z, i.e., 𝐿2 = ∥z∥22;

10: Set 𝐿1 to the ℓ1-norm value corresponding to the
desired level of sparsity, i.e., 𝐿1 = 𝑐𝑑,𝑟 × ∥z∥2;

11: Call Projection(z, 𝐿1, 𝐿2) to update z;
12: until converge.

Algorithm 2 Projection(z, 𝐿1, 𝐿2)
Objective: Find the closet non-negative vector to a vector
z with a given ℓ1 norm, 𝐿1, and a given square of the ℓ2-
norm, 𝐿2.

1: Compute 𝑑 = dim(z);
2: Compute 𝑆 = {𝑗 : 𝑧(𝑗) ≤ 0};
3: Compute 𝑣(𝑗) =

{
𝑧(𝑗) +

𝐿1−∑
𝑡 𝑧

(𝑡)

𝑑−size(𝑆)
if 𝑗 /∈ 𝑆

0 if 𝑗 ∈ 𝑆
4: loop

5: Compute 𝑚(𝑗) =

{
𝐿1/(𝑑− size(𝑆)) if 𝑗 /∈ 𝑆
0 if 𝑗 ∈ 𝑆

6: Update v = v+𝜂(v−m), where 𝜂 is the non-negative
root of the quadratic equation, ∥v+𝜂(v−m)∥22 = 𝐿2;

7: if all elements of v are non-negative then
8: return v.
9: end if

10: Update 𝑆 = {𝑗 : 𝑣(𝑗) ≤ 0};
11: Update 𝑣(𝑗) = 0, ∀𝑗 ∈ 𝑆;
12: Compute 𝑠 = (

∑
𝑡 𝑣

(𝑡) − 𝐿1)/(𝑑− size(𝑆));
13: Update 𝑣(𝑗) = 𝑣(𝑗) − 𝑠, ∀𝑗 /∈ 𝑆;
14: end loop

project the coefficient onto the constraint space to achieve the
desired level of sparsity. This procedure is summarized into
Algorithm 1.

In Algorithm 1, the function Projection(z, 𝐿1, 𝐿2) has
to be called several times, which is to project z with the
corresponding 𝐿1-norm and the square of 𝐿2-norm to achieve
the desired sparsity. The procedure is defined in Algorithm 2.

For Algorithm 2, we first remove those elements with the
value being zero at line 2. At line 3, a point on a hyperplane∑

𝑡 𝑣
(𝑡) = 𝐿1 is initialized. Then, we move from the center

of the sphere towards the initialized point to satisfy the ℓ2

constraint, where the center is defined by the point with all
elements being equal in the updated index. If the updated point
is non-negative for all the elements, and then the algorithm is
terminated. Otherwise, we reset those elements with negative
values to zero, and project the point back onto the hyperplane
with

∑
𝑡 𝑣

(𝑡) = 𝐿1.
Time complexity analysis. Comparing to the original Pois-

son regression model, the proposed SCPR requires invoking
the function Projection at each iteration, which incurs some
computation efforts. In the worst case, Algorithm 2 may take
as many iterations as the number of coefficients dimension,
i.e., dim(z), to converge to an optimal solution. However, the
algorithm converges much faster in practice. It just needs about
four iterations for the worse case and one or two iterations for
the optimal solution at average.

Hence, the number of iterations in the function Projection
can be considered as a constant. Moreover, the computation
cost for the function Projection is proportional to the number
of non-zero elements (NNZs) in the learned coefficient. Addi-
tionally, the number of outer iterations required by Algorithm 1
is much smaller than the original Poisson regression model due
to the sparse solution.

In summary, Poisson regression has to update the coefficient
for all elements due to non-sparsity. The number of outer
iterations is proportional to the dimension of the raw features
and the number of coefficient dimension. We abstract it as
𝑐(𝑛, 𝑑) and obtain the time cost of PR as 𝒪(𝑐(𝑛, 𝑑)×𝑑). SCPR
requires 𝑐(𝑛, 𝑑) outer iterations, which is nearly a constant, and
several times to invoking the function Projection. At for each
iteration, SCPR only needs to update those non-zero elements.
Hence, the average run time cost for SCPR is in the order
of 𝒪(𝑐(𝑛) × Avg(NNZs)), which is much smaller than the
original Poisson regression model.

IV. EXPERIMENTS

To study the efficacy and the merits of our proposed
SCPR method in different perspectives, we evaluate the doc-
ument clustering performance using the different regression
approaches in sparse coding for learning the coefficients. All
the experiments are conducted on a notebook computer with
Inter i3-3110M CPU@2.40GHz and 4GB memory.

A. Sparse Coding for Document Clustering

In this section, we evaluate the performance of sparse
coding for document clustering. To show the efficacy of our
algorithm, we study the Poisson regression approaches with
different sparse prior and regularization.

1) Dataset: We conduct the performance evaluations on
the TDT2 document corpora [3], which consists of the data
collected during the first half of 1, 998 and taken from six
sources, including two newswires (APW and NYT), two radio
programs (VOA and PRI) and two television programs (CNN
and ABC). It is composed of 11, 201 on-topic documents
which are classified into 96 semantic categories. In this exper-
iment, those documents appearing in two or more categories
were removed, and only the largest 30 categories were kept,
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thus leaving us with 9, 394 documents in total1. In the dataset,
the stop words are removed and each document is represented
as a 36, 771-dimensional TF-IDF vector.

