Reliability and Maintainability Related
Software Coupling Metrics in C++ Programs

Chandrashekar Rajaraman

CS Department
The University of Iowa
<rajar@cs.uiowa.edu>

Abstract

This paper describes some difficulties that one
encounters in the testing and maintenance of C++ pro-
grams, which may result in program unreliability. Inher-
itance and polymorphism are key concepts in object-
oriented programming (OOP), and are essential for
achieving reusability and extendibility, but they also
make programs more difficult to understand. We have
tried to show by arguments and by some empirical evi-
dence that widely used complexity metrics like lines of
code, cyclomatic complexity, and Software Science's
metrics may not be appropriate 10 measure the complex-
ity of C++ programs and those written in other object-
oriented languages, since they do not address concepts
like inheritance and encapsulation, apart from having
other weaknesses. Some measures using a notion from
the world of functional decomposition - coupling, are
defined for C++ programs. Two of them - CC and AMC
- and equivalent ones for the three widely used complex-
ity metrics (for comparison) are computed for five C++
programs. QOur preliminary results show that our cou-
pling measures correlate better with difficulty of testing
and maintenance than the three widely used complexity
metrics.

I. Introduction

The object-oriented paradigm is revolutionizing
software engineering, by providing a new and poten-
tially better way to analyze a problem, design a solution,
and implement it. Many goals of software engineering
like maintainability, reliability, and reusability, are said
to be more easily achieved using this paradigm than with
traditional ones based on funtional decomposition.
According to Biggerstaff ([Bigge 87]), this paradigm has
a good balance between power and generality. In his
framework, procedural-based solutions are also depicted
having a good balance, but are considered less effective
than object-oriented (abbreviated as QO hereafter) solu-

0-8186-2975-4/92 $03.00 © 1992 IEEE

303

Michael R. Lyu
Information Research Lab.
Bellcore
<lyu@bellcore.com>

tions. Encapsulation capabilities create self-contained
objects that are easily incorporated into a new dcsign,
thus promoting reusability [Kemni 84]. Some studies
have determined that the object-oriented approach is
quantitatively more beneficial than a procedural one in
terms of software maintenance ([Henry 90], [Mancl
901).

Some important questions that must be answered
at this juncture are: what makes the object-oriented
paradigm different from earlicr paradigms, how do these
differences help in achieving the goals of software
engineering more easily, and are these goals really
being achieved as claimed? In order to answer the itali-
cized question, the ability to measure is needed, for
which appropriate measures are required [Denic 81].

Some previous work has recognized the shortcom-
ings of extant metrics and the need for new metrics for
OO software. Some empirical suggestions have been
made, but little work has been done to define metrics
with a sound theoretical foundation [Chida 91]. In this
paper, we will define four measures of coupling, pri-
marily for C++ software, though they could be extended
to other OO languages:

(1) Class Inheritance-related Coupling (CIC)

(2) Class Non-Inheritance-related Coupling (CNIC)
(3) Class Coupling (CC)

(4) Average Method Coupling (AMC)

The organization of this paper is thus: Section II
criticizes the three most widely used metrics as to their
aptness for object-oriented as well as traditional
software. Section III provides some background about
the foundations of software measurement. Section IV
defines our coupling measures. Section V deals with our
validation approach. Section VI deals with the collec-
tion of raw data. Section VII presents the preliminary
results of our study. Section VIII contains our conclu-
sions, and future research direction. We will use
"member function” and "method" interchangeably.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

IL. A Criticism of Widely Used Complexity Metrics

There are two types of criticisms that can be
applied to current software metrics for object-oriented
software. In the first category, we have those that are
directed against conventional metrics that are applied to
conventional, non-OO software design and develop-
ment. They are criticized for having no firm theoretical
bases ([Vesse 84], [Kearn 86]), and for failing to display
"normal predictable behavior" [Weyuk 88]. Weyuker
defined a set of nine properties to serve as the basis for
the evaluation of syntactic software complexity meas-
ures, which she used to evaluate cyclomatic complexity,
statement count, Oviedo’s data flow complexity ([Ovied
80]), and Halstead’s effort measure. Her study found
serious drawbacks with all four metrics.

