
Software Obfuscation with Layered
Security

XU, Hui

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
September 2018

Thesis Assessment Committee

Professor XU Qiang (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor LEE Pak Ching (Committee Member)

Professor CAO Jiannong (External Examiner)

Abstract of thesis entitled:
Software Obfuscation with Layered Security

Submitted by XU, Hui
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in September 2018

Software obfuscation is an essential technique that can protect
software intellectual properties from man-at-the-end attacks. It
transforms computer programs to new versions which are semanti-
cally equivalent to the original ones but much harder to understand.
Nevertheless, practical obfuscation techniques are not as secure as
other security primitives, such as cryptography. A notable challenge
is that software is much complicated with composite components. It
is therefore hard to develop a single obfuscation approach which is
secure-against-all. To tackle the problem, we investigate the idea of
layered obfuscation in this thesis, whereas an obfuscation solution
should integrate several different obfuscation techniques to provide
layered security, and each obfuscation technique only corresponds
to particular threats.

This thesis contains two parts. In the first part, we introduce
the concept of layered obfuscation and systematize the knowledge
of present obfuscation techniques. We develop a novel taxonomy
of existing obfuscation techniques, aiming to facilitate the design
of layered obfuscation solutions and promote the adoption of the
idea in practice. With our taxonomy hierarchy, the obfuscation
techniques under different branches are orthogonal to each other,
and thus developers can easily choose and combine them based on
their specific requirements.

In the second part, we enrich the obfuscation taxonomy with

i

several new obfuscation techniques and provide developers with
more options in designing competent obfuscation solutions. Our
first technique relates to the deobfuscation attacks based on sym-
bolic execution. It improves the resilience of present control-flow
obfuscation techniques to such adversaries by deliberately introduc-
ing challenging program analysis problems during obfuscation. Our
second obfuscation technique focuses on app tampering attacks. We
address such issues by introducing diversities among the obfuscated
apps of different users and therefore enable the apps with resilience
to large-scale attacks. Our third technique is related to deep learning
software. To protect well-trained machine learning models from
piracy, we propose to obfuscate the structure of private neural
networks via a simulation-based method.

In summary, this thesis proposes an overall theme that a critical
path towards achieving reliable obfuscation is layered security, and
we make several contributions on promoting the idea. The thesis is
a rethinking of the dilemma faced by software obfuscation, and we
hope it can inspire more discussions and facilitate the development
of the area.

ii

論文題目 ：軟件混淆的分層安全方法

作者 ：徐輝

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位 ：哲學博士

摘要 ：

 軟件混淆技術是保護軟件知識產權的重要方法，可對攻

擊者在用戶端的發起的逆向攻擊起到壹定的防禦作用。它的

工作原理是將目標代碼變換為另外壹種難以理解的版本，並

且保證語意層面等價。但是，實際可用的軟件混淆技術並不

能像其它安全技術（如密碼）壹樣有嚴格的安全保證。本論

文研究分層混淆的方法。我們的方法認為每種混淆技術應該

面向特定的安全風險，而不是解決所有問題。壹個軟件混淆

方案應當集成不同層面的代碼混淆技術來增強混淆軟件的安

全性。

本論文包括兩個主要部分。第壹部分介紹分層混淆的理

念並且將現有的混淆技術和知識進行歸類。為了輔助開發者

設計分層混淆方案和選取合適的混淆技術，我們建立了壹套

完整的代碼混淆技術生態系統。按照我們的生態系統架構，

不同分支下的混淆技術均為正交的。開發者可以根據需求選

取相應分支下的混淆技術並進行有效組合以達到好的分層混

iii

淆效果。

論文第二部分介紹了幾種新的混淆方法，從而豐富了現

有的混淆技術生態系統，為開發者設計分層混淆方案提供了

更多的技術選擇。第壹個攻擊模型與基於符號執行的攻擊者

有關。我們通過在混淆過程中引入程序分析難題來增強現有

混淆方法的安全性。第二個攻擊模型針對應用程序篡改。我

們的方法是在混淆過程中引入代碼多樣性來防止大規模攻擊

的發生。第三個模型面向深度學習軟件的剽竊。我們提出了

壹種通過模型仿真來混淆私有神經網酪的結構的技術。

綜上所述，本論文提出實現可靠軟件混淆的壹個重要途

徑是分層安全，並且對促進該理念的發展做出了壹些貢獻。

本論文重新思考了軟件混淆技術發展所面臨困境。我們希望

它可以啟發更多討論並最終促進該領域的發展。

iv

Acknowledgement

I feel highly privileged to express my gratitude to a number of people
who helped me in finishing this thesis.

First and foremost, I would like to thank my supervisor, Prof.
Michael R. Lyu, who made it possible for me to pursue my Ph.D.
study at CUHK and led me into the world of scientific research.
Prof. Lyu gave me the most freedom in choosing research topics and
exploring research ideas. He provided me with adequate resources
for research and guided me with his experiences and broad horizons.
He has been very kind and very generous in encouraging me when
I achieved small progress. I feel very fortunate to join his research
lab, and I think I have learned a lot on this wonderful journey. I am
sure that these lessons will be beneficial for my whole life.

I am grateful to my thesis assessment committee members,
Prof. Qiang Xu and Prof. Pak Ching Lee, for their constructive
comments and valuable suggestions to this thesis and all my term
reports. Great thanks to Prof. Jiannong Cao from Hong Kong
Polytechnic University who kindly served as the external examiner
for this thesis.

I thank my coauthors who contribute a lot to my research
projects, including Dr. Yangfan Zhou, Dr. Yu Kang, Yuxin Su,
Cuiyun Gao, Zirui Zhao, and Fengzhi Tu. I enjoy the collaboration
with them. When I first joined this lab, Dr. Yangfan Zhou and Dr.
Yu Kang often worked closely with me until midnight. They helped
me a lot in finding valuable research topics, developing systematic
research ideas, and writing logical papers. I thank their valuable

v

guidance and contribution to the research work in this thesis.
I would also like to thank my friends in Room 101, Jieming Zhu,

Pinjia He, Junjie Hu, Jichuan Zeng, Jian Li, Shilin He, Pengpeng
Liu, Yue Wang, Weibin Wu, and Zhuangbin Chen, whose spirits of
pursuing top research encouraged me.

Last but not least, I would like to thank my parents and my wife.
Without their deep love and constant support, this thesis would never
have been completed.

vi

To my family.

vii

Contents

Abstract i

Acknowledgement v

1 Introduction 1
1.1 Rationale . 1

1.1.1 Critical Challenge of Obfuscation 2
1.1.2 Layered Security for Obfuscation 3

1.2 Summary of Contributions 5
1.3 Thesis Organization 7

2 Taxonomy of Obfuscation Techniques 9
2.1 Rationale . 9
2.2 Motivating Examples 10

2.2.1 Obfuscating Mobile Apps 10
2.2.2 Obfuscating JavaScript Programs 12

2.3 Our Study Approach 12
2.3.1 Survey Scope 13
2.3.2 Survey Approach 14

2.4 Code-Element-Layer Obfuscation 15
2.4.1 Obfuscating Layout 15
2.4.2 Obfuscating Controls 17
2.4.3 Obfuscating Data 24
2.4.4 Obfuscating Methods 26
2.4.5 Obfuscating Classes 27

viii

2.5 Software-Component-Layer Obfuscation 28
2.5.1 Code Translation 28
2.5.2 Decompilation Prevention 28
2.5.3 Code Diversification 29

2.6 Cross-Component-Layer Obfuscation 30
2.7 Application-Layer Obfuscation 31

2.7.1 Obfuscating DRM Systems 31
2.7.2 Obfuscating Neural Networks 32

2.8 Threats to Validity 32
2.8.1 Practical Obfuscation Techniques 33
2.8.2 Theoretical Obfuscation Research 33
2.8.3 Other Supportive Work 38

2.9 Related Work . 38
2.10 Conclusions . 39

3 Symbolic Opaque Predicates 40
3.1 Rationale . 40
3.2 Motivation . 43

3.2.1 Motivating Examples 43
3.2.2 Adversary Model 45

3.3 Preliminary Knowledge about Symbolic Execution . 46
3.3.1 Theoretical Basis 46
3.3.2 Symbolic Execution Framework 47
3.3.3 Implementation Variations 49

3.4 Challenges of Symbolic Execution 49
3.4.1 Symbolic-Reasoning Challenges 50
3.4.2 Path-Explosion Challenges 58

3.5 Benchmarking Symbolic Execution Tools 61
3.5.1 Objective and Challenges 61
3.5.2 Approach based on Logic Bombs 63
3.5.3 Automated Benchmarking Framework 66
3.5.4 Benchmarking Results 67

3.6 Designing Bi-Opaque Predicates 76

ix

3.6.1 Idea in a Nutshell 76
3.6.2 Bi-Opaque Property 77
3.6.3 Demonstration 78
3.6.4 Template Generalization 79
3.6.5 Template Enrichment 80

3.7 Performance Evaluation 83
3.7.1 Evaluation Criteria 83
3.7.2 Prototype Implementation 83
3.7.3 Stealth . 85
3.7.4 Cost . 87

3.8 Related Work . 90
3.8.1 Symbolic Execution for Deobfuscation . . . 90
3.8.2 Comparison with Existing Opaque Predicates 91

3.9 Conclusion . 92

4 N-Version Obfuscation 93
4.1 Rationale . 93
4.2 Motivation and Background 95

4.2.1 Adversary Model 95
4.2.2 Tampering-Resilience Background 97
4.2.3 Challenge of Tampering-Resilient Apps . . . 99

4.3 Our Proposed Approach 100
4.3.1 General Idea of NVO 101
4.3.2 Our Candidate Solution 102
4.3.3 Approach Discussion 110

4.4 Evaluation . 112
4.4.1 Security Effectiveness 112
4.4.2 Security Strength 114
4.4.3 Overhead 115

4.5 Related Work . 116
4.6 Conclusion . 117

x

5 DeepObfuscation 119
5.1 Rationale . 119
5.2 Preliminary . 123

5.2.1 CNN Basis 124
5.2.2 Modern CNNs 126

5.3 Attack Model . 127
5.4 Deep Learning Obfuscation 130

5.4.1 Definition 130
5.4.2 Performance Metrics 130

5.5 Structural Obfuscation Approach 132
5.5.1 Basic Idea 132
5.5.2 Obfuscation Framework 134
5.5.3 Design of Simulation Networks 136

5.6 Evaluation . 139
5.6.1 Experimental Setting 139
5.6.2 Steps of Obfuscation 140
5.6.3 Performance of Obfuscated Models 143
5.6.4 Fine-tuning Ability 148
5.6.5 Discussion 149

5.7 Comparison with Model Compression 151
5.8 Related Work . 153
5.9 Conclusion . 153

6 Related Work 155

7 Conclusion and Future Work 157
7.1 Summary of Thesis 157
7.2 Future Work . 158

A Publications Related to the Thesis 159

Bibliography 161

xi

List of Figures

1.1 The components of Android apps. 3

2.1 Motivating examples for layered obfuscation. 11
2.2 The taxonomy of software obfuscation techniques. . 13
2.3 Control-flow obfuscation with opaque predicates. . . 18
2.4 Control-flow flattening example. 22
2.5 Converting a program to a randomized matrix branch-

ing program. 34

3.1 Example of vulnerable opaque predicate. 43
3.2 Opaque predicate generated by Obfuscator-LLVM. . 44
3.3 Opaque predicate detection based on symbolic exe-

cution techniques. 45
3.4 Conceptual framework for symbolic execution. . . . 48
3.5 Sample logic bombs with symbolic-reasoning chal-

lenges: part I. 51
3.6 Sample logic bombs with symbolic-reasoning chal-

lenges: part II. 55
3.7 Sample bomb samples with path-explosion challenges. 59
3.8 Dataset of logic bombs and the challenge propaga-

tion relationships among them. 64
3.9 Framework to benchmark symbolic execution tools. . 66
3.10 Example of exception handling (division by zero). . . 72
3.11 Example of the stack layout for array. 73
3.12 Framework for composing opaque predicates. 75
3.13 Bi-opaque predicate examples. 76

xii

3.14 Prototype implementation based on Obfuscator-LLVM. 84
3.15 The assembly codes of symbolic opaque predicates. . 85
3.16 Comparing the stealth of symbolic opaque predi-

cates with ordinary predicates. 85
3.17 Cost of symbolic opaque predicates. 88

4.1 Example of disassembling Android apk. 96
4.2 Example of dynamic injection. 98
4.3 Conceptual framework of NVO. 101
4.4 Sample of NVO for tampering-resilient apps. 103
4.5 Activity diagram to automate the process of safe-

guard delivery and initialization. 104
4.6 Locating the genes with IDA. 108
4.7 Example of obfuscation for switch/case. 109

5.1 A sample of real-world requirement for neural net-
works obfuscation solutions from an Internet forum. . 120

5.2 Toy example of convolutional neural networks. . . . 124
5.3 Examples of inception blocks. 125
5.4 Our assumed attack scenario. 127
5.5 Effects of parameter piracy via fine-tuning. 128
5.6 Joint-training approach to simulate the feature ex-

tractor. 132
5.7 Framework to obfuscate CNN models. 134
5.8 Procedure to obfuscate GoogLeNet. 141
5.9 Procedure to obfuscate ResNet. 142
5.10 Procedure to obfuscate DenseNet. 142
5.11 Experimental results for obfuscating GoogLeNet. . . 143
5.12 Experimental results for obfuscating ResNet. 144
5.13 Experimental results for obfuscating DenseNet. . . . 145
5.14 Evaluation results for fine-tuning GoogLeNet. 146
5.15 Evaluation results for fine-tuning ResNet. 146
5.16 Evaluation results for fine-tuning DenseNet. 147

xiii

List of Tables

3.1 List of challenges faced by symbolic execution. . . . 50
3.2 Benchmarking results of symbolic execution tools. . 70
3.3 Categorization of Instructions. 86

4.1 Comparison of NVP and NVO. 111

5.1 Performance of obfuscated models. The overhead is
computed as cost2/cost1 − 1. 147

5.2 Evaluation results of our obfuscated models using
ImageNet as the dataset. 148

5.3 Evaluation results of fine-tuning abilities. The dec-
lination is computed as 1− accuracy2/accuracy1. . 148

xiv

Chapter 1

Introduction

This thesis presents our work towards obfuscating real-world soft-
ware with layered security. In this chapter, we discuss the motiva-
tions of our research and summarize the contributions we make.

1.1 Rationale

Sofware obfuscation transforms computer programs to new ver-
sions which are semantically equivalent with the original ones but
much harder to understand [40]. It is a technique which protects
software intellectual properties against MATE (Man-At-The-End)
attacks [39]. The concept was originally introduced at the In-
ternational Obfuscated C Code Contest in 1984, which awarded
creative C source codes with “smelly styles”. Later in 1997, Coll-
berg et al. [40] published a milestone paper discussing the taxonomy
of obfuscation transformations for Java programs. Since then,
the technique has become indispensable for software protection.
There are many practical obfuscation approaches developed, such
as lexical obfuscation with ProGuard1 and control-flow obfuscation
with Obfuscator-LLVM [93].

1https://www.guardsquare.com/en/products/proguard

1

CHAPTER 1. INTRODUCTION 2

1.1.1 Critical Challenge of Obfuscation

Although obfuscation has been developed for over 30 years, the
questions yet unsolved are how much developers can trust the
technique and how to design reliable obfuscation solutions. Such
issues are very critical because obfuscation is a security primitive.
To tackle these questions, we have surveyed the literature of both
theoretical and practical obfuscation research.

From the theoretical perspective, many discussions (e.g., [12,
71, 109, 201] on this problem have arisen in recent years. The
representative ones include the negative result showed by Barak
et al. [12] that we cannot obfuscate all program with black-box
security, and the positive result presented by Garg et al. [71] that
graded encoding is a promising obfuscation algorithm for achieving
a weaker security notion: indistinguishability. However, we cannot
apply these results to practical software obfuscation directly because
there are obvious gaps in between. Note that such theoretical
research focuses on obfuscating computation models (e.g., circuits
or Turing Machines) instead of real codes. While computation
models are mathematical and their properties are usually provable,
real codes are more complicated and their properties are hard to
prove. In practice, we generally program software with high-
level programming languages which cannot be reduced to pure
mathematical representations easily.

From the practical area, we attempt to find some clues for
designing reliable obfuscation solutions. We find that present
obfuscation research generally assumes a specific code format (e.g.,
Java bytecodes or assembly codes) for obfuscation. However, real-
world software can be more complicated than that. For instance,
an Android app (Figure 1.1) contains several different components,
such as Java codes, native codes, third-party libraries, and other re-
sources. Securely obfuscating the whole app with only one approach
is nearly impossible. Moreover, merely applying some obfuscation

CHAPTER 1. INTRODUCTION 3

Figure 1.1: The components of Android apps.

techniques in an ad-hoc way can achieve very limited obscurity
because it lacks a holistic design. In particular, the remaining
unobfuscated information could jeopardize the obfuscated software.
For instance, the lexical obfuscation approach provided by ProGuard
transforms identifiers of Android apps to meaningless alphabets or
strings, which seems one-way secure. But a recent attack [18]
shows that attackers can recover a significant portion of the original
lexical information leveraging the residual information within the
obfuscated apps.

We conjecture that achieving reliable obfuscation is challenging
mainly due to the complicated nature of software, and we believe a
promising way to handle the challenge is applying the classic idea
of layered security to software obfuscation. Next, we elaborate on
the idea of obfuscation with layered security.

1.1.2 Layered Security for Obfuscation

Layered security is an effective risk management strategy. It
mitigates the risks that a threat becomes a reality with several
protections from different layers or of various types. The idea has
become prevalent for securing information systems after it has been
introduced by the Department of Defense in IATF (Information

CHAPTER 1. INTRODUCTION 4

Assurance Technical Framework2). Because information systems
are very complicated, there is no silver bullet for avoiding all
risks, and layered security is the best practice. In the first level,
IATF divides information systems into four areas or layers, which
are local computing environment, enclave boundaries, network
and infrastructures, and supporting infrastructures. Each of these
layers faces a specific group of threats and should be protected
correspondingly. Take the area of network and infrastructure as
an example, administrators can employ firewalls to deter denial-
of-service attacks from the internet, and they can use the SSL/TLS
(Secure Socket Layer/Transport Layer Security) gateways [143] to
encrypt the traffics from being eavesdropped. The layered security
idea integrates different security mechanisms as a whole to protect
the security of a system.

Although the software is not as complicated as information
systems, its complexity is beyond the capability of any single
obfuscation technique. Therefore, we believe employing the idea of
layered security for software obfuscation should be a promising way,
namely layered obfuscation. Different from mainstream obfuscation
research which treats software as simple codes, we think practical
obfuscation should be based on risk management and should inte-
grate several obfuscation techniques to mitigate different risks.

In practice, layered security has already been employed in pro-
tecting real-world digital assets and systems, such as digital water-
marking [13] and cloud [190]. Yet, the idea is still very preliminary
for software obfuscation. Although some practical obfuscation tools
(e.g., DexGuard3 and DexProtector4) already support multiple ob-
fuscation techniques, they do not provide a systematic way regarding
how to integrate them concerning layered security.

2http://www.dtic.mil/docs/citations/ADA606355
3https://www.guardsquare.com/dexguard
4https://dexprotector.com/

CHAPTER 1. INTRODUCTION 5

1.2 Summary of Contributions

This thesis aims to help developers to design obfuscation solu-
tions with layered security. We make contributions on two folds.
Firstly, we develop a novel taxonomy of obfuscation techniques
which can assist developers in choosing and integrating obfuscation
techniques. Secondly, we enrich the taxonomy with three new
obfuscation techniques which provide developers with more options
for designing better obfuscation solutions. We discuss more details
as follows.

1. Obfuscation taxonomy for layered security
When designing layered obfuscation solutions, developers should
know present obfuscation techniques as well. Such knowledge
is essential for them to choose appropriate techniques and to
integrate them efficiently. To meet this need, we develop a tax-
onomy of obfuscation techniques concerning layered security
and systematically analyze the feature of each technique. In
the first level of the taxonomy, we categorize obfuscation tech-
niques into four layers based on the obfuscation targets, which
are the code-element layer, software-component layer, cross-
component layer, and application layer. In the second level,
each layer forks into several sub-categories if the obfuscation
targets can be further classified. For example, the code-element
layer contains data and controls, which are two sub-categories
and require different obfuscation techniques. The leaf nodes
of the taxonomy hierarchy are specific obfuscation approaches
for protecting corresponding targets.

2. Symbolic opaque predicates for control-flow obfuscation
Opaque predicates are essential gadgets for control-flow obfus-
cation. However, real-world opaque predicates are vulnerable
to symbolic execution-based adversaries. To address this prob-
lem, we first conduct a systematic study on the challenges faced

CHAPTER 1. INTRODUCTION 6

by symbolic execution and propose a method to benchmark
symbolic execution tools in handling these challenges. With
the benchmarking method, we have confirmed the prevalence
of the challenges with several popular symbolic execution
engines (e.g., KLEE [26], Triton [148], and angr [158]). Next,
we propose a framework to compose opaque predicates lever-
aging these challenges. In this way, the opaque predicates
can be resilient to symbolic execution-based attacks. A novel
characteristic of such opaque predicates is the bi-opaque prop-
erty, which incurs not only false negative issues but also false
positive issues to attackers. We have implemented a prototype
obfuscation tool based on Obfuscator-LLVM and verified the
effectiveness of our approach.