2) Evaluation Measure: In our experiments, the basis for
sparse coding is firstly selected by randomly sampling from
the data [21]. The raw feature of each document is fed into
the different regularized regression approaches in order to
obtain the sparse representations, which are further employ
to cluster the documents. The clustering result is evaluated
by comparing the estimated label for each document using
𝑘-means clustering algorithm. Two typical metrics are used
to measure the performance. The first metric is the accuracy
(AC) [2]. Given a document x𝑖, let ℎ̂𝑖 and ℎ𝑖 be the estimated
cluster label and the label provided by the corpus, respectively.
The AC is defined as follows:

𝐴𝐶 =

∑
𝑖=1 𝑁𝛿(ℎ𝑖,map(ℎ̂𝑖))

𝑁
, (13)

where 𝑁 is the total number of documents. 𝛿(𝑥; 𝑦) is the delta
function, and map(ℎ̂𝑖) is the permutation mapping function
that maps each cluster label ℎ̂𝑖 to the equivalent label from
the data corpus. The best mapping can be found by using the
Kuhn-Munkres algorithm [19].

Another metric is the normalized mutual information (NMI)
metric [2]. Let 𝐶 denote as the set of ground truth clusters and
𝐶 as the cluster set obtained from clustering algorithm. The
mutual information metric 𝑀𝐼(𝐶,𝐶) is defined as follows:

𝑀𝐼(𝐶,𝐶) =
∑

𝑐𝑖∈𝐶,𝑐′𝑗∈𝐶
𝑝(𝑐𝑖, 𝑐

′
𝑗) ⋅ log2

𝑝(𝑐𝑖, 𝑐
′
𝑗)

𝑝(𝑐𝑖) ⋅ 𝑝(𝑐′𝑗)
, (14)

where 𝑝(𝑐𝑖), 𝑝(𝑐
′
𝑗) are the probabilities that a document ar-

bitrarily selected from the corpus belongs to the clusters 𝑐𝑖
and 𝑐′𝑗 , respectively. 𝑝(𝑐𝑖, 𝑐

′
𝑗) is the joint probability that the

arbitrarily selected document belongs to the cluster 𝑐𝑖 as well
as 𝑐′𝑗 at the same time. We further employ the normalized
mutual information (NMI):

𝑁𝑀𝐼(𝐶,𝐶) =
𝑀𝐼(𝐶,𝐶)

max(𝐻(𝐶), 𝐻(𝐶))
, (15)

where 𝐻(𝐶), 𝐻(𝐶) are the entropies of 𝐶 and 𝐶, respectively.
From the definition, we know 𝑁𝑀𝐼(𝐶,𝐶) ranges from 0 to
1. If two sets of clusters are identical, 𝑁𝑀𝐼 is equal to one.
If they are independent, 𝑁𝑀𝐼 is set to zero.

3) Performance Evaluation: We compare our proposed
SCPR algorithm with several algorithms: Gaussian regression
ℓ1 norm regularizer (GR-ℓ1), the original Poisson regres-
sion without sparse prior (PR), Poisson regression with ℓ1
norm regularizer (PR-ℓ1), Poisson regression with Recursive
Dyadic Partitions (RDPs) regularizer (PR-RDP), Poisson re-
gression with translationally-invariant (cycle-spun) RDPs (PR-
TI), Poisson regression with Total Variation semi-norm regu-
larizer (PR-TV). To facilitate the fair comparisons, we directly
adopt the implementation of these reference methods with the

1http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

recommended settings [10]. In our experiments, the dictionary
size is set to 𝑑 = 1000 and 𝑑 = 2000, respectively. In each
case, the sparsity level 𝑟 is set to 0.5 and 0.7, respectively,
according to the cross-validation.

Fig. 4 plots the clustering results. Table I reports the coding
time when 𝑑 = 1000. It can be easily found that our pre-
sented SCPR approach obtains better clustering performance
compared with other methods. This is because our algorithm
not only reduces the reconstruction error but also captures the
same basis for the similar documents using a fitted sparsity
level. Though RDPs and RDP-TI constraints can greatly
improve the regression speed, their performances decrease at
the same time. Except from these two fast regression methods,
other approaches with the sparsity prior show better perfor-
mance than the raw regression and the Poisson regression-
based sparse coding outperforms the Gaussian regression-
based sparse coding. This demonstrates that the sparsity prior
would capture the salient high-level features of the text to
improve the representation ability and Poisson distribution can
better describe the word-count feature of the text data. Among
these effective sparse Poisson coding methods SCPR method
performs best with the least computation time.

V. CONCLUSION

In this paper, we introduced the Poisson distribution model
to represent the word-count textual feature in sparse coding.
A novel sparse-constrained Poisson regression algorithm was
proposed to solve the induced optimization problem. We have
defined a sparsity ratio which employed both ℓ1-norm and ℓ2-
norm on the learned weight. To further make the algorithm
applicable for the high dimensional textual data, we designed
a projected gradient descent algorithm to solve the regression
problem. We have conducted the regression experiments on the
synthetic data to show the improvement of our presented SCPR
algorithm compared with the original Poisson regression. The
clustering experiment on the high-dimensional textual data
indicated that our proposed approach is able to learn the better
sparse representation with faster speed for document clustering
compared with the state-of-the-art regression methods.
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