The second type of criticism that can be applied to
current software metrics is specific to object-oriented
design and development. In the object-oriented
approach, data and procedures are not separated as they
are in the older, conventional approaches that take a
function-oriented view that clearly separates data and
procedures. Once we consider the different notions
behind these two views, it is not very surprising to find
that none of the traditional metrics addresses concepts
like inheritance, encapsulation of procedures and data,
and passing of messages.

(1) statement count

It is a very intuitive measure of software complex-
ity. From an abstract viewpoint, the more detail that an
entity possesses, the more difficult it is to understand.
That is, the entity is complex. So, a program (entity) that
has 100 statements (dctails) is inherently more complex
than one that has 10 statements. However, a drawback
is - it is not easy to define what a statement is. Once this
definition is made, it is simple to compute the statement
count. Its simplicity is the major reason for its wide use,
despite its other drawbacks [Weyuk 88]. Statement
count views a program’s components as possessing
inherent complexity regardless of their context in the
program, this means that it is insensitive to interactions
among the program’s various components.

(2) Halstead’s Software Science

Halstead introduced software science to measure
properties of programs [Halst 77]. Using his notation,

n1 = number of unique operators
n2 = number of unique operands
N1 = total number of operators
N> = total number of operands

304

Then, the program volume V is defined to be
V = (N 1+N g)logz(n 1+n 2)

The potential volume V* is defined as the minimum pos-
sible volume for a given algorithm. Programming effort
is then defined to be:

E = Vv*

The Halstead’s effort measure predicted that it
would take longer to produce the initial part of the pro-
gram than the entire program, and its doing so raises
serious questions about its use as a syntactic complexity
measure [Weyuk 88].

(3) McCabe’s Number or Cyclomatic Complexity

McCabe ([Mccab 76]) has defined the complexity
of a program to be:

v=e-n+2p

where

e = number of edges in a program flow graph
n = number of nodes

p = number of connected components

A drawback with the cyclomatic complexity is
that it rates too many programs as equally complex; that
is, it is not sensitive enough to capture what might be
reasonably considered differences in program complex-
ity [Weyuk 88]. Moreover, it views a program’s com-
ponents as possessing intrinsic complexity, irrespective
of their context in the program, thus ignoring the
interactions among them.

Nodes are sequential blocks of code, and edges
are decisions causing a branch. It is quite obvious that
the definition of nodes is not granular enough to account
for the complexity of each statement in nodes in a OO or
non-OO0 program’s flow graph. For instance, consider
two consecutive statements: an object sending a mes-
sage to another object, and an assignment statement.
They would both be "lumped" together in a node, totally
ignoring the fact that they differ in their inherent indivi-
dual complexities. Further, if p = 1, then v = # + 1
where # is the number of predicates in the program. One
of the points of contention (applicable to both OO and
non-O0) in this definition is: How to treat compound
predicates?

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

A simple count of lines, statements or "tokens” in
any program, whether OO or non-OO, cannot fully cap-
ture its complexity. This is because, in a program, there
is a great deal of interaction between modules, and in
OO software, you have classes in addition to modules,
adding a dimension to this interaction. The above three
metrics simply ignore such dependencies, implicitly
assuming that each component of a program is a
separate entity. On the other hand, our metrics attempt
to quantify the interactions among classes assuming that
the interdependencies involved contribute to the total
complexity of the program units, and ultimately to that
of the whole software.

I11. Software Measurement Foundations

Most of the software engineering methods pro-
posed in the last twenty-five years provide tools, rules,
and heuristics for producing software products that are
characterized by structure [Fento 90]. This structure is
present in the development process as well as in the pro-
ducts themselves. Its presence in the products is
identified as modularity, low coupling, high cohesion,
encapsulation and others. These are all internal attri-
butes. Experts in software engineering agree that the
presence of these attributes will ensure the existence of
the external attributes expected by software users, e.g.
reliability, maintainability, and reusability. This is
treated almost as an axiom. Despite the important intui-
tive relationships that exist between the internal struc-
ture of software products and their external attributes,
there has been little scientific work to establish precise
relationships between the internal and external attri-
butes. An important reason for this is that there is a lack
of understanding of how to measure important internal
software attributes of software products [Fento 90].