3. N-version obfuscation for tampering-resilience
Nowadays, software tampering attack remains a critical secu-
rity threat to software systems. None of the existing mech-
anisms can achieve theoretically tampering-proof without the
assistance of trusted hardware. Instead of proposing new
tricks against software tampering attacks, N-version obfusca-
tion (NVO) focuses on impeding the replication of tampered
software via program diversification. In this way, it can pose
a barrier to attackers when they are launching large-scale
attacks. This thesis presents a systematic design of a candidate
NVO solution for networked apps, which leverages a message
authentication code (MAC) mechanism to generate diversities
and enforce security features. Our evaluation results show that
the time required for breaking such a software system increases
linearly to the number of software versions. In this way, attack-
ers would suffer great scalability issues, considering that an app
can have millions of users, each using a different version. With
minimal NVO costs, effective tampering-resistant security can
therefore be established.

CHAPTER 1. INTRODUCTION 7

4. Obfuscating deep neural networks
We investigate the piracy issue faced by deep learning soft-
ware. Designing and training a well-performing model is
generally expensive. However, when releasing them, attack-
ers may reverse engineer the models and pirate their design.
We propose deep learning obfuscation, aiming at obstructing
attackers from pirating a deep learning model. In particu-
lar, we present our work on obfuscating convolutional neural
networks (CNN). Our approach obfuscates a CNN model by
simulating its feature extractor with a shallow and sequential
convolutional block. We have verified the feasibility of our
approach with three prevalent CNNs, i.e., GoogLeNet, ResNet,
and DenseNet. Although these networks are very deep with
tens or hundreds of layers, we can simulate them with a shallow
network containing only five or seven convolutional layers.
The obfuscated models suffer no accuracy loss and are even
more efficient than the original models.

1.3 Thesis Organization

We organize the rest of the thesis as follows:

• Chapter 2 elaborates on layered obfuscation and discusses the
taxonomy of obfuscation techniques.

• Chapter 3 discusses the threats of symbolic execution to control-
flow obfuscation and presents our idea to design symbolic
opaque predicates.

• Chapter 4 introduces the software-tampering threats faced by
mobile apps and presents our N-version obfuscation approach.

• Chapter 5 discusses the piracy issues faced by deep learning
software and presents our simulation-based approach for ob-
fuscating deep learning models.

CHAPTER 1. INTRODUCTION 8

• Chapter 6 presents related work and discusses the novelty of
this thesis.

• Chapter 7 concludes this thesis and discusses our future work.

2 End of chapter.

Chapter 2

Taxonomy of Obfuscation
Techniques

This chapter systematizes the knowledge of present obfuscation
techniques for layered security. It aims to assist developers in
choosing appropriate obfuscation techniques when designing lay-
ered obfuscation solutions in practice.

2.1 Rationale

Software obfuscation has been developed for over 30 years. A
problem always confusing the communities is what security strength
the technique can achieve. Nowadays, this problem becomes even
harder as the software economy becomes more diversified. Inspired
by the classic idea of layered security for risk management, we
propose layered obfuscation as a promising way to realize reliable
software obfuscation. Our concept is based on the fact that real-
world software is usually complicated. Merely applying one or
several obfuscation approaches in an ad-hoc way cannot achieve
good obscurity. Layered obfuscation, on the other hand, aims to
mitigate the risks of reverse software engineering by integrating
different obfuscation techniques as a whole solution.

In this chapter, we demonstrate the idea of layered obfuscation
and develop a taxonomy of obfuscation techniques to promote the

9

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 10

idea. Following our taxonomy hierarchy, the obfuscation strategies
under different branches are orthogonal to each other. In this
way, it can assist developers in choosing obfuscation techniques
and designing layered obfuscation solutions based on their specific
requirements.

2.2 Motivating Examples

In this section, we discuss the obfuscation requirements of real-
world software. We choose two prevalent types of software as our
motivating examples, i.e., mobile apps in client-server mode and
JavaScript programs in browser-server mode.

2.2.1 Obfuscating Mobile Apps

We choose RSA SecureID Software Token1 as a sample Android
app to discuss the requirements of obfuscation. Figure 2.1(a)
demonstrates the components of the app installation package. Its
major component is classes.dex which contains all Java classes
coded by developers. It implements user interfaces (UI) based on the
APIs of Android framework and JDK. Other UI-related materials
(e.g., layout, images, and texts) are mainly within the folder of
res. Since native codes are advantageous over Java bytecodes when
implementing some features, the app also employs native codes
which are within the folder of lib. Besides, there is a manifest
file and other folders to store particular data, such as licenses and
fonts.

Because the main feature of the app is to generate one-time
passwords, the corresponding password generation codes and seeds
should be most critical for protection. However, current mainstream
obfuscation techniques (e.g., lexical obfuscation and control-flow
obfuscation) mainly focuses on general codes, such as Java codes or

1https://play.google.com/store/apps/details?id=com.rsa.securidapp&hl=en US

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 11

(a) The components of a sample Android app,
RSA SecureID Software Token.

Type URL

html https://magenta.tensorflow.org/demos/performance_rnn/index.html

css https://fonts.googleapis.com/css?family=Roboto:300,400,500,700

css https://www.gstatic.com/external_hosted/.../mdl_css-indigo-blue-bundle.css

javascript https://www.google.com/js/gweb/analytics/autotrack.js

png https://storage.googleapis.com/.../magenta-logo-bottom-text2.png

javascript https://storage.googleapis.com/.../performance_rnn/bundle.js

javascript https://ssl.google-analytics.com/ga.js

woff2 https://fonts.gstatic.com/s/roboto/v18/KFOmCnqEu92Fr1Mu4mxK.woff2

woff2 https://fonts.gstatic.com/s/roboto/v18/KFOlCnqEu92Fr1MmWUlfBBc4.woff2

woff2 https://fonts.gstatic.com/s/roboto/v18/KFOlCnqEu92Fr1MmEU9fBBc4.woff2

mp3 https://storage.googleapis.com/.../demos/SalamanderPiano/A0v1.mp3

mp3 https://storage.googleapis.com/.../demos/SalamanderPiano/C1v1.mp3

…

json https://storage.googleapis.com/.../models/performance_rnn/dljs/manifest.json

binary https://storage.googleapis.com/.../models/performance_rnn/dljs/fully_connected_biases

binary https://storage.googleapis.com/.../models/performance_rnn/dljs/fully_connected_weights

binary https://storage.googleapis.com/... /dljs/rnn_multi_rnn_cell_cell_0_basic_lstm_cell_bias

binary https://storage.googleapis.com/.../dljs/rnn_multi_rnn_cell_cell_0_basic_lstm_cell_kernel

(b) The components of a sample JavaScript application, Performance RNN.

Figure 2.1: Motivating examples for layered obfuscation.

native codes. While these approaches can make the app unreadable
in some sense, it is hard to evaluate the resilience of the obfuscated
codes to particular reverse-engineering attacks, such as stealing the
seeds. We think a promising way to tackle the problem should
be based on risk management. If all the risks can be properly
mitigated, developers should be confident about the obfuscation
solution. Because a risk may exist in any components of the pack-
age, the obfuscation solution should integrate different techniques to
mitigate corresponding risks.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 12

2.2.2 Obfuscating JavaScript Programs

Our JavaScript example is Performance RNN2 , which is a web ap-
plication that can play piano automatically based on recurrent neural
networks (RNN) implemented with tensorflow.js. Figure 2.1(b)
demonstrates the components of the web retrieved by a browser
to launch the application. Similar to Android apps, these com-
ponents are heterogeneous. It contains a primary HTML file
(index.html) as the web entry, a CSS file and related pictures
defining the appearance, and a JavaScript file (bundle.js) which
implements the deep learning algorithms. Besides, there are several
binary files that define an RNN model, and dozens of mp3 files to
play each note of a piano.

According to the feature of the application, we infer that the
key assets of the program should be the RNN model and related
algorithms. Therefore, a competent obfuscation solution should at
least obfuscate the model files and bundle.js. It may further
randomize the names of the mp3 files to confuse reverse engineers.
However, a better way to obfuscate the application should be based
on risk analysis and risk mitigation.

In brief, these two examples demonstrate that practical obfus-
cation requirements are usually complicated. They also explain
why obfuscation cannot be as secure as other security primitives.
Furthermore, it indicates that layered security should be a promising
way of obfuscating real-world software.

2.3 Our Study Approach

When designing layered obfuscation solutions for specific applica-
tions, developers should be knowledgeable about available obfus-
cation techniques. To meet this need, we develop a taxonomy of
obfuscation techniques and survey present obfuscation techniques

2https://magenta.tensorflow.org/performance-rnn-browser

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 13

Figure 2.2: The taxonomy of software obfuscation techniques.

under the taxonomy framework. Because we aim to promote the
idea of layered security in software obfuscation, the taxonomy
developed in this chapter is different from previous ones.

2.3.1 Survey Scope

This work considers all obfuscation techniques that can be adopted
at the developers’ side, including those obfuscation transformations
for source codes, bytecodes, and assembly codes. We do not discuss
other obfuscation techniques that require modifying hardware or
computing systems, such as address space randomization [17] and
instruction set randomization [14].

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 14

2.3.2 Survey Approach

Figure 2.2 overviews our proposed obfuscation taxonomy. In the
first level, we categorize present obfuscation techniques into four
layers according to their obfuscation targets. The first layer is code-
element layer which obfuscates particular elements of code snippets,
including the layouts, controls, data, functions, and classes. The
second layer is software-component layer which targets on an entire
software component, such as a Java library or an ELF (executable
file format) file. The third layer is cross-component layer which
focuses on the interfaces (e.g., JNI) among different components of a
software package. Besides, there are unique obfuscation techniques
proposed for specific applications, denoted as application layer.
A famous example of such obfuscation techniques is white-box
encryption for DRM (digital right management) systems [36]. In
the second level of the taxonomy, we fork each layer into several
sub-categories if the obfuscation targets can be further classified in
a fine-grained manner. Finally, the leaf nodes of the taxonomy hi-
erarchy are various obfuscation strategies for particular obfuscation
targets.

In our taxonomy, the obfuscation strategies under different branches
are orthogonal to each other. Therefore, it can assist developers in
locating appropriate strategies based on the characteristics of the
target software. Then they can choose a combination of several
obfuscation techniques by further considering their performance,
such as cost, potency, and resilience.

Note that our taxonomy is different from previous work (e.g., [40,
151]) as the taxonomy is target-oriented by considering software
packages composed of heterogeneous components.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 15

2.4 Code-Element-Layer Obfuscation

This section discusses the obfuscation techniques for specific code
elements. This layer covers most of the publications in software
obfuscation area. According to what elements an obfuscation
technique targets, we divide this category into five sub-categories:
obfuscating layouts, obfuscating controls, obfuscating data, obfus-
cating functions, and obfuscating classes.

2.4.1 Obfuscating Layout

Layout obfuscation scrambles the layout of codes or instructions
while keeping the original syntax intact. This section discusses
four layout obfuscation strategies: meaningless classifiers, stripping
redundant symbols, separating related codes, and junk codes.

Meaningless Identifiers

This approach is also known as lexical obfuscation which transforms
meaningful identifiers to meaningless ones. For most programming
languages, adopting meaningful and uniform naming rules (e.g.,
Hungarian Notation [160]) is required as a good programming
practice. Although such names are specified in source codes, some
would remain in the released software by default. For example,
the names of global variables and functions in C/C++ are kept in
binaries, and all names of Java are reserved in bytecodes. Because
such meaningful names can facilitate adversarial program analysis,
we should scramble them. To make the obfuscated identifiers
more confusing, Chan et al. [30] proposed to deliberately employ
the same names for objects of different types or within different
domains. Such approaches have been adopted by ProGuard as a
default obfuscation scheme for Java programs.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 16

Stripping Redundant Symbols

This strategy strips redundant symbolic information from released
software, such as the debug information for most propgrams [114].
Besides, there are other redundant symbols for particular formats
of programs. For example, ELF files contain symbol tables which
record the pairs of identifiers and addresses. When adopting default
compilation options to compile C/C++ programs, such as using
LLVM [106], the generated binaries contain such symbol tables.
To remove such redundant information, developers can employ the
strip tool of Linux. Another example with redundant information
is Android smali codes. By default, the generated smali codes
contain information started with .line and .source, which can
be removed for obfuscation purposes [47].

Separating Related Codes

A program is more easy to read if its logically related codes are
also physically close [40]. Therefore, separating related codes or
instructions can increase the difficulties in reading. It is applicable
to both source codes (e.g., reordering variables [114]) and assembly
codes (e.g., reordering instructions [178]). In practice, employing
unconditional jumps to rewrite a program is a popular approach
to achieve this. For example, developers can shuffle the assembly
codes and then employ goto to reconstruct the original control
flow [192]. This approach is popular for assembly codes and Java
bytecodes with the availability of goto instructions [47].

Junk Codes

This strategy adds junk instructions which are not functional. For
binaries, we can add no-operation instructions (NOP or 0x00) [47,
119]. Besides, we can also add junk methods, such as adding
defunct methods in Android smali codes [47]. The junk codes can

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 17

typically change the signatures of the codes, and therefore escape
static pattern recognition.

Because layout obfuscation does not tamper with the origi-
nal code syntax, it is less prone to compatibility issues or bugs.
Therefore, such techniques are the most favorite ones in practice.
Moreover, the techniques of meaningless identifiers and stripping
redundant symbols can reduce the size of programs, which further
make them attractive. However, the potency of the layout obfusca-
tion is limited. It is resilient to deobfuscation attacks because some
transformations are one-way, which cannot be reversed. However,
some layout information can hardly be changed, such as the method
identifiers from Java SDK. Such residual information is essential
for adversaries to recover the obfuscated information. For example,
Bichsel et al. [18] tried to deobfuscated ProGuard-obfuscated apps,
and they successfully recovered around 80% names.

2.4.2 Obfuscating Controls

Control obfuscation transforms the controls of codes to increase the
program complexity. This can be achieved via bogus control flows,
probabilistic control flows, dispatcher-based controls, and implicit
controls.

Bogus Control Flows

Bogus control flows refer to the control flows that are deliberately
added to a program but will never be executed. It can increase
the complexity of a program, e.g., in McCabe complexity [121] or
Harrison metrics [82]. For example, McCabe complexity [121] is
calculated as the number of edges on a control-flow graph minus
the number of nodes, and then plus two times of the connected
components. To increase the McCabe complexity, we can either
introduce new edges or add both new edges and nodes to a connected
component.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 18

(a) Opaque constant. (b) Collatz conjecture.

(c) Dynamic opaque predicate.

Figure 2.3: Control-flow obfuscation with opaque predicates.

To guarantee the unreachability of bogus control flows, Coll-
berg et al. [40] suggested employing opaque predicates. They
defined opaque predict as the predicate whose outcome is known
during obfuscation time but is difficult to deduce by static program
analysis. In general, an opaque predicate can be constantly true
(P T), constantly false (P F), or context-dependent (P ?). There
are three methods to create opaque predicates: numerical schemes,
programming schemes, and contextual schemes.

Numerical Schemes
Numerical schemes compose opaque predicates with mathemati-

cal expressions. For example, 7x2− 1 6= y2 is constantly true for all
integers x and y. We can directly employ such opaque predicates
to introduce bogus control flows. Figure 2.3(a) demonstrates an

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 19

example, in which the opaque predicate guarantees that the bogus
control flow (i.e., the else branch) will not be executed. However,
attackers would have higher chances to detect them if we employ
the same opaque predicates frequently in an obfuscated program.
Arboit [3], therefore, proposed to generate a family of such opaque
predicates automatically, such that an obfuscator can choose a
unique opaque predicate each time.

Another mathematical approach with higher security is to employ
crypto functions, such as hash function H [156], and homomorphic
encryption [198]. For example, we can substitute a predicate x == c
withH(x) == chash to hide the solution of x for this equation. Note
that such an approach is generally employed by malware to evade
dynamic program analysis. We may also employ crypto functions to
encrypt equations which cannot be satisfied. However, such opaque
predicates incur much overhead.

To compose opaque constants resistant to static analysis, Moser
et al. [123] suggested employing 3-SAT problems, which are NP-
hard. This is possible because one can have efficient algorithms to
compose such hard problems [153]. For example, Tiella and Cec-
cato [166] demonstrated how to compose such opaque predicates
with k-clique problems.

To compose opaque constants resistant to dynamic analysis,
Wang et al. [176] proposed to compose opaque predicates with
a form of unsolved conjectures which loop for many times. Be-
cause loops are challenging for dynamic analysis, the approach
in nature should be resistant to dynamic analysis. Examples of
such conjectures include Collatz conjecture, 5x + 1 conjecture,
Matthews conjecture. Figure 2.3(b) demonstrates how to employ
Collatz conjecture to introduce bogus control flows. No matter
how we initialize x, the program terminates with x = 1, and
originalCodes() can always be executed.

Programming Schemes
Because adversarial program analysis is a major threat to opaque

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 20

predicates, we can employ challenging program analysis problems
to compose opaque predicates. Collberg et al. suggested two classic
problems, pointer analysis and concurrent programs.

In general, pointer analysis refers to determining whether two
pointers can or may point to the same address. Some pointer
analysis problems can be NP-hard for static analysis or even un-
decidable [102]. Another advantage is that pointer operations are
very efficient during execution. Therefore, developers can compose
resilient and efficient opaque predicts with well-designed pointer
analysis problems, such as maintaining pointers to some objects with
dynamic data structures [42].

Concurrent programs or parallel programs is another challenging
issue. In general, a parallel region of n statements has n! different
ways of execution. The execution is not only determined by
the program, but also by the runtime status of a host computer.
Collberg et al. [42] proposed to employ concurrent programs to
enhance the pointer-based approach by concurrently updating the
pointers. Majumdar et al. [117] proposed to employ distributed
parallel programs to compose opaque predicates.

Besides, some approaches compose opaque predicates with pro-
gramming tricks, such as leveraging exception handling mecha-
nisms. For example, Dolz and Parra [53] proposed to use the
try/catch mechanism to compose opaque predicates for .Net
and Java. The exception events include division by zero, null
pointer, index out of range, or even particular hardware excep-
tions [32]. The original program semantics can be achieved via
tailored exception handling schemes. However, such opaque pred-
icates have no security basis, and they are vulnerable to advanced
handmade attacks.

Contextual Schemes
Contextual schemes can be employed to compose variant opaque

predicates(i.e., {P ?}). The predicates should hold some deter-
ministic properties such that they can be employed to obfuscate

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 21

programs. For example, Drape [56] proposed to compose such
opaque predicates which are invariant under a contextual constraint,
e.g., the opaque predicate x mod 3 == 1 is constantly true if
x mod 3 : 1 ? x++ : x = x + 3. Palsberg et al. [128] proposed
dynamic opaque predicates, which include a sequence of correlated
predicates. The evaluation result of each predicate may vary in each
run. However, as long as the predicates are correlated, the program
behavior is deterministic. Figure 2.3(c) demonstrates an example of
dynamic opaque predicates. No matter how we initialize *p and *q,
the program is equivalent to y = x+ 3, x = y + 3.

The resistance of bogus control flows mostly depends on the
security of opaque predicates. An ideal security property for opaque
predicates is that they require worst-case exponential time to break
but only polynomial time to construct. Note that some opaque
predicates are designed with such security concerns but may be im-
plemented with flaws. For example, the 3-SAT problems proposed
by Ogiso et al. [127] are based on trivial problem settings which
can be easily simplified. If such opaque predicates are implemented
properly, they would be promising to be resilient.

Probabilistic Control Flows

Bogus control flows can make troubles to static program analysis.
However, they are vulnerable to dynamic program analysis because
the bogus control flows are inactive. The idea of probabilistic
control flows adopts a different strategy to tackle the threat [132]. It
introduces replications of control flows with the same semantics but
different syntax. When receiving the same input several times, the
program can behave differently for different execution times. The
technique is also useful for combating side-channel attacks [44].

Note that the strategy of probabilistic control flows is similar to
bogus control flows with contextual opaque predicates. But they are
different in nature as contextual opaque predicates introduce dead
paths, although they do not introduce junk codes.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 22

(a) Source code. (b) Dismantling while.

(c) Using switch.

Figure 2.4: Control-flow flattening example.

Dispatcher-Based Controls

A dispatcher-based control determines the next blocks of codes to
be executed during runtime. Such controls are essential for control
obfuscation because they can hide the original control flows against
static program analysis.