Measurement theory provides a relevant basis for
deriving measures of software attributes [Baker 90]. It
gives us a framework for numerically characterizing
intuitive properties or attributes of objects and events.
Applying the basic criteria of measurement theory to
software measures requires the identification and/or
definition of

. attributes of software products and processes.
These attributes need to be aspects of software
that have both intuitive and well-understood
meanings.

. abstractions that capture the attributes.

. important relationships and orderings that exist
between the objects being modelled and that are

determined by the attributes of the models.

° order-preserving mappings from the models to
number systems,

If all of the above criteria are satisfied, then the
resultant mapping will be called a software measure.
With this background, we will now define some meas-
ures of coupling, primarily for C++ software, though
they can be extended to other object-oriented languages.

IV. Features of Object-Oriented Programs

Booch has defined object-oriented design as the
process of identifying objects and their attributes, identi-
fying operations suffered by and required of each object,
and establishing interfaces between objects [Booch 86].
The design of objects involves three steps:

1) definition of objects
2) attributes of objects
3) communication betwcecn objects

The design of methods involves the definition of
procedures which implement the attributes and opera-
tions suffered by objects. The design of classes is there-
fore at a higher level of abstraction than the traditional
procedural approach which is closer to methods design.
The task of class design makes OO design different
from procedural design.

The fundamental concepts of OO design as out-
lined by Booch are shown in Figure 1, and readers are
referred to [Booch 86] for a more detailed discussion.

Object
Qriénted
Design

AN

Methods
Design
Object
Design
Object Anf(l;)fules om;‘numcauon
iti mon,
Definition Objects Objec Lgs

Figure 1: Elements of Object Oriented Design

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

Software testing and maintenance heavily involve
program analysis and understanding. Generally, C++
programs seem to have a large number of small member
functions, and hence the system may have a large
number of small modules. Maybe this is true for pro-
grams written in other OO programming languages as
well ([Wilde 90], [Ponde 91]). In fact, it appears to be
good OO style to write small methods [Liebe 89]. This
has important repercussions for both testing and mainte-
nance. If the code that needs to be understood for a sim-
ple task is scattered widely, then good browsers are
needed to ease the tester’s and maintainer’s tasks, and
even they may not afford an appreciable advantage if
some understanding of context is required. In such
cases, a great deal of cross-references alone will not be
sufficient, and relationship links will need to be
identified. This underlines the need for semantics-based
tools.

Another problem arises with polymorphism, espe-
cially in a dynamically typed environment ([Ponde 92],
[Taenz 89], [Wilde 911, [Lejte 91]). It is not possible to
determine at compile time the function body that will be
executed for a given function call. This will be deter-
mined only at run-time. If a function f is invoked on
object O, it is the dynamic type of O that determines
which f’s body is invoked. This can seriously hamper a
programmer’s understanding of a program merely from
a static trace of it. He may have to consider all potential
dynamic types of O, all probable types if some
application-related knowledge is available, and both of
these numbers may be very large. Worse, he may have
to perform dynamic analysis, which is cumbersome and
can easily be inexhaustive, leading to incorrect conclu-
sions. Therefore, many simple tasks in conventional pro-
grams can become major undertakings in object-oriented
programs.

A dependency is a relationship between two enti-
ties in a system A-->B such that when A is modified,
one must be concerned about side-effects in B. Some
dependencies in a program are inevitable, and in fact,
are desirable, but a large number of them will make the
program difficult to test and maintain. The use of inheri-
tance and polymorphism increases the kinds of depen-
dencies considerably. Some of them are: class- class,
class-method, class-message, class-variable, and
method-variable dependencies, where class, method,
message and variable are four kinds of entities. There-
fore, a class that is low in a class hierarchy will be more
difficult to modify than one higher up since an under-
standing of a greater number of classes is required. The
more a class references variables and uses methods not
defined in the class, the less self-contained is the class.
That is, greater are the class’ dependencies, and clearly,

306

greater is the difficulty of testing and maintaining the
class.

V. Definitions of Our Coupling Metrics

The software attribute that we consider in this
paper is coupling. It has been defined as a measure of
the degree of interdependence between modules
[Press87), and the degree of interaction between
modules [Myers 78]. Though coupling is a notion from
structured design, it is still applicable to object-oriented
design — at the levels of modules, classes and objects. In
this paper, we are concerned only with coupling
between classes.

Coupling for a class has been defined as a count of
the number of non-inheritance related couplings with
other classes [Chida 91]. When methods of one class
use methods or instance variables of one that belongs to
another class hierarchy, then we have coupling between
the classes. A class with strong coupling — high interre-
lation with other classes — is harder to understand,
change, or correct by itself. The greater the number of
couplings, the higher the sensitivity to changes in other
parts of the design. This makes testing and maintenance
more difficult. Coupling also affects testing. The higher
the inter-object(class) coupling, the more rigorous the
testing needs to be [Chida 91]. A measure of coupling
would therefore be useful in identifying parts of a pro-
duct that are "complex" from the point of view of testing
and maintenance.

There is some clash of interests between inheri-
tance and coupling. While it is desirable to have weak
coupling between classes, inheritance promotes coupling
between superclasses and their subclasses, to take
advantage of the commonality among abstractions.
There is no question that inheritance is crucial to achiev-
ing reusability and extendibility, apart from being a
powerful modelling tool of key relationships between
concepts in the application domain, but it does increase
the dependencies and has adverse effects on code under-
standability and testability (in the absence of sophisti-
cated semantics-based tools). Therefore, we include
inheritance in our definition of coupling:

"Coupling is a measure of the association,
whether by inheritance or otherwise, between
classes in a software product."

The model that we use to study coupling is a
directed multigraph (Figure 2). It is a graph that may
have many arcs between two nodes. Each node
corresponds 1o a class, and each arc corresponds to a
variable reference or member function use. For exam-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

ple, in Figure 2, an arc from A to C signifies that class A
makes a reference to a variable or uses a member func-
tion that has been defined in C.

(A}

ho= {0}

Figure 2: A Directed Multigraph

Based on the above discussions, we define four new
coupling metrics as follows:

(1) Class Inheritance-related Coupling (CIC) and (2)
Class Non-Inheritance-related Coupling (CNIC)

For a class, there are usually two kinds of clients:
objects that invoke operations upon instances of the
class, and subclasses that inherit from the class. With
inheritance, coupling will occur when a class accesses a
variable or uses a member function defined in a proper
ancestor class. For a class, we define a count of such
accesses and uses as 2lass Inheritance-related Coupling
(CIC).

A way in which non-inheritance-coupling can
occur is by the use of friends. A friend is defined as a
method typically involving two or more objects of dif-
ferent classes, whose implementation for any one class
may reference the private parts of all the corresponding
classes that are also friends. Global variables and func-
tions also cause non-inheritance-related coupling. For a
class, Class Non-inheritance-related Coupling (CNIC) is
defined as a count of the accesses to variables and uses
of member functions that have been defined neither in
the class nor in any of its proper ancestors.

We define Method Coupling (MC) as follows

>

MC = number of non-local references

307

For a method, we define a non-local reference as one
that references a variable or method not defined in the
class where the method is defined or redefined. MC is
nothing but the sum of inheritance-related and non-
inheritance-related couplings at the method level.

MC = gv+gf +om+iv

where

gv = # global variable references

gf =# global function uses

om = # messages to other classes

iv = # references to instance variables of other classes

(3) Class Coupling (CC)

Consider a class C, with methods M, M, ... M,, where
MC\MC», - - - MC, are the method couplings (MCs) of
the respective methods, then

Class Coupling (CC) of C = i’l MC;

where n is the number of methods belonging to the
class.