One major dispatcher-based obfuscation approach is control-flow
flattening, which transforms codes of depth into shallow ones with
more complexity. Wang et al. [170] firstly proposed the approach.
Figure 2.4 demonstrates an example from their paper that transforms
a while loop into another form with switch-case. To realize
such transformation, the first step is to transform the code into
an equivalent representation with if-then-goto statements as
shown in Figure 2.4(b); then they modify the goto statements with

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 23

switch-case statements as shown in Figure 2.4(c). In this way,
the original program semantics is realized implicitly by controlling
the data flow of the switch variable. Because the execution order of
code blocks is determined by the variable dynamically, one cannot
know the control flows without executing the program. Cappaert
and Preneel [28] formalized control-flow flattening as employing a
dispatcher node (e.g., switch) that controls the next code block
to be executed; after executing a block, control is transferred back
to the dispatcher node. Besides, there are several enhancements to
code-flow flattening. For example, to enhance the resistance to static
program analysis on the switch variable, Wang et al. [169] proposed
to introduce pointer analysis problems. To further complicate the
program, Chow et al. [38] proposed to add bogus code blocks.

László and Kiss [105] proposed a control-flow flattening mecha-
nism to handle the controls of C++ programs, such as try/catch,
while/do, and continue. The mechanism is based on abstract
syntax tree and employs a fixed pattern of layout. For each
block of code to obfuscate, it constructs a while statement in
the outer loop and a switch-case compound inside the loop.
The switch/case compound implements the original program
semantics, and the switch variable is also employed to terminate
the outer loop. Cappaert and Preneel [28] found that the mechanisms
might be vulnerable to local analysis, i.e., the switch variable is
immediately assigned such that adversaries can infer the next block
to execute by only looking into a current block. They proposed
a strengthened approach with several tricks, such as employing
reference assignment (e.g., swV ar = swV ar + 1) instead of
direct assignment (e.g., swV ar = 3), replacing the assignment via
if/else with a uniform assignment expression, and employing
one-way functions in calculating the successor of a basic block.

Besides control-flow flattening, there are several other dispatcher-
based obfuscation investigations (e.g., [73, 113, 150, 193]). Linn and
Debray [113] proposed to obfuscate binaries with branch functions

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 24

that guide the execution based on the stack information. Similarly,
Zhang et al. [193] proposed to employ branch functions to obfuscate
object-oriented programs, which define a unified method invocation
style with an object pool. To enhance the security of such mech-
anisms, Ge et al. [73] proposed to hide the control information in
another standalone process and employ inter-process communica-
tions. Schrittwieser and Katzenbeisser [150] proposed to employ
diversified code blocks which implement the same semantics.

Dispatcher-based obfuscation is resistant against static analysis
because it hides the control-flow graph of a software program.
However, it is vulnerable to dynamic program analysis or hybrid
approaches. For example, Udupa et al. [168] proposed a hybrid
approach to reveal the hidden control flows with both static analysis
and dynamic analysis.

Implicit Controls

This strategy converts explicit control instructions to implicit ones.
It can hinder reverse engineers from addressing the correct control
flows. For example, we can replace the control instructions of
assembly codes (e.g., jmp and jne) with a combination of mov and
other instructions which implement the same control semantics [6].

Note that all existing control obfuscation approaches focus on
syntactic-level transformation, while the semantic-level protection
has rarely been discussed. Although they may demonstrate different
strengths of resistance to attacks, their obfuscation effectiveness
concerning semantic protection remains unclear.

2.4.3 Obfuscating Data

Present data obfuscation techniques focus on common data types,
such as integers, strings, and arrays. We can transform data via
splitting, merging, proceduralization, encoding, etc.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 25

Data Splitting/Merging

Data splitting distributes the information of one variable into several
new variables. For example, a boolean variable can be split into two
boolean variables, and performing logical operations on them can
get the original value.

Data merging, on the other hand, aggregates several variables
into one variable. Collberg et al. [41] demonstrated an example
that merges two 32-bit integers into one 64-bit integer. Ertaul
and Venkatesh [60] proposed another method that packs several
variables into one space with discrete logarithms.

Data Proceduralization

Data Proceduralization substitutes static data with procedure calls.
Collberg et al. [41] proposed to substitute strings with a function
which can produce all strings by specifying paticular parameter
values. Drape [55] proposed to encode numerical data with two
inverse functions f and g. To assign a value v to a variable i, we
assign it to an injected variable j as j = f(v). To use i, we invoke
g(j) instead.

Data Encoding

Data encoding encodes data with mathematical functions or ciphers.
Ertaul and Venkatesh [60] proposed to encode strings with Affine
ciphers (e.g., Caser cipher) and employ discrete logarithms to pack
words. Fukushima et al. [65] proposed to encode the clear numbers
with exclusive or operations and then decrypt the computation
result before output. Kovacheva [98] proposed to encrypt strings
with the RC4 cipher and then decrypt them during runtime.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 26

Array Transformation

Array is one most commonly employed data structure. To obfuscate
arrays, Collberg et al. [41] discussed several transformations, such
as splitting one array into several subarrays, merging several arrays
into one array, folding an array to increase its dimension, or flat-
tening an array to reduce the dimension. Ertaul and Venkatesh [60]
suggested transforming the array indices with composite functions.
Zhu et al. [199, 200] proposed to employ homomorphic encryption
for array transformation, including index change, folding, and flat-
tering. For example, we can shuffle the elements of an array with
i∗mmod n, where i is the original index, n is the size of the original
array, and m and n are relatively prime.

2.4.4 Obfuscating Methods

Method Inline/Outline

A method is an independent procedure that can be called by other
instructions of the program. Method inline replaces the original pro-
cedural call with the function body itself. Method outline operates
in the opposite way which extracts a sequence of instructions and
abstracts a method. They are good companies which can obfuscate
the original abstraction of procedures [40].

Method Clone

If a method is heavily invoked, we can create replications of the
method and randomly call one of them. To confuse adversarial inter-
pretation, each version of the replication should be unique somehow,
such as by adopting different obfuscation transformations [40] or
different signatures [59].

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 27

Method Aggregation/Scattering

The idea is similar to data obfuscation. We can aggregate irrelevant
methods into one method or scattering a method into several meth-
ods [40, 114].

Method Proxy

This approach creates proxy methods to confuse reverse engineer-
ing. For example, we can create the proxies as public static methods
with randomized identifiers. There can be several distinct proxies
for the same method [47]. The approach is extremely useful when
the method signatures cannot be changed [135].

2.4.5 Obfuscating Classes

Obfuscating classes shares some similar ideas with obfuscating
methods, such as splitting and clone [41]. However, since class only
exists in object-oriented programming languages, such as JAVA and
.NET, we discuss them as a unique category. Below we present the
major strategies for obfuscating classes.

Dropping Modifiers

Object-oriented programs contain modifiers (e.g., public, private) to
restrict the access to classes and members of classes. Dropping
modifiers removes such restrictions and make all members pub-
lic [135]. This approach can facilitate the implementation of other
class obfuscation methods.

Splitting/Coalescing Class

The idea of coalescing/splitting is to obfuscate the intent of devel-
opers when design the classes [162]. When coalescing classes, we
can transfer local variables or local instruction groups to another
class [66].

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 28

Class Hierarchy Flattening

Interface is a powerful tool for object-oriented programs. Similar
to method proxy, we can create proxies for classes with inter-
faces [162]. However, a more potent way is to break the original
inheritance relationship among classes with interfaces. By letting
each node of a subtree in the class hierarchy implementing the same
interface, we can flatten the hierarchy [63].

2.5 Software-Component-Layer Obfuscation

Now we present the obfuscation techniques which do not emphasize
particular code syntax or elements, including code translation, de-
compilation prevention, encoding instructions, and diversification.

2.5.1 Code Translation

Wang et al. [174] proposed translingual obfuscation, which in-
troduces obscurity by translating the programs written in C into
ProLog before compilation. Because ProLog adopts a different
program paradigm and execution model from C, the generated
binaries should become harder to understand. In an extreme case,
Domas [54] considered all high-level instructions should be ob-
fuscated. He proposed movobfuscation, which employs only one
instruction (i.e., mov) to compile the program. The idea is feasible
because mov is Turing complete [52].

2.5.2 Decompilation Prevention

Preventive obfuscation raises the bar for adversaries to obtain code
snippets in readable formats. It is generally designed for non-
scripting programming languages, such as C/C++ and Java. For
such software, a decompilation or disassembly phase is required to
translate machine codes (e.g., binaries) into human readable formats.

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 29

Preventive obfuscation, therefore, obstructs this decoding phase by
introducing decompilation errors.

Linn and Debray [113] proposed an anti-disassembly approach
for binaries. Their approach deters disassembling algorithms by
inserting uncompleted instructions after unconditional jumps. In this
way, the uncompleted instructions are unreachable as junk codes. If
a disassembler cannot handle such uncompleted instructions, they
will have troubles when separating instructions. This approach
can be further strengthened with some control obfuscation tech-
niques [134]. Chan and Yang [30] proposed several lexical tricks to
impede Java decompilation. The idea is to modify bytecodes directly
by employing reserved keywords to name variables and functions.
This is possible because only the frontend performs the validation
check of identifiers. The resulting modified program can still run
correctly, but it would cause troubles for decompilation tools.

Moreover, there are some encryption-based approaches which
can hide the real instructions from static analysis. A typical applica-
tion is the class encryption feature for Android apps [177]. By en-
crypting the classes.dex, this feature can hide the Java classes
from being decompiled by popular reverse engineering tools, such
as Apktool3 and dex2jar4. Besides, encryption-based approaches are
widely employed by malware as camouflages [192].

2.5.3 Code Diversification

Previous obfuscation approaches focus on introducing obscurities to
one software component, while code diversification generates mul-
tiple obfuscated versions of the component simultaneously [104].
Ideally, it can pose equivalent barriers for adversaries to reverse
engineer each particular version. Therefore, code diversification
can impede large-scale and reproductive attacks to homogeneous
software [64, 89]. It is also a technique widely employed by

3https://ibotpeaches.github.io/Apktool/
4https://github.com/pxb1988/dex2jar

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 30

malware camouflage, which creates different copies of malware to
evade anti-virus detection [192].

Code diversification generally relies on some randomization
mechanisms to introduce variance. Lin et al. [112] proposed to
generate different layout of data structures during each compilation.
In this way, each compiled version contains a unique layout of
data objects, such as structures, classes, and stack variables de-
clared in functions. This can be achieved through an algorithm
which automatically discovers the potential data objects that can
be randomized [182]. By embedding some security designs, code
diversification can be resilient to specific attacks [104]. For example,
Crane et al. [45] proposed to randomize the tables of pointers
to deter code-reuse attacks. In Chapter 4, we will present a
diversification-based approach for tamper-resilience [187].

2.6 Cross-Component-Layer Obfuscation

Modern software package generally contains several components,
such as the components written by developers and other libraries.
This phenomenon can facilitate software development and distribu-
tion, but it also raises challenging issues for obfuscation. In partic-
ular, developers cannot modify the function identifiers implemented
in other libraries. To obfuscate such information, Collberg et al. [40]
suggested substituting common patterns of function invocation with
less obvious ones. However, he did not present the details. Recently,
Kovacheva [98] investigated the problem for Android apps. He
proposed to obfuscate the native calls (e.g., to libc libraries) via a
proxy, which is an obfuscated class that wraps the native functions.
The feature is available in some commercial obfuscation tools, such
as DexProtector. Bohannon and Holmes [20] investigated a similar
problem for Windows powershell scripts. To obfuscate an invocation
command to Windows objects, they proposed to create a nonsense
string first and then leverage Windows string operators to transform

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 31

the string to a valid command during runtime. Besides, some
state-of-the-art obfuscation tools (e.g., DexProtector) can encrypt
the resource files of software packages and implement functions to
decrypt them during runtime.

2.7 Application-Layer Obfuscation

Note that our previously discussed techniques are unrelated to the
functionality of the software. In this section, we discuss several
obfuscation techniques which are designed for the software with
specific features, such as DRM systems and neural networks.

2.7.1 Obfuscating DRM Systems

A DRM system controls the access of users to multimedia files. The
favorite solutions of DRM systems are based on content encryption.
For such solutions, one critical challenge is to hide decryption keys,
especially when attackers can have full access to the decryption
software and the computing environment. White-box encryption
is an obfuscation approach which can withstand key extraction
attacks [37].

In high level, a white-box encryption approach pre-evaluates all
the operations related to keys and replaces corresponding codes.
For example, the original DES5 algorithm contains 16 rounds of
Feistel functions, each XORs the plaintext with a round key, and
then employs a lookup table and a permutation box to produce the
output. Chow et al. [37] proposed to substitute this procedure with
a round-key-specific lookup table. In this way, it can hide both
the key and round keys. To be resistant to cryptanalysis, Chow
et al.proposed to further apply bijections and networked encodings
for each encryption round [37]. The strategy is also applicable for

5FIPS 46, The Data Encryption Standard

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 32

AES6 [36].

2.7.2 Obfuscating Neural Networks

Deep learning has achieved radical developments in the last decade.
It is a new paradigm of programming, known as Software 2.07.
Previous studies show that the structure of neural networks is a
critical factor to improve the accuracy of deep learning models.
Therefore, the structural information of private machine learning
models is a key intellectual property for such software. For example,
our JavaScript software in Section 2.2 contains an RNN model and
should be protected.

To obfuscate deep learning models, we proposed a simulation-
based obfuscation method [184]. The method distills the knowledge
of well-trained deep learning models and reloads such knowledge
into shallow networks. In this way, the shallow networks retain the
same accuracy as the original models, but they have poor learning
abilities. Attackers can learn very few useful settings from the
simulation networks. More details will be presented in Chapter 5

2.8 Threats to Validity

In this section, we justify the validity of layered obfuscation as a
promising way to obfuscate real-world software. A major threat
to this idea is whether there are already approaches which can
obfuscate all software with security guarantee, i.e., they ensure that
the essential program semantics are well protected and demonstrate
adequate hardness for adversaries to recover the semantics. How-
ever, we cannot find such approaches in the literature. Below,
we justify this claim from both the perspectives of practical code
obfuscation and theoretical program obfuscation research.

6FIPS 197, Advanced Encryption Standard
7https://medium.com/@karpathy/software-2-0-a64152b37c35

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 33

2.8.1 Practical Obfuscation Techniques

As we have discussed in previous sections, most practical obfusca-
tion techniques focus on obfuscating particular information. They
cannot provide guarantee that the obfuscated software is secure
against reverse engineering attacks.

Furthermore, real-world obfuscation practice usually adopts one
obfuscation technique or combines several techniques in an ad-hoc
way. For example, ProGuard is the most popular obfuscation tool
for Android apps, and it is the default one embedded in Android
Studio for free use. ProGuard can only obfuscate the identifiers
of Java programs. Premium obfuscation tools (e.g., DexGuard
and DexProtector) are more powerful, but only less than 0.16%
of real-world apps employ such premium obfuscation tools [177].
From their official websites, we can find these tools support many
obfuscation features, including encryption of strings, encryption of
classes, hiding method calls, native code obfuscation, native code
encryption, and etc. While each of these features is powerful for
particular threats, there is little instruction about how to integrate
them effectively. The similar situation also exists for iOS app
obfuscation [172]. Therefore, the taxonomy developed in this
chapter can provide more reference to developers regarding how to
select and integrate different obfuscation techniques.

2.8.2 Theoretical Obfuscation Research

From the theoretical perspective, scientists have already found an
algorithm (i.e., graded encoding) which can obfuscate all programs
with a compelling security property: indistinguishability [71, 201,
109]. Since such results may confuse readers, next, we clarify the
gaps between such theoretical research and real-world obfuscation
problems with a sample graded encoding mechanism.

In general, there are two phases to obfuscate a program with
graded encoding: the first phase converts programs to matrix branch-

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 34

(a) Branching program (i.e., if x of int8 equals to 7).

…

(b) Matrix branching program.

(c) Randomized matrix branching program.

Figure 2.5: Converting a program to a randomized matrix branching program.

ing programs (MBP) which can be evaluated after encryption; the
second phase encrypts MBPs with graded encoding mechanisms. In
particular, the first phase determines the limitation of program types
that can be supported by theoretical obfuscation research, and the
second phase incurs large overhead.

Converting to MBP

An MBP that computes a function f is a tuple

MBPf = (Input,Mhead, (Mi,0,Mi,1)i∈l,Mtail)

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 35

Input selects a matrix Mi,0 or Mi,1 for each i according to
the corresponding bit of input; Mhead is a row vector of size w;
(Mi,0,Mi,1)i∈l are matrix pairs of size w × w that encode program
semantics; and Mtail is a column vector of size w.

Given an input x, the MBP computes an output MBPf(x) ∈
{0, 1} as follows:

MBPf(x) = Mhead × (
l∏

i=1

Mi,xinput(k))×Mtail

Suppose the i-th matrix pair corresponds to the k-th bit of the
input. If the k-th bit is 0, then Mi,0 is selected, or vice versa. The
program output is the matrix multiplication result.

The conversion generally includes two steps: from a circuit Pf to
a branching program BPf , and from BPf to MBPf .
Pf → BPf : A branching program is a finite state machine. Bar-

rington’s Theorem states that we can convert any boolean formula
(boolean circuit of fan-in-two, depth d) to a branching program
of width 5 and length ≤ 4d [15]. For boolean formulas Pf ∈
{0, 1}, the finite state machine has one start state, two stop states
(true and false), and several intermediate states. Figure 2.5(a)
demonstrates an example which converts a boolean program i == 7
to a branching program. Suppose i is an integer of eight bits, the
boolean formula is b0 ∧ b1 ∧ b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬b5 ∧ ¬b6 ∧ ¬b7. We
need 10 states to model the branching program: eight states (s0-s7)
that accept each bit of input, and two stop states (s8 for false, and
s9 for true).
BPf → MBPf : This step computes each matrix of the MBPf .

In general, Mhead can be an all-zero row vector except the first
position is 1, and Mtail can be an all-zero column vector except
the last position is 1. (Mi,0,Mi,1)i∈len can be constructed from the
adjacency matrices of each state. Figure 2.5(b) demonstrates the
matrices corresponding to the first input bit of Figure 2.5(a).

Following such converting approaches, the elements of resulting

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 36

matrices are either 1 or 0. Kilian [96] proposed that we can
randomize these elements while retain its functionality.
MBPf → RMBPf : We first generate n + 1 random integer

matrices RMi and their inverse RM−1
i of size w × w. Then we

multiply the original matrices with such random matrices as follows.

RMhead = Mhead ×RM0

RM0,0 = RM−1
0 ×M0,0 ×RM1

RM0,1 = RM−1
0 ×M0,1 ×RM1

...

RMtail = RM−1
n ×Mtail

The randomization mechanism ensures that all randomization
matrices RMi would be canceled when evaluating RMBPf(x).

This phase reveals that the results of theoretical obfuscation
research apply to arithmetic programs only. However, real software
is more complicated which usually contains many other operations
which cannot be converted to MBP directly or efficiently.

Graded Encoding

Although the randomized matrix branching program provides some
security, it still suffers three kinds of attacks: partial evaluation,
mixed input, and other attacks that do not respect the algebraic
structure [72]. Graded encoding is proposed to defeat such attacks.

Graded encoding is based on multilinear maps. In general,
a graded encoding scheme includes four components: setup that
generates the public and private parameters of a system, encoding
that defines how to encrypt a message with the private parameters,
operations that declare the supported calculations with encrypted
messages, and a zero-testing function that evaluates if the plain text
of an encrypted message should be 0. GGH scheme is the first
plausible solution to compose multilinear maps [70]. It is based on

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 37

ideal lattices which encodes an element e over a quotient ring R/I
as e + I, where I = 〈g〉 ⊂ R is the principal ideal generated by a
short vector g. The four components of GGH are defined as follows.

Setup: Suppose the multilinear level is κ. The system generates
an ideal-generator g (g and g−1 should be short), a large enough
modulus q, and denominators {zi} from the ring Rq. Then we
publish the zero-testing parameter as pzt = [h

∏κ
i=1 zi/g]q, where

h is a small ring element.
Encoding: The encoding of an element e in set Szi is computed

as : u := [(e+ I)/zi]q.
Operations: If two encodings are in the same set (e.g., u1 :=

[c1/zi]q and u2 := [c2/zi]q), then one can add them up u1 + u2. If
the two encodings are from disjoint sets, one can multiply the two
encodings u1 · u2.

Zero-Testing Function: A zero testing function for a level-κ
encoding u is defined as

IsZero(u) =

{
1 if ||[u · pzt]q||∞ ≤ q3/4

0 otherwise

Note that u · pzt = h · c/g. If u is an encoding of 0, c should be
a short vector in I and the product can be smaller than a threshold;
otherwise, c should be a short vector in some coset of I and the
product should be very large.

In brief, the scheme is based on noisy multilinear maps as the
encoding of a value varies at different times. The only deterministic
function is the zero-testing function. However, when a program
becomes complex, the noise may overwhelm the signal. The size
of q should be as large as possible to overwhelm the noise. This
requirement largely limit the efficiency of graded encoding. Note
that gradient encoding incurs polynomial overhead. Although the
overhead is promising from the theoretical view, it is too large for
practical usage. It has been shown that even obfuscating a 16-bit
point function would result in a program of several GigBytes [1].