CC is equal to the number of outgoing arcs from
the node corresponding to the class in the multigraph
representation of the program,

(4) Average Method Coupling (AMC):

For a class, this is defined as the ratio of its Class Cou-
pling to its number of member functions.

AMC = CC/n

where

CC = Class Coupling
n = number of member functions in the class

This measure would provide the average couplings of
member functions in a class.

VI. Validation Efforts

Our main concern was prompt and easy access to
the software developers for obtaining reliability and
maintainability related data. We also wanted to analyze
“real” programs instead of programs developed in a
simulated environment. We obtained four such software
from the Center for Computer-Aided Design, Simulation
and Design Optimization of Mechanical Systems

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

(CCAD) at the University of Iowa. CCAD is actively
engaged in the development of software for CAD appli-
cations in mechanical engineering. It consists of over a
hundred student research assistants, full-time research
staff, and faculty of the Department of Mechanical
Engineering. In fact, the research being conducted there
has been largely responsible for the University of Iowa
being selected in a nation-wide competition as the site
for the $32 million National Advanced Driving Simula-
tor (NADS) project. Four software projects obtained
from CCAD (identified as "ccad_<id>"), together with
one from the University of South Carolina (identified as
"usc_1"), are briefly described below:

. ccad_1, ccad_11: They are class libraries for
dynamics computations. ccad_1 is an earlier ver-
sion of ccad_11. Both have over 10 classes; the
former has over 89K LOC, the latter more than
137K LOC.

. ccad_2, ccad_22: They are also class libraries for
dynamics computations. ccad_2 is a very early
version of ccad_22; the former has 27K LOC, the
latter 167K LOC.

. usc_l: It is a class library for image processing
applications, developed at the University of South
Carolina. It consists of over 60 classes, and over
1SK LOC.

All the classes in each of the five software were
ranked by the developers in the order of perceived
difficulty of testing and maintenance. We then com-
puted CC and AMC for all the classes. The classes were
ranked based on CC and AMC values, and by
corresponding values obtained using the three widely
used complexity metrics. Rank correlations of these
values with perceived-difficulty ranks were then com-
puted.

To extract the data that we needed from our five
data points, we used "PC-Metric for C++" marketed by
SET Laboratories, "CodeCheck Tool" of Abraxas
Software, and developed some code of our own.

A point to note: there is a loss of quantitative
information by using ranks. If data like mean time to
failure(mttf), and mean time to repair(mttr) were avail-
able, then a "better” validation of our measures could
have been done.

VII. Preliminary Results

The values that we computed from the five
software projects have been presented in Tables 1, 2,

308

and 3. In this section we have the following naming
convention:

"loc" - Lines Of Code
"hss" - Halstead’s Software Science
"mn" - McCabe’s Number

For instance, CC refers to Class Coupling defined
earlier, while CC_mn refers to the equivalent measure
computed using cyclomatic number; likewise for
CC_hss, and CC_loc. This naming convention applies
to AMC also.

Table 1 shows #classes and #methods for the
investigated projects.

classes | # methods
ccad_1 12 91
ccad_11 16 97
ccad_2 12 59
ccad_22 40 321
usc_1 70 279

Table 1: Class and Method Data in the Projects

Table 2 lists sample CC and AMC data for a data
point: ccad_1. The correlation between the ranks of the
classes based on column headers versus the perceived
difficulty ranks will be presented in Table 3. For
instance, the correlation coefficient between CC_hss
ranks and perceived difficulty ranks in Table 2 is the
entry (ccad_1, CC_hss) in Table 3. Tables similar to
Table 2 have been computed for the other data points
also, and they were used to compute the correlation
coefficients presented in Table 3.

Table 3 contains the correlation coefficients of CC
vs perceived difficulty and AMC vs perceived difficulty
for all software projects. In Table 3, columns 1, 3, 5,
and 7 contain the correlation values with perceived
difficulty of CC, CC_loc, CC_hss, and CC_mn respec-
tively. Columns 2, 4, 6, and 8 contain the correlation
values with perceived difficulty of AMC, AMC_loc,
AMC_hss, and AMC_mn respectively.

Two observations were made:

(1) CC and AMC correlate with perceived difficulty
better than all the other CC and AMC values, and

this is true for all the software projects analyzed.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

CC | AMC | CC_loc | AMC_loc | CC_hss | AMC hss | CC_mn | AMC_mn Ig;fcl‘:“;’l‘:;’
class1 | 21 | 897 | 2134 508 123 53 12 43 1
class2 | 10 | 786 | 4329 | 129 163 46 12 45 2
class3 | 22 | 46 | 8976 354 216 54 15 49 3
class4 | 23 | 9.7 | 3209 325 287 65 15 49 4
class 5 23 8.9 7098 312 257 51 21 5.0 5
class6 | 65 | 56 | 5690 929 234 67 15 52 6
class7 | 55 | 1023 | 11247 638 256 7 2% 6.2 7
class8 | 46 | 1031 | 3431 523 293 56 17 52 8
class9 | 50 | 1223 | 7896 632 198 57 21 54 9
class10 | 70 | 134 | 6654 865 365 60 28 62 10
class 11 | 40 | 1732 | 17415 | 2112 241 63 30 53 11
class 12 | 56 | 1334 | 10908 | 2206 265 78 30 56 12

Table 2: Sample CC and AMC Data for the Ccad_1 Data Point

CC | AMC | CC_loc | AMC loc | CC_hss | AMC_hss | CC_mn | AMC_mn
ccad_1 | 0.76 | 0.81 0.65 0.64 0.59 0.62 0.74 0.75
ccad_11 | 0.78 | 0.82 0.62 0.62 0.61 0.61 0.74 0.76
ccad 2 | 0.75 | 0.78 0.65 0.67 0.63 0.62 0.71 0.72
ccad 22 | 0.78 | 0.79 0.67 0.67 0.62 0.62 0.72 0.73
usc_1 0.74 | 0.77 0.65 0.66 0.64 0.63 0.63 0.62

Table 3: Correlation Coefficients for All Software Projects

(2) AMC_mn’s correlation with perceived difficulty VIII. Conclusions and Future Research

is comparable to those of our metrics for all data

points except usc_1. Our speculation is that there Some key features of C++ and other OO
is a definite difference in the qualities of the languages - inheritance and dynamic binding - that are
software developers; those of usc_1 are more essential to achieving reusability and extendibility, can
knowledgeable in C++ and object-oriented pro- make the task of program understanding difficult. The
gramming, and hence have exploited its language main reason for this is the absence of tools that address
constructs more fully than those of ccad_1, these special requirements. Currently available cross-
ccad_11, ccad_2, and ccad 22. The latter referencers and browsers are not enough. In addition to
developers may have programmed in C++ as they ordinary cross-referencing information, relationship
would in a traditional programming language links have to be identified. More sophisticated tools that
based on functional decomposition. are semantics-based are necessary. We have tried to

quantify the difficulty of OO program analysis and

309

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

understanding by defining some measures for programs
in a representative language - C++, using the well-
understood notion of coupling. Two of them - CC and
AMC - and equivalent ones for the three widely used
complexity metrics (for comparison) were computed for
five C++ programs, and their rank correlations with per-
ceived difficulty of testing and maintenance were com-
puted. Our preliminary results show that CC and AMC
had the maximum correlation, though the differences
were not statistically significant.

We plan to study the well-definedness and con-
sistency of the measures over a larger cross section of
C++ software. We also plan to refine the idea of CIC by
taking into account the depths in the class hierarchy tree
the class making the references and the classes it makes
references to, are. This would provide insights regarding
the manageable depth for a class hierarchy tree from the
testing and maintenance perspective. Such information
would certainly affect class design. Since communica-
tion between objects is at the heart of object-oriented
design, we hope our research direction will lead us to
the optimal non-zero value for coupling, which will
correspond to efficient communication between objects,
and substantially reduce the difficulty of testing and
maintenance.