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 38

2.8.3 Other Supportive Work

Besides, there are investigations and obfuscation tools which co-
incide with our proposal of layered obfuscation. For example,
Kuzurin et al. [100] found that the security properties for obfuscat-
ing general programs might be too strong for practical scenarios.
They proposed to design specific security properties for particu-
lar obfuscation scenarios, such as hiding constants or generating
resilient opaque predicates. The idea is consistent with our lay-
ered obfuscation approach, i.e., an obfuscation approach cannot be
secure-against-all but should only handle particular threats. More-
over, real-world obfuscation tools (e.g., Obfuscator-LLVM [93] and
DexGuard) already support combinations of different obfuscation
techniques, which is a characteristic of layered obfuscation solu-
tions. However, they are still very preliminary in offering systematic
combination strategies. Our work, therefore, develops a novel
taxonomy of obfuscation techniques which can assist developers in
integrating them systematically.

2.9 Related Work

This chapter is a pilot study to survey obfuscation techniques for
layered obfuscation. There are already several obfuscation surveys
available, but they do not follow the layered obfuscation idea. The
surveys of practical code obfuscation include [7, 56, 118, 151, 146].
Balakrishnan and Schulze [7] surveyed several major obfuscation
approaches for both benign codes and malicious codes. Majum-
dar et al. [118] conducted a short survey that summarizes the
control-flow obfuscation techniques using opaque predicates and
dynamic dispatcher. Drape et al. [56] surveyed several obfusca-
tion techniques via layout transformation, control-flow transforma-
tion, data transformation, language dependent transformations, etc.
Roundy et al. [146] systematically studied obfuscation techniques

CHAPTER 2. TAXONOMY OF OBFUSCATION TECHNIQUES 39

for binaries, which have been frequently used by malware packers.
Schrittwieser et al. [151] surveyed the resilience of obfuscation
mechanisms to reverse engineering techniques. There are also
surveys of theoretical obfuscation research, including [88] and [11].
Horvath et al. [88] studied the history of cryptography obfusca-
tion, with a focus on graded encoding mechanisms. Barak [11]
reviewed the importance of indistinguishability obfuscation. To our
best knowledge, none of them follows a clear layered obfuscation
approach.

2.10 Conclusions

To conclude, this chapter explores layered obfuscation which applies
the idea of layered security to software obfuscation. To facilitate
the adoption of the idea, we develop a novel obfuscation taxonomy
and survey present obfuscation techniques based on the taxonomy.
Our taxonomy categorizes present obfuscation techniques into four
layers based on the difference of their obfuscation targets. Each
layer further contains several sub-categories or obfuscation strate-
gies. The obfuscation strategies under different branches of the
taxonomy are orthogonal to each other. In this way, it can pro-
vide guidance for users when choosing obfuscation techniques for
designing layered obfuscation solutions. We hope this chapter can
inspire more investigations on layered obfuscation and encourage
the development of new obfuscation techniques, which may not be
secure-against-all, but can provide users more options in designing
a layered obfuscation solution.

2 End of chapter.

Chapter 3

Symbolic Opaque Predicates

Symbolic execution is a program analysis technique which can
be employed by attackers to deobfuscate programs. This chapter
analyzes the limitations of symbolic execution and proposes a novel
obfuscation technique resilient to such attacks.

3.1 Rationale

This chapter focuses on control-flow obfuscation, which increases
software complexity (e.g., by adding bogus control flows) against
reverse engineering. Opaque predicates are essential gadgets to
achieve such obfuscation transformation. An opaque predicate is a
predicate whose value is known before obfuscation time but difficult
to be deduced by reverse analysis. Because it holds some deter-
ministic properties, we can employ opaque predicates to transform
a program without changing its semantics. For example, we can
add a bogus code block after a constantly false opaque predicate
and guarantee the code block would never be executed. In practice,
opaque constant (e.g., x2 6= −1) is the most prevalent type of
opaque predicates adopted by obfuscation tools, such as Obfuscator-
LLVM [93]. Although other approaches (e.g., unsolved conjec-
tures [176]) may demonstrate better security, they are not widely
adopted due to either implementation or performance issues [151].

40

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 41

Recently, the security of opaque predicates has been greatly chal-
lenged due to the development of symbolic execution techniques.
Notably, Ming et al. have proposed an opaque predicate detection
approach based on symbolic execution [122]; Yadegari et al. have
demonstrated the effectiveness of deobfuscation attacks based on
symbolic execution [188]. Symbolic execution is a program analysis
approach that models the conditions for executing alternative control
flows. It attempts to find test cases that can satisfy such conditions.
If a condition cannot be satisfied, it may indicate a bogus control
flow or an opaque predicate. Symbolic execution-based attacks may
not be new to the research community. But due to the development
of symbolic execution techniques, such attacks become practical
recently and jeopardize the robustness of obfuscated software.

In this chapter, we propose a novel framework to manufac-
ture symbolic opaque predicates which are resistant to symbolic
execution-based adversaries. A key procedure in our framework
is to introduce challenging problems for symbolic execution to
analyze, such as employing symbolic memories and parallel ex-
ecutions [186]. We have conducted a systematic study on the
challenges faced by symbolic execution and verified their prevalence
among symbolic execution tools. Moreover, we observe a bi-opaque
property of such opaque predicates, i.e., it may either mislead an
attacker into falsely recognizing an opaque predicate as a normal
predicate, or to falsely recognizing a normal predicate as an opaque
predicate.

We have implemented a prototype tool based on Obfuscator-
LLVM [93]. Our tool automatically replaces the opaque predicates
generated by Obfuscator-LLVM with symbolic opaque predicates
in IR (intermediate representative) level. It employs a repository-
based mechanism to manage different templates of symbolic opaque
predicates. Currently, we have implemented several templates
in the repository, which attack symbolic execution with symbolic
memories, floating-point numbers, covert propagation, and parallel

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 42

programming. The tool is flexible such that users to extend the
repository with their own templates.

We have evaluated the resilience of our idea against seveal preva-
lent symbolic execution engines, including KLEE [26], Triton [148],
and Angr [158]. The results demonstrate that symbolic opaque pred-
icates have excellent resilience against symbolic execution-based
attacks. Then we evaluate the cost of the implemented predicates.
Experimental results show that some symbolic opaque predicates
incur almost no overhead in comparison with the default opaque
predicates adopted in Obfuscator-LLVM, such as those employing
symbolic memories and floating-point numbers. Other opaque
predicates may incur obvious execution overhead, such as those
employing covert propagation and parallel programming. However,
this does not degrade the usability of our framework as long as there
are some efficient symbolic opaque predicates. The cost issue can be
mitigated in practice by allowing users to filter inefficient predicates
or to prioritize the predicates according to their preferences. Our
approach is thus promising to be adopted by real-world obfuscation
tools.

The rest of the chapter is organized as follows. Section 3.2
discusses our motivating examples and defines the adversary model.
Section 3.3 presents the preliminary knowledge of symbolic ex-
ecution. Section 3.4 summarizes the challenges faced by sym-
bolic execution and Section 3.5 benchmarks the prevalence of the
challenges with symbolic execution tools. Section 3.6 introduces
our framework for composing bi-opaque predicates. Section 3.7
discusses our prototype implementation and performance evaluation
results. Section 3.8 discusses the related work. Finally, Section 3.9
concludes the chapter.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 43

Figure 3.1: Example of vulnerable opaque predicate.

3.2 Motivation

3.2.1 Motivating Examples

Our investigation is mainly motivated by the vulnerability of real-
world opaque predicates. Opaque predicates are essential gadgets
for control-flow obfuscation. As stated by Collberg et al. [40],
the security of opaque predicates largely determines the security of
control-flow obfuscation. However, we notice that many real-world
opaque predicates are not very strong. Below, we use two examples
to demonstrate the issue.

The first example is from a highly cited paper [127], which pro-
poses an approach to obfuscate programs with NP-hard security. To
compose NP-hard problems, the authors introduce pointer analysis
problems and control pointer alignments with opaque predicates.
In this way, they can compose 3-SAT problems in the constraint
models. However, the underlying opaque predicates in the paper
are not strong enough. We demonstrate this in Figure 3.1, which
includes two opaque predicates: the first one a ∗ (a + 1)%2 ==
0 (line 6) is constantly true for any integer a; the second one
(b−2)∗(b−1)∗b%6 6= 0 (line 13) is constantly false for any integer b.
When such predicates are processed by a symbolic execution engine,
the engine would detect that the constraints a ∗ (a + 1)%2 6= 0 and
(b − 2) ∗ (b − 1) ∗ b%6 6= 0 cannot be satisfied. Such predicates

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 44

Figure 3.2: Opaque predicate generated by Obfuscator-LLVM.

would be reported as opaque predicates by symbolic execution-
based attackers. As a result, the NP-hard problem can be simplified
to a polynomial-time problem.

Figure 3.2 demonstrates another opaque predicate example gen-
erated by Obfuscator-LLVM [93]. Obfuscator-LLVM is an open-
source obfuscation tool for C programs and has been commercial-
ized recently. In this example, the opaque predicate x7 ∗ (x7 −
1)%2 == 0||x8 < 10 is always true, which can be easily detected
by symbolic execution techniques. We have reviewed the source
code of Obfuscator-LLVM and found that the opaque predicate is
the only supported one. The authors indeed have left comments in
the code and stated that the opaque predicate should be improved.

Besides, there are many other investigations relying on such inse-
cure opaque predicates, e.g., [22, 124]. These examples demonstrate
a severe vulnerability of current opaque predicates in practice. More
resilient opaque predicates are therefore necessary to improve the
security of control-flow obfuscation techniques.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 45

Figure 3.3: Opaque predicate detection based on symbolic execution techniques.

3.2.2 Adversary Model

This work considers an adversary model as follows. Suppose an
obfuscated program is obtained by an attacker, she can employ
symbolic execution techniques to detect opaque predicates from the
obfuscated program and further deobfuscate the program.

We demonstrate a framework for such opaque predicate detection
attacks in Figure 3.3. Overall, a symbolic execution engine is
employed to extract the conditions along control paths as constraint
models; then a rule-based detection module is employed to detect
opaque predicates from the constraint models.

The constraint model generated by a symbolic execution engine
is generally in conjunctive normal form (CNF), i.e., λ1∧λ2∧ ...∧λn.
Each clause λi represents a predicate. Then the CNF is processed
according to opaque predicate detection rules, such as the rules
to detect opaque constants, or contextual opaque predicates [122].
Since the rules are upper-level applications, we do not discuss their
details. Instead, we focus on attacking the underlying symbolic
execution engines. If the generated CNF is incorrect, it is likely
that such attackers would reach false conclusions.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 46

3.3 Preliminary Knowledge about Symbolic Execu-
tion

Before discussing our defensive method, the section reviews the
underlying techniques of symbolic execution as a prelude.

3.3.1 Theoretical Basis

The core principle of symbolic execution is symbolic reasoning.
Informally, given a sequence of instructions along a control path, a
symbolic reasoning engine extracts a constraint model and generates
a test case for the path by solving the model.

Formally, we can use Hoare Logic [87] to model the symbolic
reasoning problem. Hoare Logic is composed of basic triples
{S1}I{S2}, where {S1} and {S2} are the assertions of variable
states and I is an instruction. The Hoare triple tells if a precondition
{S1} is met, when executing I , it will terminate with the postcon-
dition {S2}. Using Hoare Logic, we can model the semantics of
instructions along a control path as:

{S0}I0{S1,∆1}I1...{Sn−1,∆n−1}In−1{Sn}

{S0} is the initial symbolic state of the program; {S1} is the
symbolic state before the first conditional branch associated with
symbolic variables; ∆i is the corresponding constraint for executing
the following instructions, and {Si} satisfies ∆i. A symbolic
execution engine can compute an initial state {S ′0}, i.e., the concrete
values for symbolic variables, which can trigger the same control
path. This can be achieved by computing the weakest precondition
(aka wp) backward using Hoare Logic:

{Sn−2} = wp(In−2{Sn−1}), s.t. {Sn−1} sat ∆n−1

{Sn−3} = wp(In−3{Sn−2}), s.t. {Sn−2} sat ∆n−2

...

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 47

{S1} = wp(I1{S2}), s.t. {S2} sat ∆2

{S0} = wp(I0{S1}), s.t. {S1} sat ∆1

Combining the constraints in each line, we can get a constraint
model in conjunction normal form: ∆1 ∧ ∆2 ∧ ... ∧ ∆n−1. The
solution to the constraint model is a test case {S ′0} that can trigger
the same control path.

Finally, while sampling {Ii}, not all instructions may be found
to be useful. We only keep the instructions whose parameter
values depend on the symbolic variables. We can demonstrate the
correctness by expending any irrelevant instruction Ii to X := E,
which manipulates the value of a variable X with an expression E.
IfE does not depend on any symbolic value,X would be a constant,
and should not be included in the weakest preconditions. In practice,
it can be realized by symbolic execution tools (e.g., Mayhem [29]
and FuzzBALL [120]) using taint analysis techniques [152].

3.3.2 Symbolic Execution Framework

Figure 3.4 demonstrates the conceptual framework of a symbolic
execution tool. It involves inputting a program and outputting test
cases for the program. The framework includes a core symbolic
reasoning engine and a path selection engine.

The symbolic reasoning engine analyzes the instructions along
a path and generates test cases that can trigger the path. Based
on the symbolic reasoning, we can identify four stages: symbolic
variable declaration, instruction tracing, semantic interpretation, and
constraint modeling and solving. The details are as follows:

• Symbolic variable declaration (Svar): In this stage, we have
to declare symbolic variables which will be employed in the
following symbolic analysis process. If some symbolic vari-
ables are missing from declaration, insufficient constraints can
be generated for triggering a control path.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 48

Figure 3.4: Conceptual framework for symbolic execution.

• Instruction tracing (Sinst): This stage collects the instructions
along control paths. If some instructions are missing, or the
syntax is not supported, the symbolic reasoning process would
be inconsistent.

• Semantic interpretation (Ssem): This stage translates the se-
mantics of collected instructions with an intermediate language
(IL). If some instructions are incorrectly interpreted, or the data
propagation are incorrectly modeled, the symbolic execution
engine would generate inconsistent constraint models conse-
quently.

• Constraint modeling and solving (Smodel): This stage generates
constraint models from IL, and then solves them. If the
required satisfiability modulo theory is unsupported, errors are
likely.

The path selection engine determines which path should be
analyzed in the next round of symbolic reasoning. The favorited

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 49

strategies include depth-first search, width-first search, random
search, etc. [8].

3.3.3 Implementation Variations

According to the different ways of instruction tracing, we can
classify symbolic execution tools into static symbolic execution
(e.g., KLEE [26, 163]) and dynamic symbolic execution (e.g.,
Triton [148]). Static symbolic execution loads a whole program
first before extracting instructions along with a path on the program
control-flow graph (CFG). Dynamic symbolic execution is also
known as concolic (concrete and symbolic) execution. It collects
instructions which have been actually executed. In each round,
the concolic execution engine executes the program with concrete
values to generate instructions [181].

We may also classify symbolic execution tools into source-code-
based symbolic execution and binary-code-based symbolic execu-
tion. In general, we do not perform symbolic reasoning on source
codes or binaries directly. A prior step is to interpret the semantics
of the program with an intermediate language (IL). Therefore, the
main difference between the two implementation methods lies in
the translation process. Regarding source codes, we can translate
the code directly with the compiler’s frontend. As for binaries, we
have to lift the assembly codes into IL, which is error-prone due to
the complicated features of modern CPUs [97]. The lifting process
is challenging and remains as an active research area.

3.4 Challenges of Symbolic Execution

Based on whether a challenge is associated with the symbolic
reasoning process, we can categorize the challenges of symbolic
execution into symbolic-reasoning challenges and path-explosion
challenges. A symbolic-reasoning challenge attacks the symbolic

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 50

Table 3.1: List of challenges faced by symbolic execution.

Challenge Stage of Error
Svar Sinst & Ssem Smodel

Symbolic
-reasoning
Challenges

Sym. Var. Declaration X X X
Covert Propagations - X X

Buffer Overflows - X X
Parallel Executions - X X
Symbolic Memories - X X

Contextual Symbolic Values - X X
Symbolic Jumps - - X

Floating-point Numbers - - X
Arithmetic Overflows - - X

Path-explosion
Challenges

Loops - - -
Crypto Functions - - -

External Function Calls - - -

reasoning process and leads to incorrect test cases being generated.
A path-explosion challenge happens when there are too many paths
to analyze. It does not attack a single symbolic reasoning process,
but may get starved of computational resources or require a very
long time for symbolic execution.

Table 3.1 lists the challenges that we have investigated in this
work. We collected the challenges via a careful survey of existing
papers. The survey coverred several survey papers realated to sym-
bolic execution techniques (e.g., [8, 27, 152]), several investigations
that focus on systemizing the challenges of symbolic execution
(e.g., [46, 94]), and other important papers related to symbolic
execution (e.g., [24, 29, 48, 74, 78, 140, 181, 188]).

3.4.1 Symbolic-Reasoning Challenges

We now discuss nine challenges that may incur errors to symbolic
reasoning.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 51

(a) Symbolic variable declarations. (b) Buffer overflows.

(c) Covert symbolic propagations.

(d) Parallel executions.

Figure 3.5: Sample logic bombs with symbolic-reasoning challenges: part I.

Symbolic Variable Declarations

Since the test cases are the solutions of symbolic variables subject
to constrain models, symbolic variables should be declared before
a symbolic reasoning process. For example, in source-code-based
symbolic execution tools (e.g., KLEE [26]), users can manually
declare symbolic variables in the source codes. Binary-code-based
concolic execution tools (e.g., Triton [148]) generally assume a fixed
length of program arguments from stdin as the symbolic variable. If
some symbolic variables are missing from the declaration, the gener-

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 52

ated test cases would be insufficient for triggering particular control
paths. Since the root cause occurs before symbolic execution, the
challenge attacks Svar.

Figure 3.5(a) is a sample with a symbolic variable declaration
problem. It returns a BOMB ENDING only when being executed with
a particular process id. To explore the path, a symbolic execution
tool should treat pid as a symbolic variable and then solve the
constraint with respect to pid. Otherwise, it cannot find test cases
that can trigger the path.

To declare symbolic variables precisely, a user should know tar-
get programs well. However, the task is impossible when analyzing
programs on a large scale, e.g., when performing malware analysis.
In an ideal case, a symbolic execution tool may automatically detect
such variables which can control program behaviors and report
the solutions accordingly. To our best knowledge, very few tools
have implemented the ideal feature, except DART [74]. Instead,
present papers (e.g., [8, 35]) generally discuss the challenge together
with other problems related to the computing environment, such as
libraries, kernels, and drivers. In reality, there are several challenges
of this work referring to the computing environment, such as con-
textual symbolic variables, covert propagations, parallel executions,
external function calls. We demonstrate that these challenges are
different.

Buffer Overflows

Buffer overflow is a typical software bug that can bring security
issues. Due to insufficient boundary checking, the input data may
overwrite adjacent memories. Adversaries can employ such bugs
to inject data and intentionally and tamper with the semantics of
the original codes. Buffer overflows can happen in either stack
or heap regions. If a symbolic execution tool cannot detect the
overflow issues arising, it would fail to track the propagation of
symbolic values. Therefore, buffer overflow involves a particular

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 53

covert propagation issue. Source-code-based symbolic execution
tools are prone to buffer overflows because the stack layout of
a program exists only in the assembly codes, depending on the
particular platforms. Therefore, such tools cannot model stack
information using source codes only. In contrast, binary-code-based
symbolic execution tools should be more potent in handling buffer
overflow issues because they can simulate actual memory layouts.
However, even if these tools can precisely track propagation, they
suffer from difficulties in automatically analyzing the unexpected
program behaviors caused by overflow. Otherwise, they would be
powerful enough to generate exploits for bugs, which is a problem
still requiring solution [4].

Figure 3.5(b) presents an example of buffer overflows. The
program returns a BOMB ENDING if the value of flag equals
one, which is unlikely because the value is zero and should remain
unchanged without explicit modification. However, the program has
a buffer overflow bug. It has a buffer buf of eight bytes and employs
no boundary check when copying symbolic values to the buffer with
strcpy. We can change the value of flag to one leveraging the
bug, e.g., when symvar is “ANYSTRIN\x01\x00\x00\x00”.

Covert Propagations

Some data propagation ways are covert because they cannot be
traced easily by data-flow analysis tools. For example, if the
symbolic values are propagated via other media (e.g., files) outside
of the process memory, the propagation would be untraceable.
Such propagation methods are undecidable and can be beyond the
capability of pure program analysis. Symbolic execution tools
have to handle such cases using ad hoc methods. There are also
some propagations challenging only to certain implementations.
For example, propagating symbolic values via embedded assembly
codes can be a problem for source-code-based symbolic execution
tools only. If a symbolic execution tool fails to detect certain

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 54

propagations, the instructions related to the propagated values would
be missed from the following analysis. This results in the challenge
attacking the stages of Sinst and Ssem.

Figure 3.5(c) shows a covert propagation sample. We define
an integer i and initiate it with the value of a symbolic variable
symvar. So i is also a symbolic variable. We then propagate the
value of i to another variable ret through a shell command echo,
and let ret control the return value. To find a test case which can
return the corresponding BOMB ENDING, a symbolic execution tool
should properly track or model the propagation incurred by the shell
command.

Parallel Executions

Classic symbolic execution is effective for sequential programs.
We can draw an explicit CFG for sequential programs and let
a symbolic execution engine traverse the CFG. However, if the
program processes symbolic variables in parallel, classic symbolic
execution techniques would face problems. Parallel programs can be
undecidable because the execution order of parallel codes does not
only depend on the program but may also depend on the execution
context. A parallel program may exhibit different behaviors even
with the same test case. This poses a problem for symbolic execution
to generate test cases for triggering corresponding control flows.
If a symbolic execution tool directly ignores the parallel syntax or
addresses the syntax improperly, errors would happen during Sinst
and Ssem.

Figure 3.5(d) demonstrates an example with parallel codes. The
symbolic variable i is processed by another two additional threads
in parallel, and the result is assigned to j. Then the value of j
determines whether the program should return a BOMB ENDING.

To handle parallel codes, the symbolic execution tool has to inter-
pret the semantics and track parallel executions, e.g., by introducing
extra symbolic variables [62]. However, such an approach may not

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 55

(a) Symbolic memories. (b) Symbolic jumps.

(c) Contextual symbolic val-
ues.

(d) Floating-point numbers. (e) Arithmetic overflows.

Figure 3.6: Sample logic bombs with symbolic-reasoning challenges: part II.

be scalable because the possibility of parallel execution can be a
large number. In practice, there are several heuristic approaches that
can be used to improve the efficiency. For example, we may restrict
the exploration time of concurrent regions with a threshold [62]; we
may conduct symbolic execution with arbitrary contexts and convert
multi-thread programs into equivalent sequential ones [16]; or we
can prune unimportant paths leveraging some program codes, such
as assertion [79].

Symbolic Memories

Symbolic memory is a situation whereas symbolic variables serve
as the offsets or pointers to retrieve values from the memory, such
as array indexes. While handling symbolic memories, the symbolic
execution engine should take advantage of the memory layout for
analysis. For example, we can convert an array selection operation
to a switch/case clause in which the number of possible cases

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 56

equals the length of the array. However, the number of possible
combinations would grow exponentially when there are several such
operations along a control flow. In practice, a symbolic execution
tool may directly employ the feature of array operations imple-
mented by some constraint solvers, such as STP [68] and Z3 [49].
It may also analyze the alignment of some pointers in advance, such
as CUTE [154]. However, the power of pointer analysis is limited
because the problem can be NP-hard or even undecidable for static
analysis [102]. If a symbolic execution tool cannot model symbolic
memories properly, errors would occur during Sinst and Ssem.

Figure 3.6(a) presents a sample of symbolic memories. In this
example, the symbolic variable i serves as an offset to retrieve
an element from the array. The retrieved element then determines
whether the program returns a BOMB ENDING.

Symbolic Jumps

In general, symbolic execution only extracts constraint models when
encountering conditional jumps, such as var<0 in source codes, or
jle 0x400fda in assembly codes. However, we may also em-
ploy unconditional jumps to achieve the same effects as conditional
jumps. The idea is to jump to an address controlled by symbolic
values. If a symbolic execution engine is not tailored to handle
such unconditional jumps, it would fail to extract corresponding
constraint models and miss some available control flows. Therefore,
the challenge attacks the constraint modeling stage Smodel.

Figure 3.6(b) presents an example of symbolic jumps. The
program contains an array of function pointers, and each function
returns an integer value. The symbolic variable serves as an offset
to determine which function should be called during execution. If
f5() is called, the program would return a BOMB ENDING.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 57

Contextual Symbolic Values

This challenge is similar to symbolic memories but is more compli-
cated. Other than retrieving values from the memory like symbolic
memories, symbolic values can also serve as the parameters to
retrieve values from the environment, such as loading the contents of
a file pointed by symbolic values. By default, this contextual infor-
mation is unavailable to the program or process, and the analysis is
more complicated. Moreover, since the contextual information can
be changed any time without informing the program, the problem is
undecidable. A symbolic tool that does not support such operations
would cause errors during Sinst and Ssem.

Figure 3.6(c) is an example of contextual symbolic values. If
symvar points to an existing file on the local disk, the program
returns a BOMB ENDING.

Floating-Point Numbers

A floating-point number (f ∈ F) approximates a real number (r ∈
R) with a fixed number of digits in the form of f = sign× baseexp.
For example, the 32-bit float type compliant to IEEE-754 has 1-bit
for sign, 23-bit for base, and 8-bit for exp. This representation is
essential for computers, as the memory spaces are limited in com-
parison with the infinity of R. As a tradeoff, floating-point numbers
have limited precision, which turns some unsatisfiable constraints
over R into satisfiable ones over F with a rounding mode. In order to
support reasoning over F, a symbolic execution tool should consider
such approximations when extracting and solving constraint models.
However, recent studies (e.g., [161, 139, 110, 111]) show that there
is still no silver bullet for the problem. Floating-point numbers
continue to pose a challenge for symbolic execution tools, and the
challenge attacks Smodel.

Figure 3.6(d) demonstrates an example with floating-point oper-
ations. Because we cannot represent 0.1 with float type precisely,

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 58

the first predicate a != 1 is always true. If the second condition a
== b can be satisfied, the program would return a BOMB ENDING.
Therefore, one test case to returning a BOMB ENDING is symvar
equals ‘7’.

Arithmetic Overflows

Arithmetic overflow happens when the result of an arithmetic op-
eration is outside the range of an integer type. For example, the
range of a 64-bit signed integer is [−264, 264 − 1]. In this case, a
constraint model (e.g., the result of a positive integer plus another
positive integer is negative) may have no solutions over R; but it
can have solutions when we consider arithmetic overflow. Handling
such arithmetic overflow issues is not as difficult as in the case
of the previous challenges. However, some preliminary symbolic
execution tools may fail to consider these cases and suffer errors
when extracting and solving the constraint models.

Figure 3.6(e) shows a sample with an arithmetic overflow prob-
lem. To meet the first condition 254748364 * i < 0, i should
be a negative value. However, the second condition requires i to be
a positive value. Therefore, it has no solutions in the domain of real
numbers. But the conditions can be satisfied when 254748364 *
i exceeds the max value that the integer type can represent.

3.4.2 Path-Explosion Challenges

Now we discuss three path-explosion challenges existing in small-
size programs.

External Function Calls

Shared libraries, such as libc and libm (i.e., a maths library),
provide some basic function implementations to facilitate software
development. An efficient way to employ the functions is via

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 59

(a) External function calls. (b) Loops.

(c) Crypto functions.

Figure 3.7: Sample bomb samples with path-explosion challenges.

dynamic linkage, which does not pack the function body to the
program but only links with the functions dynamically during ex-
ecution. Therefore, such external functions do not enlarge the size
of a program; they just enlarge code complexity.

When an external function call is related to the propagation of
symbolic values, the control flows within the function body should
be analyzed by default. There are two situations. A simple situation
is that the external function does not affect the program behaviors
after executing it, such as simply printing symbolic values with
printf. In this case, we may ignore the path alternatives within
the function. However, if the function execution affects the follow-
up program behaviors, we should not ignore them. Otherwise,
the symbolic execution would be based on the wrong assumption
that the new test case generated for an alternative path can always
trigger the same control flow within the external function. If a
small program contains several such function calls, the complexity
of external functions may cause path explosion issues. In practice,

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 60

there are different strategies (e.g., abstraction [26], strict consistency
and local consistency [35]) that symbolic execution tools may adopt
to handle the challenge with a trade-off between consistency and
efficiency.

Figure 3.7(a) demonstrates a sample with an external function
call. It computes the sine of a symbolic variable via an external
function call (i.e., sin), and the result is used to determine whether
the program should return a BOMB ENDING.

Loops

Loop statements, such as for and while, are widely employed
in real-world programs. Even a very small program with loops
can include many or even an infinite number of paths. By default,
a symbolic execution tool should explore all available paths of a
program, which can be beyond the capability of the tool if there
are too many paths. In practice, a symbolic execution tool may
employ a search strategy favoring unexplored branches on a program
CFG [5, 25], or introduce new symbolic variables as the counters for
each loop [149]. Because loop can incur numerous paths, we can
hardly have a perfect solution for this problem.

Figure 3.7(b) shows a sample with a loop. The loop function is
implemented with the Collaz conjecture [101]. No matter what is
the initial value of i, the loop will terminate with j equals 1.

Crypto Functions

Crypto functions generally involve some computationally complex
problems to ensure security. For a hash function, the complexity
guarantees that adversaries cannot efficiently compute the plaintext
of a hash value. For a symmetric encryption function, it promises
that one cannot efficiently compute the key when given several pairs
of plaintext and ciphertext. Therefore, such programs should also
be resistant to symbolic execution attacks. From a program analysis

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 61

view, the number of possible control paths for the crypto functions
can be substantial. For example, the body of the SHA1 algorithm
is a loop that iterates 80 rounds with each round containing several
bit-level operations.

Figure 3.7(c) demonstrates a code snippet which employs a
SHA1 function. If the hash result of the symbolic value is equivalent
to a predefined value, the program would return a BOMB ENDING.
However, this is difficult since SHA1 cannot be reversely calculated.

In general, symbolic execution tools cannot handle such crypto
programs. Malware may employ the technique to deter symbolic
execution-based program analysis [156]. When analyzing programs
with crypto functions, a common way is to avoid exploring the
function internals (e.g.,[43, 175]). For example, TaintScope [175]
first discriminates the symbolic variables corresponding to crypto
functions from other variables, and then employs a fuzzy-based
approach to search solutions for such symbolic variables rather than
solving the problem via symbolic reasoning.

So far, we have discussed 12 different challenges. Note that we
do not intend to propose a complete list of challenges for symbolic
execution. Instead, we collect all the challenging issues that have
been mentioned in the literature and systematically analyze them.
This analysis is essential while designing the dataset of logic bombs
in Section 3.5.2.

3.5 Benchmarking Symbolic Execution Tools

In this section, we introduce our methodology and a framework to
benchmark the capability of real-world symbolic execution tools.

3.5.1 Objective and Challenges

Before describing our approach, we first discuss our design goal and
the challenges to overcome.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 62

We aim to design an approach that can benchmark the capabilities
of symbolic execution tools. Our purpose is critical and valid in
several aspects. As we have discussed, some challenging issues
are only engineering issues, such as arithmetic overflows. With
enough engineering effort, a symbolic execution tool should be
able to handle these issues. On the other hand, some challenges
such as loops are hard from a theoretical viewpoint. However,
some heuristic approaches can tackle certain easy cases. Symbolic
execution tools may adopt different heuristics and demonstrate
different capabilities in handling them. Therefore, it is worth
benchmarking their performances in handling particular challenging
issues. Developers generally do not provide much information
concerning the limitations of their tools to users.

A useful benchmarking approach should be accurate and effi-
cient. However, this is challenging to benchmark symbolic ex-
ecution tools accurately and efficiently with real-world programs.
Firstly, a real-world program contains many instructions or lines of
codes. When a symbolic execution failure occurs, locating the root
cause requires much domain knowledge and effort. Since errors
may propagate, it is challenging to conjecture whether a symbolic
execution tool fails in handling a particular issue. Secondly, the
symbolic execution itself is inefficient. Benchmarking a symbolic
execution tool generally implies performing several designated sym-
bolic execution tasks, which would be time-consuming. Note that
existing symbolic execution papers (e.g., [26, 83, 99, 158]) generally
evaluate the performance of their tools by conducting symbolic
execution experiments with real programs. This process usually
takes several hours or even days. They demonstrate the effectiveness
of their work using the achieved code coverage and number of bugs
detected, but they do not analyze the root causes of uncovered codes
in detail.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 63

Algorithm 1: Method to design evaluation samples.
// Create a function with a symbolic variable
LogicBomb(symvar) // symvar2 is a value computed from a

challenging problem related to symvar
symvar2← Challenge(symvar);
// If symvar2 satisfies a condition
if Condition(symvar2) then

// Trigger the bomb
Bomb();

end

3.5.2 Approach based on Logic Bombs

To tackle the challenges of benchmarking symbolic execution tools
concerning accuracy and efficiency, we propose an approach based
on logic bombs. Below, we discuss our detailed design.

Evaluation with Logic Bombs

A logic bomb is a code snippet that can only be executed when
certain conditions have been met. To evaluate whether a symbolic
execution tool can handle a challenge, we can design a logic bomb
guarded by a particular issue with the challenge. Then we can
perform symbolic execution on the program embedded with the
logic bomb. If a symbolic execution tool can generate a test case
that can trigger the logic bomb, it indicates that the tool can handle
the challenging issue, or vice versa.

Algorithm 1 demonstrates a general framework for designing
such logic bombs. It includes four steps: the first step is to create
a function with a parameter symvar as the symbolic variable;
the second step is to design a challenging problem related to the
symbolic variable and save the result to another variable symvar2;
the third step is to design a condition related to the new variable
symvar2; the final step is to design a bomb (e.g., return a specific
value) which indicates that the condition has been satisfied. Note
that because the value of symvar2 is propagated from symvar,

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 64

Figure 3.8: Dataset of logic bombs and the challenge propagation relationships
among them.

symvar2 is also a symbolic variable and should be considered in
the symbolic analysis process.

The magic of the logic bomb idea enables us to make the
evaluation much precise and efficient. We can create several such
small programs, each containing only a challenging issue and a
logic bomb that tells the evaluation result. Because the object
programs for symbolic execution are usually small, we can easily
avoid unexpected issues that may also cause failures via a careful
design. Also, because the programs are small, performing symbolic
execution on them generally requires a short time. For the programs
that unavoidably incur path explosion issues, we can restrict the
symbolic execution time either by controlling the problem complex-
ity or by employing a timeout setting.

Logic Bomb Dataset

Following Algorithm 1, we have designed a dataset of logic bombs
to evaluate the capability of symbolic execution tools. Some of the
logic bombs are already shown in Figure 3.5, 3.6, and 3.7. Our full

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 65

dataset is available on GitHub1. The dataset contains over 60 logic
bombs for 64-bit Linux platform, which covers all the challenges
discussed in Section 3.4. For each challenge, we implement several
logic bombs. Either each bomb involves a unique challenging issue
(e.g., covert propagation via file write/read or via system calls), or
introduces a problem with a different complexity setting (e.g., one-
leveled arrays or two-leveled arrays).

When designing logic bombs, we carefully avoid trivial test cases
(e.g., \x00) that can trigger the bombs. Moreover, we try to employ
straightforward implementations, and we hope to ensure that the re-
sults would not be affected by other unexpected failures. For exam-
ple, we avoid using atoi to convert argv[1] to integers because
some tools cannot support atoi. However, fully avoiding external
function calls is impossible for some logic bombs. For example,
we should employ external function calls to create threads when
designing parallel codes. Surely the result might be affected if a
symbolic execution tool cannot handle external functions. To tackle
the interference of challenges, we draw a challenge propagation
chart among the logic bombs as shown in Figure 3.8. There are two
kinds of challenge propagation relationships: should in solid lines,
and may in dashed lines. A should relationship means that a logic
bomb contains a similar challenging issue in another logic bomb; if
a tool cannot solve the precedent logic bomb, it should not be able
to solve the later one. For example, the stackarray sm l1 is
precedent to stackarray sm l2. A may relationship means a
challenge type may be a precedent to other logic bombs, but it is
not the determining one. For example, a parallel program generally
involves external function calls. However, although a tool is unable
to solve the external functions well, it might be able to solve some
logic bombs with parallel issues as sequential programs.

1https://github.com/hxuhack/logic bombs

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 66

Figure 3.9: Framework to benchmark symbolic execution tools.

3.5.3 Automated Benchmarking Framework

Based on the evaluation idea with logic bombs, we design a bench-
marking framework as shown in Figure 3.9. The framework inputs
a dataset of carefully designed logic bombs and outputs the bench-
marking result for a particular symbolic execution tool. There are
three critical steps in the framework: dataset preprocessing, batch
symbolic execution, and case verification.

In the preprocessing step, we parse the logic bombs and compile
them into object codes or binaries such that a target symbolic
execution tool can process them. The parsing process pads each
code snippet of a logic bomb with a main function and makes it a
self-contained program. By default, we employ argv[1] as the
symbolic variables. If a target symbolic execution tool requires
adding extra instructions to launch tasks, the parser should add
such required instructions automatically. For example, we can add
symbolic variable declaration codes when benchmarking KLEE.
The compilation process compiles the processed source codes into
binaries or other formats that a target symbolic execution tool
supports. Symbolic execution is generally performed based on in-
termediate codes. When benchmarking source-code-based symbolic
execution tools such as KLEE, we have to compile the source codes
into the supported intermediate codes. When benchmarking binary-

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 67

code-based symbolic execution tools, we can directly compile them
into binaries, and the tool will lift binary codes into intermediate
codes automatically.

In the second step, we direct the symbolic execution tool to
analyze the compiled logic bombs in a batch mode. This step
outputs a set of test cases for each program. Some dynamic symbolic
execution tools (e.g., Triton) can directly tell which test case can
trigger a logic bomb during runtime. However, other static symbolic
execution tools may only output test cases by default, so we need
to replay the generated test cases to examine the results further.
Besides, some tools may falsely report that a test case can trigger
the logic bomb. Therefore, we need a third step to verify the test
cases.

In the third step, we replay the test cases with the corresponding
programs of logic bombs. If a logic bomb can be triggered, it
indicates that the challenging case has been solved by the tool.
Finally, we can generate a benchmarking report based on the case
verification results.

3.5.4 Benchmarking Results

Experimental Setting

We choose three popular symbolic execution tools for benchmark-
ing: KLEE [26], Angr [158], and Triton [148]. Because our dataset
of logic bombs are written in C/C++, we only choose symbolic
execution tools for C/C++ programs or binaries. The three tools
have all been released as open source and have a high community
impact. Moreover, they adopt different implementation techniques
for symbolic execution. By supporting variant tools, we show
that our approach is compatible with different symbolic execution
implementations.

KLEE[26] is a source-code-based symbolic execution tool imple-
mented based on LLVM [106]. It supports programs written in C. By

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 68

default, our benchmarking script uses a klee make symbolic
function to declare the symbolic variables of logic bombs in the
source-code level. Then, it compiles the source codes into interme-
diate codes for symbolic execution. The symbolic execution process
outputs a set of test cases. Our script finally examines the test cases
by replaying them with the binaries. The whole process is automated
with our benchmarking script. The version of KLEE we benchmark
is 1.3.0. Note that because our experiment does not intend to find the
best tool for particular challenges, we do not consider the patches
provided by other parties before they are merged into the master
branch.

Triton [148] is a dynamic symbolic execution tool based on bina-
ries. It automatically accepts symbolic variables from the standard
input. During symbolic execution, it firstly runs the programs with
concrete values and leverages Intel PinTool [115] to trace related
instructions; then it lifts the traced instructions into the SSA (single
static assignment) form and performs symbolic analysis. If there are
alternative paths found in the trace, Triton generates new test cases
via symbolic reasoning and employs them as the concrete values in
the following rounds of concrete execution. This symbolic execution
process continues until no alternative path can be found. The version
of Triton we adopted is the one released on GitHub on Jul 6, 2017.

Angr [158] is also a tool for binaries but employs different
implementations. Before performing any symbolic analysis, Angr
firstly lifts the binary program into VEX IR [125]. Then it employs
a symbolic analysis engine (SimuVEX) to analyze the program
based on the IR. Angr does not provide ready-to-use symbolic
execution script for users but only some APIs. Therefore, we have
to implement our own symbolic execution script for Angr. Our
script collects all the paths to the CFG leaf nodes and then solves
the corresponding path constraints. Angr provides all the critical
features via APIs, and we only assemble them. Finally, we check
whether the generated test cases can trigger the logic bombs. In our

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 69

experiment, we employ Angr version 7.7.9.21.
Note that all our benchmarking scripts for these tools follow the

framework proposed in Figure 3.9. During the experiments, we
employ our logic bomb dataset for evaluation. A tool can pass a
test only if the solution generated can correctly trigger a logic bomb.
We finally report which logic bombs can be triggered by the tools.

We conduct our experiments on an Ubuntu 14.04 X86 64 system
with Intel i5 CPU and 8G RAM. Because some symbolic execution
tasks may take very long time, our tool allows users to configure a
timeout threshold which ensures benchmarking efficiency. However,
the timeout mechanism may incur some false results if it is too
short. To mitigate the side effects, we adopt two timeout settings
(60 seconds and 300 seconds) for each tool. In this way, we can
observe the influence of the timeout settings and decide whether we
should conduct more experiments with an increased timeout value.