References

[Baker 90]
Baker, AL, J.M.Bieman, N.E.Fenton,
D.A.Gustafson, A.C.Melton, and R.W.Witty, "A
Philosophy for Software Measurement,” Journal of
Systems and Software, 12, 277-281 (1990).

[Bigge 87]
Biggerstaff, T., and C. Richter, "Reusability Frame-
work, Assessment, and Directions,” IEEE Software,
March 1987, pp.41-49.

[Booch 86}
Booch, G., "Object Oriented Development," /EEE
Transactions on Software Engineering, SE-12,
February, 211-221, 1986.

[Chida 91]
Chidamber, Shyam R. and Chris F. Kemerer.,
"Towards a Metrics Suite for Object-Oriented
Design," OOPSLA 1991,

[Denic 81]
Denicoff, Marvin and Robert Grafton "Software

310

Metrics: A Research Initiative,” In Alan J. Perlis,
Frederick Sayward, and Mary Shaw editor,
Software Metrics: An Analysis and Evaluation.
MIT Press, Cambridge, Massachusetts, 1981.

[Fento 90]
Fenton, N. and A.Melton, "Deriving Structurally
Based Software Measures," Journal of Systems and
Software, 12, 177-187, 1990.

[Halst 77]
Halstead, M.H., Elements of Software Science,
Elsevier, New York, 1977.

[Henry 90]
Henry, Sallie M. and Matt Humphrey, "A Con-
trolled Experiment to Evaluate Maintainability of
Object-Oriented Software,” Proceedings of IEEE
Conference on Software Maintenance 1990, pp.
258-265.

[Kearn 86]
Kearney, J.K., et al. "Software Complexity Meas-
urement,” Communications of the ACM, 29 (11),
1986, pp. 1044-1050.

{Kerni 84]
Kemighan, B.W., "The Unix System and Software
Reusability,” IEEE Transactions on Software
Engineering, September 1984, pp.513-518.

[Lejte 91]
Lejter, M., Scott Meyers and Steven P. Reiss: "Sup-
port for Maintaining Object-Oriented Programs”,
Proceedings of IEEE Conference on Software
Maintenance *91, pp. 171-178.

[Liebe 89]
Lieberherr, Karl J. and Ian M. Holland, "Assuring
Good Style for Object-Oriented Programs," IEEE
Software, Volume 6, Number 5, September 1989,
pp. 38-48.

[Mancl 90]
Mancl, Dennis and William Havanas, "A Study of
the Impact of C++ on Software Maintenance,”
Proceedings of IEEE Conference on Software
Maintenance 1990, pp. 63-69.

[Mccab 76]
McCabe, TJ., "A Complexity Measure," IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

Transactions on Software Engineering, 2(4),
(1976).

[Myers 78]
Myers, G.J., Composite/Structural Design, Van
Nostrand Reinhold, New York, NY, 1978.

[Ovied 80]
Oviedo, E.I, "Control flow, data flow, and program
complexity,” in Proceedings of IEEE COMPSAC,
Chicago, IL, Nov.1980, pp.146-152.

[Ponde 92]
Ponder, Carl and Bill Bush, "Polymorphism Con-
sidered Harmful," ACM SIGPLAN Notices, Volume
27, Number 6, June 1992.

[Taenz 891
Taenzer, et al. "OO SW Reuse: The Yoyo Prob-

lem," Journal of Object-Oriented Programming,
September/October 1989, pp.30-35.

[Vesse 84]
Vessey, 1. and R.Weber, "Research on Structured
Programming: An Empiricist’s Evaluation, " IEEE
Transactions on Software Engineering, SE-10(4),
1984, 394- 407.

[Weyuk 88]
Weyuker, E., "Evaluating Software Complexity
Measures,” [EEE Transactions on Software

Engineering, Volume 14, Number 9, September
1988, 1357-1365.

[Wilde 91]
Wilde, N. and Ross Huitt: "Maintenance Support
for Object-Oriented Programs," Proceedings of
IEEE Conference on Software Maintenance

31!

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:39 UTC from IEEE Xplore. Restrictions apply.