Result Overview

Table 3.2 presents our experimental results. We label the results with
four options: pass, fail, timeout, and inapplicable. While ‘pass’ and
‘fail’ imply the symbolic execution has finished, ‘timeout’ implies
our benchmarking script has terminated the symbolic execution
process when a timeout threshold is triggered. We label several
results as inapplicable because they contain C++ or assembly codes,
which KLEE does not support.

We can observe that Angr has achieved the best performance with
22 cases solved when the timeout was 300 seconds. Comparatively,
it only solved 16 cases when the timeout is 60 seconds. KLEE
solved nine cases and the result remains the same with different
timeout settings. Triton performed much worse with just three cases
being solved. To further verify the correctness of our benchmarking
results, we compared our experimental results with the previously
declared challenge propagation relationships in Figure 3.8. The
results were all consistent, showing that our dataset can distinguish

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 70

Table 3.2: Benchmarking results of symbolic execution tools.
Challenge Case ID KLEE Triton Angr

t = 60s t = 300s t = 60s t = 300s t = 60s t = 300s

Buf. Overflows

stacknocrash bo l1 fail fail fail fail pass pass
stack bo l1 fail fail fail fail pass pass
heap bo l1 fail fail fail fail fail fail
stack bo l2 fail fail fail fail fail fail

Covert Prop.

df2cf cp pass pass fail fail pass pass
echo cp fail fail timeout timeout timeout timeout

echofile cp fail fail fail fail timeout timeout
file cp fail fail timeout timeout fail fail

socket cp fail fail fail fail fail fail
stack cp inapp. inapp. pass pass pass pass

file eh cp inapp. inapp. fail fail timeout pass
div0 eh cp inapp. inapp. fail fail timeout pass
file eh cp inapp. inapp. fail fail timeout fail

Sym. Memories

malloc sm l1 pass pass timeout fail pass pass
realloc sm l1 pass pass fail fail pass pass

stackarray sm l1 pass pass fail fail pass pass
list sm l1 inapp. inapp. fail fail timeout pass

vector sm l1 inapp. inapp. fail fail timeout pass
stackarray sm l2 pass pass fail fail fail fail

stackoutofbound sm l2 pass pass fail fail pass pass
heapoutofbound sm l2 fail fail timeout fail pass pass

Sym. Jumps

funcpointer sj l1 pass pass fail fail fail fail
jmp sj l1 inapp. inapp. fail fail pass pass

arrayjmp sj l2 inapp. inapp. fail fail fail fail
vectorjmp sj l2 inapp. inapp. fail fail timeout pass

Float. Num. float1(2) fp l1 fail fail fail fail pass pass
float3(4)(5) fp l2 fail fail fail fail timeout timeout

Arith. Overflows plus do pass pass pass pass pass pass
multiply do pass pass fail fail pass pass

Ext. Func. Calls

printint ef l1 fail fail pass pass pass pass
printfloat ef l1 fail fail fail fail fail fail

atoi ef l2 fail fail fail fail pass pass
atof ef l2 fail fail fail fail timeout timeout
ln ef l2 fail fail fail fail timeout fail

pow ef l2 fail fail fail fail pass pass
rand ef l2 fail fail timeout timeout fail fail
sin ef l2 fail fail fail fail timeout timeout

Others 23 cases, no pass
pass # 63 cases 9 9 3 3 17 22

the capability of different symbolic-execution tools accurately.
The efficiency of our benchmarking approach largely depends on

the timeout setting. Note that Table 3.2 includes some timeout re-
sults; they account for most of our experimental time. Although we
try to keep each logic bomb as succinct as possible, our dataset still
contains some complex but unavoidable problems or path explosion
issues. When the timeout value is 60 seconds, our benchmarking
process for each tool takes only dozens of minutes. When extending
the timeout value to 300 seconds, the benchmark takes a bit longer

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 71

time. However, the benefit is not very obvious, and only Angr can
solve 5 more cases. Can the result get further improved by allowing
more time? We have tried another group of experiments with 1,800
seconds timeout. But the results remain unchanged. Therefore, 300
seconds should be a marginal timeout setting for our benchmarking
experiment. Considering that symbolic execution is computationally
expensive, which may take several hours or even several days to test
a program, our benchmarking process is very efficient. We may
further improve the efficiency by employing a parallel mode, such
as assigning several logic bombs for each process.

Case Study

We now discuss the detailed benchmarking results for each chal-
lenge. Firstly, there are several challenges that none of the tools
can trigger even one logic bomb, including symbolic variable decla-
rations, parallel executions, contextual symbolic values, loops, and
crypto functions. As for symbolic variable declaration challenge,
they fail in modeling the conditions to trigger the logic bombs be-
cause all the tools cannot recognize the expected symbolic variables
automatically. The challenges of contextual symbolic values and
crypto functions involve tough problems, so it can be expected that
all the tools fail in handling them. However, it is a bit surprising that
none of the tools can handle parallel executions and loops.

Covert Propagations: Angr passed four test cases: df2cf cp,
stack cp, and two exception handling cases. df2cf cp propa-
gates the symbolic values indirectly by substituting a data assign-
ment operation with equivalent control-flow operations. KLEE also
solved the case, but Triton failed. stack cp propagates symbolic
values via direct assembly instructions push and pop. Triton
also solved the case. Besides, Angr also passed two test cases
that propagate symbolic values via the C++ exception handling
mechanism, which Triton failed. We further break down the details
of an exception handling program (see Figure 3.10). As shown

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 72

(a) Source codes.

(b) Assembly codes.

Figure 3.10: Example of exception handling (division by zero).

in the box region of Figure 3.10(b), the mechanism relies on two
function calls, which might be the problem that fails Triton. All
the tools failed other covert propagation cases that propagate values
via fread/fwrite, echo, socket, etc. Note that KLEE supports
modeling file operations in POSIX standard such as read/write,
but it cannot support C libraries directly.

Buffer Overflows: Only Angr could solve two easy buffer over-
flow problems: stacknocrash bo l1 and stack bo l1. The
cases share a simple stack overflow issue. Their solutions require
modifying the value of the stack that might be illegal. However,
Angr could not solve the heap overflow issue heap bo l1. It

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 73

(a) Source codes.

(b) Memory layout after array initialization.

(c) Assembly codes.

Figure 3.11: Example of the stack layout for array.

also failed on another harder stack overflow issue stack bo l2,
which requires composing sophisticated payload, such as employing
return-oriented programming methods [144]. We are surprised
that Triton failed all the tests because binary-code-based symbolic

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 74

execution tools should be resilient to buffer overflows in nature.
Symbolic Memories: The results show that Triton does not

support symbolic memory, but KLEE and Angr provide very good
support. Angr has solved seven cases out of eight. It only failed
in handling the case depicted in Figure 3.11(a) with a two-leveled
array stackarray sm l2. This implies that Angr would fail
when there are multi-leveled pointers. In comparison, KLEE is
able to solve the two-leveled array problem because it is based on
STP [68], which is designed for solving such problems related to
arrays. Figure 3.11(c) presents the assembly codes that initialize
the arrays, while Figure 3.11(b) presents the stack layout after
initialization. We note that the information about array size or
boundary does not exist in assembly codes. This explains why
binary-code-based symbolic execution tools do not suffer from
problems when a challenge requires an out-of-boundary access, e.g.,
stackoutofbound sm l2.

Symbolic Jumps: Since symbolic jump demonstrates no explicit
conditional branches in the CFG, it should be a hard problem for
symbolic execution. However, KLEE and Angr are not likely to
be affected much by the trick. KLEE tackled the problem which
has an array of function pointers funcpointer sj l1. Angr
successfully handled two cases with assembly jmp, but it failed
funcpointer sj l1.

Floating-point Numbers: The results indicate that KLEE and Tri-
ton do not support floating-point operations, and Angr can support
some. During our tests, Triton directly reported that it could not
interpret such floating-point instructions. Angr has solved two out
of the five designated cases. The two passed cases are easier ones,
which only require integer values as the solution. All the failed
cases require decimal values as the solution, and they employ the
atof function to convert argv[1] to decimals. Since Angr has
also failed the test in handling atof in atof ef l2, the failures
are likely to be caused by the atof function.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 75

Figure 3.12: Framework for composing opaque predicates.

Arithmetic Overflows: Arithmetic overflow is not a very hard
problem since it only requires symbolic execution tools to handle
such cases carefully. In our test, KLEE and Angr have been able to
solve all the cases. However, Triton failed in handling the integer
overflow case in Figure 3.6(e). The result shows there is still much
room for Triton to improve for this problem.

External Function Calls: In this group of logic bombs, each
case only contains one external function call. However, this result
is very disappointing. Triton only passed a very simple case that
print (with printf) a symbolic value of integer type. It does not
even support printing out floating-point values. Angr has solved the
printf cases and two more complicated cases, atoi ef l2 and
pow ef l2. It failed the atof ef l2 and other cases. The results
show that we should be cautious when designing logic bombs. Even
when involving straightforward external function calls, the results
could be affected.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 76

(a) Original toy pro-
gram.

(b) Symbolic memories. (c) Floating-point numbers.

(d) Covert symbolic propagations.

(e) Parallel executions.

Figure 3.13: Bi-opaque predicate examples.

3.6 Designing Bi-Opaque Predicates

3.6.1 Idea in a Nutshell

Intuitively, we can employ the weakness of symbolic execution
to compose opaque predicates such that they can evade detection
from symbolic execution-based adversaries. This is feasible because
symbolic execution faces some challenges, and real-world symbolic
execution tools have to adopt heuristic methods to handle them.
Introducing such challenging problems into a program may incur
error for symbolic execution.

Figure 3.12 demonstrates a general framework to compose such

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 77

opaque predicates. Suppose the input is a code snippet or a function
which contains arguments. Then we can choose an argument as the
symbolic variable and create a challenging problem related to the
variable. The challenging problem is selected from a repository of
predefined templates. We may create hundreds of such templates
by attacking different challenges of symbolic execution or employ
different problem settings. Finally, we can create opaque predicates
based on the symbolic variable protected by the problem.

Note that at least one symbolic variable should get involved
in a challenging problem. Because only such problems matter to
symbolic execution. If a problem does not include any symbolic
value, all the problem-related instructions would be pruned by the
symbolic execution engine. This can be proved with Hore Logic [87]
following the principle of symbolic execution [186]. Because
involving symbolic variables is a prerequisite for composing such
opaque predicates, we name our opaque predicates as symbolic
opaque predicates. If a function has no argument, then we have
to introduce fake arguments or employ global symbolic variables.

3.6.2 Bi-Opaque Property

Traditional opaque predicates aim to evade from detection, such that
the obfuscated control-flow graph cannot be easily simplified. In
other words, they try to mislead adversaries into falsely recognizing
them as normal predicates. Failing to detect them would cause false
negative issues for adversaries. With symbolic opaque predicates, an
interesting observation is that we may also introduce false positive
issues, i.e., we may mislead adversaries into falsely recognizing
normal predicates as opaque predicates.

In this way, a predicate can be opaque in either a way, which
is the novel bi-opaque property of our approach. Specifically, we
name the two types of opaque predicates: type I opaque predicate
which intends to introduce false negatives and type II opaque

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 78

predicate which intends to introduce false positives. Next, we use
several examples to demonstrate how to compose symbolic opaque
predicates with the bi-opaque property.

3.6.3 Demonstration

Suppose Figure 3.13(a) is a function to obfuscate, then Figure 3.13(b)
demonstrates how to obfuscate it with symbolic opaque predicates.
Specifically, the predicates employ the challenge of symbolic mem-
ory.

Symbolic memories are difficult for program analysis because
it involves pointer analysis issues, which can be NP-hard or even
undecidable [102]. In this example, we compose two integer arrays.
The symbolic value j%7 points to an element within the first array,
and the element serves as an offset of the second array. The selected
element from the second array is assigned to a new variable i. In this
way, i is a symbolic value protected by the challenging problem, and
we can compose symbolic opaque predicates with i.

For example, we can compose a type I opaque predicate that
cannot be satisfied, such as i == j. With the opaque predicate,
we can insert a bogus code block (i.e., Bogus()) which would
never be executed. The security of the predicate depends on the
capability of symbolic execution engines. If a symbolic execution
engine employs no mechanism to handle symbolic memory, it
would generate incorrect constraint models and falsely recognize the
predicate as a normal predicate.

To compose a type II opaque predicate, we first select an ordinary
predicate, j == 7. Then we modify the predicate by introducing
a new condition related to i, such as i == 1&&j == 7. The
modification does not change the semantics of the original predicate
because i == 1 is always true when j equals 7. Such condition can
be easily generated because the value of i can be calculated from
any j. In assembly codes, the new predicate will be dissembled

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 79

Algorithm 2: LLVM template corresponding to the example of symbolic
memories in Figure 3.13(b).

/* Input an icmp instruction; output 2 opaque
predicates */

input : inst
output: type1Opq,type2Opq
/* Parse the icmp instruction */
Value* left← inst->getOperand(0) ;
Value* right← inst->getOperand(1) ;
Value* symVar ;
ConstantInt* ciObj ;
if isa<ConstantInt> (*left) then

ciObj← left ;
symVar← right ;

end
else if isa<ConstantInt> (*right) then

symVar← left ;
ciObj← right ;

end
if !symVar->getType()->isIntegerTy() then

return;
end
/* Define the size of the two arrays. */
ArrayType* ar1AT← ArrayType::get(intType, 7) ;
ArrayType* ar2AT← ArrayType::get(intType, 8) ;
/* Allocate storage for the arrays */
AllocaInst* ar1AI← new AllocaInst(ar1AT, '''', inst) ;
AllocaInst* ar2AI← new AllocaInst(ar2AT, '''', inst) ;
/* ... */
/* Here we omit several lines of codes that

initialize the elements of each array. */
/* ... */
/* Create a new variable j that equals to symV ar,

and then load j. */
AllocaInst* jAI← new AllocaInst(varType, '''', inst) ;
StoreInst* jSI← new StoreInst(symVar, jAI, inst) ;

LoadInst* jLI← new LoadInst(jAI, '''', inst) ;
/* Compute j%7. */
BinaryOperator* remBO← BinaryOperator::Create(SRem, jLI,

cInt7, '''', inst);
/* Get an element from the array ar1AI with an index

remBO; load its value to l1LI. */
std::vector<Value*> l1Vec, l2Vec;
l1Vec.push back(cInt0);
l1Vec.push back(remBO) ;
ArrayRef<Value*> l1AR(l1Vec);
Instruction* l1EPI← GetElementPtrInst::CreateInBounds(

ar1AI, l1AR,'''', inst);
LoadInst* l1LI← new LoadInst(l1EPI,'''', false, inst);
/* Get an element from the array ar2AI with an index

l1LI; load its value to iLI. */
l2Vec.push back(cInt0);
l2Vec.push back(l1LI);
ArrayRef<Value*> l2AR(l2Vec);
Instruction* l2EPI← GetElementPtrInst::CreateInBounds(

ar2AI, l2AR,'''', inst);
LoadInst* iLI← new LoadInst(l2EPI, '''', false, inst);
/* Compose a type I opaque predicate, i == j. */
ICmpInst* type1Opq← new ICmpInst(inst, ICMP EQ, iLI,

jLI, '''');
/* Compose a type II opaque predicate,

i == j%7 + 1&&inst . */
BinaryOperator* addBO← BinaryOperator::Create(ADD,

remBO, cInt1,'''', inst);
ICmpInst* leftOpq← new ICmpInst(inst, ICMP EQ, iLI,

cInt1, '''');
BinaryOperator* andBO← BinaryOperator::Create(AND,

leftOpq, inst,'''', inst);
ICmpInst* type2Opq← new ICmpInst(inst, ICMP EQ,

cInt1,andBO,'''');

into two predicates i == 1 and j == 7. The second predicate
j == 7 will only be evaluated if the first predicate is true. If a
symbolic execution engine does not support symbolic memory, it
cannot solve the constraint of i == 1 and cannot reach the ordinary
predicate j == 7.

3.6.4 Template Generalization

With the above example, we have demonstrated how our idea works
in practice. Now we discuss how to implement the challenging
problem as a template.

In general, a template is a code fragment in a compiler pass,
which inserts, deletes, or modifies the program to be compiled.
Algorithm 2 demonstrates such a template which implements the
challenging symbolic memory problem in Figure 3.13(b). The
algorithm inputs an icmp instruction and outputs symbolic opaque

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 80

predicates. Suppose the icmp compares if a symbolic variable
equals to an integer, the template first parses the instruction and
get a symbolic variable symV ar and a constant ciObj. Then,
we define the types of the two arrays and initialize them. Next,
we can create an integer variable i and initialize it with the value
l2 ary[l1 ary[j%7]].

Based on the protected symbolic variable i, we can directly create
a type I opaque predicate with a comparison instruction i == j. To
compose a type II opaque predicate, we have to introduce one more
icmp instruction. The new instruction compares if i equals to a
value, and it should be true if the original icmp (i.e., inst) is true.
In this example, according to the array setting, when j equals to a
constant value, the value of i can be determined as j%7 + 1.

3.6.5 Template Enrichment

Employing only one template is vulnerable to pattern recognition.
We have to create different opaque predicates to increase the security
level. This can be achieved in two ways. Firstly, we may create
more templates by employing different problem settings. Secondly,
we may create new templates by employing new challenges.

Employing New Settings

For each challenge that symbolic execution is faced with, we may
compose a great many templates. Take the symbolic memory as
an example, one can create arrays with different elements, employ
a different modular, use three arrays instead of two arrays, store
the array with heap instead of stack. All such methods ensure that
the resulting symbolic opaque predicates are different in binaries or
assembly codes.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 81

Employing New Challenges

Another orthogonal approach is to employ new challenges, such
as floating-point numbers, covert propagations, and parallel execu-
tions.

Figure 3.13(c) is an example that composes opaque predicates
based on the challenge of floating-point numbers. A floating-
point number is an approximation of a real number with a fixed
length of digits in the form of significant × be. It enables the
computer to handle very large numbers or very small numbers with
only limited memory space. As a trade off, floating-point numbers
sacrifice the precision. Floating-point numbers may incur troubles
to symbolic execution because reasoning over rational numbers and
real numbers may lead to inconsistencies [23, 75]. In this example,
because the float type cannot represent 0.1 precisely, no matter
which value we assign to symvar, f == 0.1 cannot be satisfied.
To compose a type II predicate, we can change the predicate j == 7
to (1024 + f == 1024)&&(f > 0)&&(j == 7). The new
predicate aims to fool symbolic execution engines that the constraint
(1024 + f == 1024)&&(f > 0) cannot be satisfied, which is true
in the domain of real numbers. However, it can be satisfied in the
domain of floating-point numbers. For example, f = 0.000007 is a
solution. In this way, the type II opaque predicate can be satisfied
when j = 7, which preserves the semantics. If a symbolic execution
engine cannot handle such floating-point numbers, it may falsely
regarded f == 0.1 as a normal predicate, and the type II predicate
as an opaque predicate.

Figure 3.13(d) demonstrates how to compose opaque predicates
by attacking the challenge of covert propagation. Symbolic execu-
tion requires precise tracking on the propagation of the symbolic
values. However, symbolic values may be propagated in many ways
via I/O (input/output) operations. In this example, the symbolic
value j is propagated via a file on the disk and then assigned to

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 82

i. We can compose a type I opaque constant i! = j, which will
always be false. If a symbolic execution engine cannot track the
propagation, it would treat i as a constant and regard the opaque
predicate as a normal one. To compose a type II opaque predicate,
we can change the predicate j == 7 to i == 7, where i equals to
j. This modification keeps the original semantics of the program.
However, a symbolic executor may consider i as a constant and
reach false conclusions.

Figure 3.13(e) is another example that introduces a simple paral-
lel computing problem. Parallel executions are difficult to handle for
symbolic executions because the execution order is not only deter-
mined by the programs, but also by the host computer. Therefore, we
cannot generate a static control-flow graph for the program, which is
a basis for classic symbolic execution to work. In this example, we
create two more threads that modify the value of a symbolic variable
j: one thread increases in to in + 1, and another decreases in to
in − 1. Due to parallel execution, the two threads compute on the
same value of in simultaneously. The value of i is determined by
the thread that terminates late, which should be the second thread in
our example. Finally, the return value of the ThreadProp function
should equal to j − 1. Based on the protected symbolic variable i,
we can compose a type I opaque predicate as i == j, and a type II
opaque predicate as i == 6.

Similar to Algorithm 2, we can extract templates based on such
examples. Note that this work does not intend to enumerate all such
templates to create symbolic opaque predicates. Rather, we would
like to show a general framework and demonstrate how it works.
This can shed light to more types of symbolic opaque predicates.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 83

3.7 Performance Evaluation

3.7.1 Evaluation Criteria

According to Collberg et al. [42], the evaluation criteria for assess-
ing software obfuscation quality include potency, resilience, stealth,
and cost. However, not all of the criteria are applicable to our work.
We mainly evaluate symbolic opaque predicates with resilience,
stealth, and cost.

Resilience evaluates how the obfuscation technique can hold up
against automatic attacks. In this work, we assume the attackers
are symbolic execution-based adversaries, which are automatic at-
tacks. Section 3.5 already demonstrated the effectiveness of our
approaches against symbolic execution engines.

Stealth assesses whether an obfuscation technique is suspicious
to human attackers. A stealthy opaque predicate should not incur
abnormal instruction patterns or obvious statistical difference with
normal predicates.

Cost measures the overhead incurred by obfuscation. Opaque
predicates may incur overhead in both program size and execution
time. We should evaluate such overhead when obfuscating real pro-
grams with symbolic opaque predicates and compare the overhead
with existing opaque predicates.

We do not evaluate potency because it is not applicable to opaque
predicates. Potency measures how much obscurity can be added to
the program. This is the major objective of general obfuscation or
control-flow obfuscation, rather than opaque predicates.

3.7.2 Prototype Implementation

We have implemented a prototype obfuscation tool based on Obfuscator-
LLVM [93]. Obfuscator-LLVM is an obfuscation tool for C pro-
grams based on LLVM compiler [106]. We adopt LLVM as our
compiler basis because it is open-source released and has achieved

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 84

Figure 3.14: Prototype implementation based on Obfuscator-LLVM.

wide usage in both research and industrial fields.
Figure 3.14 describes the framework of our prototype. The

source code of a program is firstly processed by an LLVM frontend,
which transforms the source code to intermediate representatives
(IR). For C programs, the frontend is Clang. IR is the core
object processed in LLVM. LLVM provides a basic framework for
performing program analysis tasks based on IR. It allows users
to customize their own compilation passes for specific program
analysis tasks, such as optimization and obfuscation. Obfuscator-
LLVM in nature applies several compilation passes to obfuscate
programs in IR level. Finally, the IR will be compiled to binaries
by a corresponding backend (e.g., for X86 64 system).

Based on the framework of LLVM, we implement the feature
of symbolic opaque predicates as a compiler pass. The pass can
substitute the opaque predicates generated by Obfuscator-LLVM
with resilient ones. We have implemented all the challenging
problems discussed in Section 3.6.5. Users can decide which opaque
predicates will be employed during obfuscation.

Our prototype supports two methods to customize new templates
of symbolic opaque predicates. The first one is to write a native
LLVM pass which can insert IR (as shown in Algorithm 2) during
compilation. To this end, users should be familiar with the IR
syntax and LLVM APIs, which impose a steep learning curve. The

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 85

(a) Obfuscator-LLVM. (b) Floating-point
numbers.

(c) Parallel executions.

Figure 3.15: The assembly codes of symbolic opaque predicates.

P (

Parallel Programming

Figure 3.16: Comparing the stealth of symbolic opaque predicates with ordinary
predicates.

second method requires only very little knowledge about LLVM
development. Users can create new templates in source code level.
Then they can compile the source code to object code and link it
with the original program via static linkage. The second approach is
somehow limited but it can facilitate the development process.

3.7.3 Stealth

Currently, there is no standard evaluation method for stealth. Ex-
isting methods (e.g.,[174]) generally measure the statistical dif-

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 86

Table 3.3: Categorization of Instructions.
Category Instructions

Arithmetic Instructions imul, inc, sub, add, idiv, divsd, sbb
Logical Instructions and, sar, xor, test, shr, shl, or, xorps
Instructions for Data

Transfer
movaps, movsd, movabs, movzx,

mov, movss, movsx, movsxd, stosd
Instructions Converting

Data Dimension
cvtss2sd, cvtsi2sd, cvtsd2ss, cqo, cdq

Pointer Instructions lea
Comparison Instructions cmp, ucomisd

Jump Instructions
jle, jne, jge, jae, jl, je,jg, jp, ja, jbe,

jno, jmp
Stack-related Instructions pop, push, call, ret

Instructions Creating
Boolean Variable

setge, setne, setg, seta, setb, setl, sete

Other Instructions nop

ference of instructions between obfuscated programs and ordinary
programs. The less difference an obfuscation approach incurs, the
stealthier it is.

To apply the idea on evaluating symbolic opaque predicates, we
should measure the difference between a symbolic opaque predicate
and ordinary predicates. In general, the difference depends on
which challenging problem that a predicate employs. Different
problems will generate different codes and corresponding assembly
instructions. Figure 3.15 demonstrates the assembly codes of several
opaque predicates. Figure 3.15(a) is the default opaque predi-
cate generated by Obfuscator-LLVM, which is mainly composed
of arithmetic operations. Figure 3.15(b) is the symbolic opaque
predicate with floating-point numbers, which is mainly composed
of floating-point operations. The two figures demonstrate obvious
difference; however, all such instructions are widely used in ordinary
programs.

In our experiment, we use a similarity-based approach to measure
the difference between symbolic opaque predicates and ordinary
predicates. To this end, we randomly select 100 ordinary predicates

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 87

from the unobfuscated binaries. For each predicate, we arbitrarily
select the 10 instructions before its conditional jump because such
instructions would serve as essential information for reverse anal-
ysis. Then we categorize such instructions into several types with
a categorization approach employed for malware detection [95].
Table 3.3 lists the categories and corresponding instructions in
each category. Considering the space where each dimension is an
instruction category, a predicate can be represented as a vector in that
space. Then we can compute the center of the 100 ordinary opaque
predicates, and compute the euclidean distance from each predicate
to the center. Figure 3.16 shows the distribution of such distances.
In our experiment, the average distance is 2.6, and the max distance
is 5.4. For comparison, we also compute the distances from our
symbolic opaque predicates to the center, which are between 3.2,
4.1, 4.5, and 5.1. The distances are smaller than the max distance
of ordinary predicate. Moreover, they are slightly better than the
distance of the default opaque predicate employed in Obfuscator-
LLVM, which is 5.2.

The opaque predicates based on parallel programming has the
best performance in stealth. The main reason is that we have
employed a call-based approach to implement the predicate. As
shown in Figure 3.5(d), we implement the symbolic analysis prob-
lem in another function and only employ the return value in the
main routine. In its binary code shown in Figure 3.15(c), only a
call instruction is artificially added before the unconditional jump,
and the rest instructions are mostly from the original program. By
simply reading the instructions nearby a conditional jump, it would
be difficult to discover the tricks of symbolic opaque predicates.

3.7.4 Cost

To evaluate the cost of symbolic opaque predicates, we obfuscate
several general programs (e.g., Linux commands such as cat, ls,

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 88

(a) Size overhead when obfuscating
Linux command cat.

(b) Execution overhead when obfuscat-
ing Linux command cat.

(c) Size overhead when obfuscating
Linux command date.

(d) Execution overhead when obfuscat-
ing Linux command date.

(e) Size overhead when obfuscating
Linux command ls.

(f) Execution overhead when obfuscat-
ing Linux command ls.

(g) Size overhead when obfuscating
AES.

(h) Execution overhead when obfuscat-
ing AES.

(i) Size overhead when obfuscating
MD5.

(j) Execution overhead when obfuscat-
ing MD5.

Figure 3.17: Cost of symbolic opaque predicates.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 89

date) and several encryption programs (e.g., MD5 and AES). We
choose encryption programs because they generally have higher
security requirements, and therefore obfuscation is more needed.
When obfuscating the programs, we employ 80% obfuscation rate
(i.e., a configuration of LLVM-Obfuscator) as the baseline. Then
for each program, we replace a certain number (1, 5, 10, and no
limit) of opaque predicates from the obfuscated software with the
symbolic opaque predicates. We watch the performance variations
with different numbers of symbolic opaque predicates.

Figure 3.17 shows our evaluation results. We measure the
performance of obfuscation with both program size and execution
time. From the result, we observe that the size overhead is not
a big issue. The symbolic opaque predicates based on symbolic
memories and floating-point numbers both incur similar size over-
head in comparison with the default opaque predicate employed by
Obfuscator-LLVM. The sample of covert propagation involves more
instructions and therefore incurs more overhead. However, such cost
can be mitigated by employing a call-based implementation. For
example, although the sample of parallel execution also involves
many instructions, the resulting obfuscated program is even smaller
than the program obfuscated by the original Obfuscator-LLVM.

Some symbolic opaque predicates are also very efficient in
execution time, such as those based on symbolic memories and
floating-point numbers. Their costs are similar to the default opaque
predicates employed in Obfuscator-LLVM. However, some sym-
bolic opaque predicates incur much cost during execution. As shown
in e.g., Figure 3.17(h) and Figure 3.17(j), the execution overhead
may be thousands of times when employing covert propagation
and parallel programming to obfuscate encryption programs. Such
predicates involve heavy operations (e.g., file read/write, thread cre-
ation/execution) and incur nontrivial execution cost. The overhead
seems acceptable for general Linux programs, but it can be amplified
for encryption programs because the symbolic opaque predicates are

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 90

nested in loops in such programs.
In a word, the cost of symbolic opaque predicates depends on the

employed challenging problems and their implementation mecha-
nisms. Some symbolic opaque predicates can be very promising
with trivial costs. But we should be careful when employing other
opaque predicates with heavy cost, especially when using them with
loops. In practice, we may prioritize the cost of symbolic opaque
predicates and preemptively employ more efficient ones. Note that
there is still a large room to improve the usability issue, which is
beyond the scope of this work.

3.8 Related Work

In this section, we first survey the recent achievement of software
deobfuscation with symbolic execution techniques, which illustrates
the importance of our research problem; then we elaborate the
novelty of our research by comparing our work with existing opaque
predicates which might also be resilient to symbolic execution.

3.8.1 Symbolic Execution for Deobfuscation

Recently, the development of symbolic execution techniques has
bred several important attempts to deobfuscation(e.g., [122, 183,
188, 189]). Ming et al. [122] proposed LOOP, which is a logic-
oriented tool for opaque predicate detection. LOOP is made up of a
symbolic execution engine and a rule-based predicate analyzer. The
rule can detect three types of opaque predicates, including invari-
ant opaque predicates, contextual opaque predicates, and dynamic
opaque predicates. Another work [183] from the same group em-
ploys symbolic execution techniques to detect malware camouflage
from obfuscated binaries. Yadegari et al. [189] proposed a generic
framework to deobfuscate binaries based on symbolic execution.
Their framework collects traces generated by a symbolic execution

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 91

engine and then employs the traces to simplify the obfuscated
control-flow graph. Their work is based on an enhanced symbolic
execution engine (i.e., ConcoLynx [188]). However, the tool is not
available for public evaluation.

Besides, there are several other investigations that attack obfus-
cated software with symbolic execution techniques, such as [10,
19, 77]. Because the underlying techniques are similar, we do not
discuss each of them in detail.

3.8.2 Comparison with Existing Opaque Predicates

Before this work, Wang et al. [176] have conducted another investi-
gation that has a similar purpose with us. They propose to compose
resilient opaque predicates by attacking the weakness of symbolic
execution in handling loops. Specifically, they create opaque pred-
icates with unsolved conjectures, which is a form of looped codes.
A common characteristic of such unsolved conjectures is that they
would eventually exit the loops with some convergence properties.
For example, the Collatz conjecture takes an input x ∈ N+, and
iteratively calculates x = x/2 if x is even, otherwise calculates
x = 3x + 1. No matter what value x has bee initialized with,
the loop always terminates with x equals to 1. Besides, there
are other predicates that maybe secure against symbolic execution,
such as the opaque predicate with one-way function [156], and the
predicate involving dynamic updated objects [42]. Note that all such
opaque predicates are secure because they attack some weakness
of symbolic execution. Such approaches also comply with our
framework, and we may extend our template repository with them.

In a word, our work is different from previous work in that
our framework is more general. We emphasize the importance of
employing symbolic variables rather than leveraging specific tricks.
In other words, we highlight the common properties for an opaque
predicate to be secure against symbolic execution.

CHAPTER 3. SYMBOLIC OPAQUE PREDICATES 92

3.9 Conclusion

To conclude, this chapter studies the security issue of control-flow
obfuscation with respect to symbolic execution-based attacks. To
combat such attacks. we have proposed symbolic opaque predicates
and demonstrated a general framework to compose such predicates.
A novel characteristic of symbolic opaque predicates is the bi-
opaque property, which can incur either false negative or false posi-
tive issues to symbolic execution-based attackers. To demonstrate
the usability of our approach, we have implemented a prototype
obfuscation tool based on Obfuscator-LLVM and conducted real-
world experiments. We have evaluated the resilience, stealth, and
cost of some symbolic opaque predicates. Evaluation results show
that symbolic opaque predicates exhibit good resistance against
prevalent symbolic execution engines. Some opaque predicate
examples are also stealthy and efficient. Therefore, symbolic opaque
predicates can serve as a promising way for practical obfuscation
tools to improve their resilience to symbolic execution-based at-
tacks.

2 End of chapter.

Chapter 4

N-Version Obfuscation

Software tampering attack is a notorious threat to current systems,
such as Android. However, there is still no silver bullet for this
problem with pure software techniques. This chapter introduces a
novel obfuscation approach to combat such attacks. Rather than
proposing new tricks against tampering attacks, we focus on imped-
ing the replication of software tampering via program diversification
and thus pose a scalability barrier against the attacks.

4.1 Rationale

Software is vulnerable to tampering attacks after release. Attackers
may bypass its license checking mechanism and use restricted
features, or they may pack malicious payloads into the software and
disseminate infected packages [196]. Although there are already
security mechanisms (e.g., obfuscation and self-checksumming) to
protect software from being reverse engineered, skillful attackers
can bypass the protections with enough determination. It is of-
ten believed that software cannot achieve theoretically tampering-
resilience without trusted hardware circuits [34]. However, hardware-
assisted approaches suffer compatibility issues with current PC or
smartphone taxonomy as they require specifically tailored hardware.
Hence, investigating purely software-based approach is critical.

93

CHAPTER 4. N-VERSION OBFUSCATION 94

In this chapter, we propose a tampering-resilient solution which
does not rely on hardware. Our approach is inspired by the lifecycle
of tampering attacks, which often contains a replication phase to
affect more hosts and gain as much benefit as possible. Intuitively,
we may not guarantee a software instance to be fully tampering-
resilient, but we can nullify the applicability of the tampering
solution on other machines. Such an idea is inspired by the existing
program diversification approach [64], which prevents the spreading
of attacks by making intrusions much harder to replicate. If an
attacker tries to launch attacks on another machine, she has to work
on it specifically. In this way, we can disarm the ability of automated
contagion and control the scope of potential damages.

As a first attempt, we propose to deliver the same featured,
but functionally non-equivalent software versions to different ma-
chines. We name the approach as N-version obfuscation (NVO),
and succinctly describe its major properties: metamorphic, ho-
momorphic, and automated. The metamorphic property requires
each version of the software to be unique in functionality so as
to avoid the replication of tampered software; the homomorphic
property enables a universal handler to handle the variance among
different versions; the automated property automates the program
compilation and delivery process concerning the N versions. We
further provide a candidate solution for client-server applications.
Our solution integrates a MAC (Message Authentication Code)
mechanism with functionally non-equivalent SHA1 algorithms1 into
the original software. Our security analysis result shows that the
attacking complexity incurred by NVO increases almost linearly
with the number of functionally non-equivalent software versions,
which would pose a scalability barrier against tampering attacks
considering that an application can have millions of versions used
by different users. It is worth noting that NVO itself provides no
protection against tampering; however, it can be applied seamlessly

1FIPS PUB 180, Secure Hash Standard

CHAPTER 4. N-VERSION OBFUSCATION 95

to other existing tampering-resilient approaches, and hence equip
them with the replication-resistant property.

The rest of this chapter is organized as follows. We first give more
details about the motivation and background in Section 4.2. We
then introduce our approach with a candidate solution in Section 4.3.
Section 4.4 evaluates the effectiveness of our approach. The related
work is discussed in Section 4.5. Finally, Section 4.6 concludes this
chapter.

4.2 Motivation and Background

4.2.1 Adversary Model

This chapter assumes the hostile host model [147] whereas attackers
can use a malicious host to analyze the software and inspect its
execution step by step. In general, adversarial software tampering
can be achieved in two ways: software repacking and dynamic
injection. We discuss these two approaches as follows.

Software Repacking

For many reasons, software installation packages downloaded by
the users may not be the original ones. Take Android apps as an
example, adversaries may replace the original advertisement module
of the software for extra profits or plant malicious payloads for
remote control. Such repacked apps are very common in either
Google Play or third-party markets [195].

One important reason for the widespread of Android app repack-
ing is that repacking Android apps is generally much easier than
repacking traditional PC software written in C/C++, or iOS apps
written in Objective C. Android program is mainly written in Java,
and its installation package is delivered to end users in a compressed
file with an apk extension. One major component of the installation
package is the classes.dex, which wraps all the java classes.

CHAPTER 4. N-VERSION OBFUSCATION 96

(a) Java bytecodes opened with jd-jui.

(b) Corresponding smali code.

Figure 4.1: Example of disassembling Android apk.

To interpret the program logic of the app, one may convert the
classes.dex to either Java bytecode (i.e., jar file) or Dalvik
bytecode (i.e., smali code) with corresponding tools (e.g., dex2jar,
Apktool). Unlike assembly codes, the bytecodes are much easier
to read. Figure 4.1 shows some examples of such bytecode snip-
pets. Attackers can modify an application by rewriting the target
bytecodes.

Note that Android provides an official package integrity checking
mechanism based on the digital signature. However, many develop-

CHAPTER 4. N-VERSION OBFUSCATION 97

ers sign the APK with a self-signed digital certificate, which cannot
be verified. For usability reasons, Android generally does not strictly
forbid the installation of such repacked apps signed by an untrusted
digital certificate.

Dynamic Injection

Attackers may also manipulate an app during its execution, e.g., by
injecting a library into the app process using Linux ptrace tool.
This approach is popular among viruses, which place backdoors to
control the program or monitor its execution. Besides, powerful
anti-virus software also employs the same way to ‘protect’ the
security of their clients. Figure 4.2(a) demonstrates an example
of such dynamic injection attacks. The injected payloads can be
very powerful and cause severe security issues. For example, we
can obtain login credentials by injecting a payload into the process.
Figure 4.2(b) demonstrates the result of our credential leakage
experiment by injecting the VPN client of a famous vendor. Our
another experiment shows that over 90% of apps can be dynamically
injected [185].

4.2.2 Tampering-Resilience Background

Now, we overview the techniques of reverse engineering and review
several major approaches to combat reverse engineering attacks.

Reverse Engineering Overview

Software tampering involves a process to analyze and manipulate
a software package based on its executables, e.g., in an executable
and linkable format (ELF). Anti-reversing techniques impede such
a process by placing tricks in the executables to fool the analyzer.
General reverse engineering on ELF files involves two phases: a
disassembly phase and an analyzing phase. The disassembly phase

CHAPTER 4. N-VERSION OBFUSCATION 98

Footprint of injection

(a) App (pid:3789) has been injected by LBE.

(b) Experiment to steal credentials by dynamically hijacking the function
java...tostring().

Figure 4.2: Example of dynamic injection.

decodes the ELF binaries to assembly code, which can be performed
automatically by some tools (e.g., IDA 2). We can hardly impede
the decoding because ordinary processors should be able to decode
the program. Therefore, the reverse engineering and corresponding
anti-reversing efforts are mainly related to the analyzing phase.

There are two general ways to do a reverse analysis, i.e., the
static approach and the dynamic approach. The static approach
does not execute the assembly codes but directly analyzes them
using reverse engineering tools such as IDA. Although there are
many static analysis tools are available off-the-shelf, the power of
pure static approaches is very limited. For example, they cannot
detect runtime unpacking which has been widely used by malware
to escape static analysis. A more powerful approach is dynamic
analysis, which analyzes a program via real executions [58, 136].

2https://www.hex-rays.com/products/ida/

CHAPTER 4. N-VERSION OBFUSCATION 99

There are many approaches which can obstruct the analyzing
phase, such as obfuscation, anti-debugging, and self-checksumming.

Anti-Debugging

Researchers have suggested setting traps with anti-debugging code
to hinder debugging. For example, one may simply check the debug
register to detect if a debugger is present, or he can count the
execution time of a code block to detect if it has been paused, and
then penalize the debugger [67, 157]. If the trick of anti-debugging
code can be recognized, adversaries may suppress the checking by
patching the binaries or switching to another debugger.

Self-Checksumming

When deriving enough understanding about the code, adversaries
can manipulate the binaries by adding or deleting some code ac-
cording to a specific purpose while preserving its ability of execu-
tion. A possible way to detect such code patching is to use self-
checksumming code. The basic idea is to pre-calculate relative
addresses (i.e., the checksum), and let the program fetch instructions
during execution according to such addresses. If the checksum
governed regions have been manipulated, the instruction would
not be correct, and the program would likely to suspend [179].
Using overlapped self-checksumming code can further increase the
strength of protection. However, it can be defeated by carefully
detecting and removing them [137] or exploring the vulnerabili-
ties [179] of the execution environment.

4.2.3 Challenge of Tampering-Resilient Apps

Apps can be very complex. They can involve classes written in Java,
native code written in C or C++, and other third-party libraries,
all of which are vulnerable to tampering. Therefore, a universal

CHAPTER 4. N-VERSION OBFUSCATION 100

safeguard is required to protect the integrity of each component.
Since no general tools can be applied for such heterogeneous codes,
the implementation of tampering-resilience for the whole program
would be labor intensive. Moreover, mobile apps are usually
upgraded more frequently than general PC software, so that their
testing strategy and releasing criteria cannot be as rigorous as PC.
Consequently, the laborious tampering-resilient implementation and
testing would likely to slow down the releasing speed, or insufficient
testing on such low-level code tends to cause more bugs.

Besides, we should also consider the overhead incurred by se-
curity mechanisms. Traditional anti-tampering approaches usually
work by adding extra code to the original program, which can
complicate the control flow of the original program, or by per-
forming some integrity checking. Such approaches inevitably incur
overhead, and a trade-off between the effectiveness and the overhead
should be considered. Note that for some resource-constrained
mobile devices cannot afford much overhead.

Finally, according to the literature [34], it is impossible for
software to be absolutely secure against analysis without specific
hardware protection. Although there are some existing solutions for
Android apps, such as the ProGuard offered by Google, DexGuard,
and AppInk [195], there are no general criteria regarding the ac-
ceptable tampering-resilient strength. It is desirable to develop an
anti-tampering solution whose security can be proved or quantified,
and referenced by the developers.

4.3 Our Proposed Approach

While achieving theoretically tampering-proof is hardly possible,
our idea aims to pose the tampering attack unscalable. In this
section, we formally define the idea of NVO and then introduce a
candidate solution for networked apps.

CHAPTER 4. N-VERSION OBFUSCATION 101

Figure 4.3: Conceptual framework of NVO.

4.3.1 General Idea of NVO

We formally define the NVO problem as the following: Given an
algorithm A, how to automatically generate a large set of function-
ally non-equivalent algorithms {C1, ...Cn}, which are similar to A,
and their parent algorithm P , so that they meet the following three
properties:

Homomorphic: When performing on the same task, P can output
the same result as Ci, if the gene vector {g1, ...gn} of Ci is known to
P .

Metamorphic: When performing on the same task, Ci and Cj
generally output different results.

Automated: The generation and delivery of {C1, ...Cn} can be
automated.

Figure 4.3 demonstrates the conceptual framework of NVO. The
producer generates a set of functionally non-equivalent individuals,
i.e., {C1, ...Cn}. The handler communicates with each individ-
ual and processes their requests leveraging a parent algorithm P .
Suppose the software architecture is in client-server mode, we can
deploy the handler at the server side, and deliver the individuals
to the client side. In this way, the client can have functionally
non-equivalent diversities according to the metamorphic property,
and the homomorphic property enables the server to handle such
diversities. To make the idea practical, we should automate the
generation and delivery of such diverse software versions.

CHAPTER 4. N-VERSION OBFUSCATION 102

4.3.2 Our Candidate Solution

To apply NVO on apps, one major issue to address is regarding
which part of an app can have effective functionally non-equivalent
diversities. Intuitively, there are two possible ways: we can either
find the candidate code snippet in the original program or add some
extra code to the original program. Generally, the first approach
is program dependent, and can hardly be generalized. Hence,
our approach is to add extra code which can achieve the intended
diversities.

A possible way is to add MAC to the original program. MAC is a
popular mechanism adopted by client-server computing architecture
to check the integrity and authenticity of messages. When a client
sends a request to the server, it calculates the MAC of the request
and appends it to the original request. The server validates the
MAC first and then processes the request. We can leverage the
MAC to create clients with functionally non-equivalent diversities.
More specifically, the diversity can be introduced based on the
hash algorithm (e.g., SHA1), which is one major component of a
MAC algorithm. Figure 4.4 illustrates such a mechanism. Each
client is embedded with a unique SHA1-based MAC calculation
algorithm. To successfully perform a request to the server, it has
to send the identification (such as machine serial number or user
id), the request, and the MAC together to the server. The server
queries the genes of a client from its local N-version database
according to the identification of the client and then verifies the
MAC. The distribution of such diverse programs can be achieved
by implementing the MAC in mobile code (i.e., a dynamic library),
and delivering it by the server upon request. In other words, the
client software can be launched without the library for the first time
and then requests the server for the library. The server randomly
chooses a library from a pool of pre-compiled libraries and delivers
it to the client; in the meanwhile, the server records the mapping

CHAPTER 4. N-VERSION OBFUSCATION 103

���������	
�

���������

������

	
�

��
��

	
�

��

������

���������
��������

���������	
�

���������

	
�

��
��
�

���

Figure 4.4: Sample of NVO for tampering-resilient apps.

between the genes of the client and its unique identification in the
N-version obfuscation database. Figure 4.5 demonstrates a detailed
safeguard delivery and initialization process.

In the following paragraphs, we first show a viable means to solve
the NVO problem with the SHA1 algorithm, and then discuss the
security measurements which can be built on the mechanism.

N-version Obfuscated SHA1

Our approach leverages the iterations of calculations needed by
SHA1 to generate functionally non-equivalent diversities. The main
loop of original SHA1 (Algorithm 3) includes 80 rounds of itera-
tions. Each iteration takes one plaintext block (w[i]) into calculation.
For every twenty rounds, the calculation (the equation for generating
f and the value of k) switches to another one. Even though there are
some security considerations of choosing a specific calculation for
each round, to our best knowledge, no evidence shows the programs
would suffer great security degradation if we switch them with each
other. Therefore, we can diversify the original SHA1 algorithm
by choosing different sequences of equations for generating f and

CHAPTER 4. N-VERSION OBFUSCATION 104

Server

NVO Service

Module

App Service

Module

App Client

User Opens

the App

Check Safeguard

Existence

Load the

Safeguard

Request for

Safeguard

Get IMEI

Request for

Safeguard

Not exist

existed

[IMEI]
Recode IMEI

Safeguard Pair
[IMEI]

Send the

Safeguard

[safegu

ard]

Send the

Safeguard

[safegu

ard]
Get the

Safeguard

Load the

Safeguard

Calc N-Hash(m)

Verify Safeguard
Request for

verification
[m],[h]

Verify the

Digest
[m][h]

Send the Result
[safegua

rd]
Send the Result

[safegu

ard]
Get the Result

Waiting for

Operation

Figure 4.5: Activity diagram to automate the process of safeguard delivery and
initialization.

sequences of values of k, which are the genes of individuals. We
can also design a parent algorithm which can receive the genes of
an individual, and process data input according to the setting of
genes. Algorithm 4 shows such a parent algorithm we designed.
In Algorithm 4, the pointer array of equations (f genes[80]) for
generating f and the value array of k (kgen[80]) for the 80 rounds
of iterations are passed to the algorithm as the genes of a child.
Obviously, given the same input w[80], the parent algorithm can
compute the same result as a child when fgen[80] and kgen[80] are
properly set.

CHAPTER 4. N-VERSION OBFUSCATION 105

Algorithm 3: The main loop of SHA1.
Data: w[80]
// blocks of plaintext
for i = 0; i < 80; i++ do

if 0 ≤ i ≤ 19 then
f ← (b AND c) OR ((NOT b) AND d);
k ← 0X5A827999;

end
if 20 ≤ i ≤ 39 then

f ← b XOR c XOR d;
k ← 0X6ED9EBA1;

end
if 40 ≤ i ≤ 59 then

f ← (b AND c) OR (b AND d) OR (c AND d);
k ← 0X8F1BBCDC;

end
if 60 ≤ i ≤ 79 then

f ← b XOR c XOR d;
k ← 0XCA62C1D6;

end
temp← (a LEFTROTATE 5) + f + e+ k + w[i];
e← d;
d← c;
c← b LEFTROTATE 30 ;
b← a;
a← temp;

end

Security based on MAC

The N-version obfuscated SHA1 program itself provides little ef-
fectiveness against software tampering attack. However, it is re-
sistant to replication, because the server cannot verify the MAC of
replicated programs. Therefore, it can serve as a basis for software
integrity checking, and equip programs with a replication-resistance
property. In this section, we discuss one possible way to build such
security features on top of the MAC.

A viable means is to implement an integrity checking function
aligning with the MAC in the safeguard so that it can serve as

CHAPTER 4. N-VERSION OBFUSCATION 106

Algorithm 4: A parent algorithm for SHA1
Data: fgen[80], kgen[80], w[80]
for i = 0; i < 80; i++ do

Call fgen[i];
// Pointer to F0, F1, F2 or F3
F TAIL(kgen[i], w[i]);

end
F0() f ← (b AND c) OR ((NOT b) AND d);
F1() f ← b XOR c XOR d;
F2() f ← (b AND c) OR (b AND d) OR (c AND d);
F3() f ← b XOR c XOR d;
F TAIL(k,w) temp← (a LEFTROTATE 5) + f + e+ k + w;
e← d;
d← c;
c← b LEFTROTATE 30;
b← a;
a← temp;

a safeguard for the whole app. By interleaving the code of the
integrity checking function with the MAC algorithm, the integrity
checking can be triggered when calculating a MAC. Algorithm 5
shows an exemplary integrity checking function for the apps of
Android operating system. The function navigates the maps file
of the app process itself, which records the program segments
and their addresses in the memory. It then compares the record
with a previously defined standard dictionary by the developers.
If there is any abnormal segment in the maps, i.e., the integrity
has been violated, a responsive mechanism can be triggered. Such
an approach is effective in detecting either software repacking or
dynamic injection attacks as we have discussed in Section 4.2. For
example, Algorithm 5 can detect the tampering in Figure 4.2(a) by
finding that com.lbe.../client.jar is an abnormal segment.

If an attacker has successfully tampered one copy of the safe-
guard (e.g., removing the integrity checking function) and replicated
it on other machines, the server can detect the replication because of
an incorrect MAC, i.e., inconsistent mapping between the identifica-

CHAPTER 4. N-VERSION OBFUSCATION 107

Algorithm 5: Example of integrity checking function.
Data: dict < segment >
// A list of predefined segment with name and size
IntegrityChk() pid← getpid();
file← open (/proc/pid/maps);
while line← readline(file) != EOF do

segName← GetSegName(line);
segSize← GetSegSize(line);
if !dict.contains(segNmae) then

Reaction();
else

if dict.getsize(segNmae)!=segSize then
Reaction();

end
end

end

tion and the genes. We may further implement a reaction mechanism
to renew the safeguard or crash the client software directly.

Protecting the Genes

Genes are the secrets of the diversity and should be resilient to
adversarial extraction. Without protection, the N-version software
executables are generated in plain ELF binaries. Adversaries may
find the gene sections by comparing several versions of the software,
and extract the genes manually, or even automatically. Figure 4.6
demonstrates the genes of the safeguard located using IDA. To pro-
vide protections for the secrets from being extracted, we randomly
change the meaning of the genes, i.e., the same value of fgen[i] for
different versions may trigger different operations. We further adopt
two methods to protect the meaning of genes from being reasoned:
functional obfuscation, and control-flow obfuscation with opaque
constants.

a) Functional obfuscation: Adversaries may reason the meaning
of the gene by checking the call relationship with some functions
(e.g., F0, F1 in Algorithm 4). We hence obfuscate the functions

CHAPTER 4. N-VERSION OBFUSCATION 108

(a) Genes in the .rodata section of the
safeguard using IDA View.

(b) The bits of genes using HexView.

Figure 4.6: Locating the genes with IDA.

in each version from being located. Firstly, we change the func-
tion names to random strings, so that attackers cannot locate the
functions easily located by their names. Secondly, we change the
order of those functions, so that they appear in different positions of
the executables. In this way, even when adversaries have extracted
the genes, they still have trouble in mapping the genes with the
functions.

b) CFG obfuscation: In this step, we obfuscate the CFG, so
that even the functional obfuscation can be penetrated, the calling
relationship between the genes and the functions would not be easily
solved. To this end, we adopt the obfuscation approaches proposed
in [127], which composes NP-hard problems with function pointers
and opaque constants. A comparison of the instructions before and
after the CFG obfuscation is shown in Figure 4.3.2.

Finally, it is worth noting that the obfuscation protections we
adopt to protect the secrets in this section are all functional equiv-
alent transformations. The NVO approach itself does not provide
any resistance to reverse engineering. However, our approach
can be seamlessly integrated with other anti-reverse-engineering
protections, such as anti-checksumming. We may use them together
to provide better tamper-resistant capabilities.

CHAPTER 4. N-VERSION OBFUSCATION 109

(a) Before CFG obfuscation, the function calling can be easily mapped with the
genes in the jump table.

(b) After CFG obfuscation, the function calling related to the genes has been
obfuscated using opaque constants and sub jump tables.

Figure 4.7: Example of obfuscation for switch/case.

Generating N-versions

We automate the process of generating N-version SHA1 algorithms
based on LLVM, which is a widely used open-source compiler that

CHAPTER 4. N-VERSION OBFUSCATION 110

supports extensions. LLVM first represents the source code with Ab-
stract Syntax Tree (AST) and then transfers it into intermediate code
(IR), which would finally be compiled into executables according to
a specific platform. The automation can be achieved in two ways:
in AST level by customizing a libtooling (i.e., an LLVM tool
that can manipulate the source code of a target AST branch during
the compilation process), or in IR level by adding extra N-version
obfuscation passes to the compiler. We suggest the second way
because IR is machine independent and provides better adaptability.

According to Algorithm 4, each gene (either fp[i] or k[i]) has
four possibilities, and we can use two bits to represent a gene.
During each compilation, we first randomly generate two 160-bit
long sequences: one as the chromosome for the equation function
pointer (i.e., fp[80]) and the other as the chromosome for the value
option of k (i.e., k[80]). We then replace the corresponding code
with hardcoded genes. Similarly, we can implement the obfuscation
approaches by adding obfuscation passes for protecting the genes in
a similar way as that in [93].

4.3.3 Approach Discussion

Several ideas proposed in the literature are very close to NVO, such
as white-box encryption, and N-version programming (NVP). In this
section, we compare NVO with these ideas and clarify why NVO is
a unique approach to security.

White-box Encryption

NVO creates functionally non-equivalent diversities among versions
in the level of program logic. A question to ask is why we
do not simply use different keys to compose diversities. For
example, we may use a keyed-hash message authentication code
(HMAC) algorithm and hardcode a unique symmetric key into each
version. Note that such an approach is also effective, but it is

CHAPTER 4. N-VERSION OBFUSCATION 111

Table 4.1: Comparison of NVP and NVO.
NVO NVP

Purpose Security:tampering resistant Reliability: fault tolerant
Fault Malicious faults Accidental faults

Assumption Independent obfuscation Independent programming
Program Functionally non-equivalent Functionally equivalent

Generation Automatically generated Independently designed
Population Very large Very small

Effectiveness O(N) security 1− (1−R)N reliability
Cost O(1) O(N)

more vulnerable than our proposed NVO approach because hiding a
key (i.e., white-box cryptography) is more difficult than hiding the
program logic [36]. White-box cryptography can be viewed as an
extreme circumstance of NVO with only key diversities. Besides,
white-box cryptography does not stress on producing diversities,
which is the major focus of NVO. Essentially these two approaches
are two orthogonal frameworks, each with its own objectives and
algorithms. Nevertheless, our approach may incorporate white-box
cryptography for a hybrid security mechanism.

N-version Programming

NVO improves software security by automatically generating differ-
ent versions of the software. It is inspired by the classical N-version
Programming (NVP) approach, which improves software reliability
by independently designing different versions of software, so that
the same bug may not happen in all versions [33, 116]. Although
the two ideas are similar, they target in solving different problems,
and they are very different in several key aspects. Table 4.1 presents
a detailed comparison of NVO and NVP.

CHAPTER 4. N-VERSION OBFUSCATION 112

4.4 Evaluation

NVO aims to impede the replication of attack by creating diversi-
fied software instances and increase the complexity for intruding
multiple clients. In this evaluation section, we first discuss the
effectiveness of NVO in thwarting tampering replication and then
evaluate the complexity incurred by NVO for intruding multiple
software clients. Note that our evaluation only considers the soft-
ware tampering attack, and we do not consider other types of attacks,
such as side-channel attacks.

4.4.1 Security Effectiveness

Suppose a program has adopted the protection mechanism discussed
in Section 4.3.2. If a decent attacker wants to manipulate the
program through software repacking or dynamic injection, she has to
disarm the security safeguard by removing or modifying the security
code discussed in Algorithm 5. According to the adversary analysis,
the safeguard cannot be simply removed or disabled from the app,
because the MAC mechanism rested in the safeguard needs to be
executed. However, in a hostile host environment, the software
can be fully inspected. Through careful analysis, the attacker may
discern that the protection lies in the integrity checking function
of Algorithm 5. If she is skillful and spends enough efforts,
she can further disable the checking by carefully modifying the
function, such as suppressing the reaction. If there is no NVO
protection, the attacker may replicate the repacked app, or apply her
dynamic injection scripts on other machines, and the whole software
ecosystem would be contaminated. However, NVO can impede such
replication of tampering attack, with detailed discussions in what
follows.

If the attacking type is app repacking, then the repacked app
replicated on multiple machines would have the same genes for the
MAC algorithm. Suppose the app (e.g., ebank) uses UserID as

CHAPTER 4. N-VERSION OBFUSCATION 113

the corresponding unique ID for the genes (as we have discussed
in Figure 4.4), then the server would receive mismatching MAC
from the app that has been logged on, and thus can detect that the
client app has been tampered. In this way, we may take advantage
of the user’s credential, which cannot be easily faked. But what if
the app mainly provides services to anonymous users that do not
require logging on? Generally, such kind of apps does not have
strong security requirements. Having said that, NVO still works
for such apps by employing other information as the ID, such as
the International Mobile Equipment Identity (IMEI). The major
difference is that IMEI can be faked much easier. For example,
the repacked app can hardcode the faked IMEI corresponding to the
genes of the app. However, when replicating on multiple machines,
the server would detect the abnormality that multiple clients are
using the same IMEI. In a nutshell, due to the divergence property
of NVO, the server can detect app repacking attack when the app
is communicating with the server. Such a detection condition is
trivial because, for many apps, pure clients are useless unless they
can interact with the server (e.g., ebank, shopping), or obtain rich
contents from the server (e.g., news, videos).

If the attacking type is dynamic injection, the sample integrity
checking function (e.g., Algorithm 5) is effective in detecting the
tampering. Although it relies little on the NVO mechanism, the
NVO hardens the security of the integrity checking function against
being suppressed. For example, if the attacker seeks to suppress the
security checking in Algorithm 5, an intuitive way is to disable the
Reaction() function. To locate the function within the ELF file,
the attacker may either check the related ELF table (e.g., .dynsym
and .rel.plt) dynamically or hardcode the address of the function into
the malicious code. However, our NVO implementation transforms
such self-defined function names to a random alphabet combination
for each version, so that the dynamic approach cannot know which
symbol designates the target function. Besides, the hardcoded

CHAPTER 4. N-VERSION OBFUSCATION 114

address also cannot work because the function would appear at
different positions of the binaries for each version, due to our
functional obfuscation implementation.

4.4.2 Security Strength

To replicate tampering attacks, attackers have to bypass our NVO
settings. Intuitively, they may either suppress the security checking
in each version dynamically or create a library which is similar to the
parent algorithm and extract the genes of each version. We discuss
the complexity of these two kinds of attacks in what follows.

Suppressing Security Checking

To suppress the security checking of a software instance, attackers
should obtain the safeguard on that machine and then remove the
checking instructions within the safeguard. If the safeguard is pro-
tected with interleaved self-checksumming code [31], a successful
tampering requires removing all the self-checksumming code at the
same time, of which the chance is very low without sophisticated
analysis. Existing approaches to identify such code generally
require dynamic taint analysis and debugging [137]. Empirically,
the time required to tamper each safeguard is not negligible.

Let t0 denote the time needed for analyzing one software copy
and tampering it on the attacker’s own hostile host. The time
complexity is O(1), which equals to tampering one software copy
without NVO. Let t1 denote the time needed to fetch the safeguard
on another machine, so as to replace it, and t2 denote the time needed
to tamper it. If the attacker wishes to tamper the software on n
machines, the total time can be estimated as t0 + n ∗ (t1 + t2).
Because of the interleaved self-checksumming code, t2 should not
be negligible [136]; hence the complexity can be approximated to
O(n).

CHAPTER 4. N-VERSION OBFUSCATION 115

Universal Attacker

Another possible tampering approach is to build an algorithm similar
to the parent, which calculates the hash value according to the genes
of a specific child. Such an approach requires the attacker to be able
to extract the genes from each safeguard. To this end, the attacker
may compare the difference between the two implementations, and
locate the genes. If the attacker has derived enough knowledge
on our NVO theory and implementation, such kind of attack is
theoretically possible. However, in our NVO implementation, the
meanings of the genes differ in different versions, because they
have been obfuscated with opaque constants [127]. To our best
knowledge, existing work on breaking such obfuscated programs
requires either symbolic execution with sophisticated constraint
solvers or complicated taint analysis [189], which is computation-
ally intensive and time-consuming. Let t3 denote the time needed
to extract the genes of a safeguard. The time needed to tamper the
software ecosystem can be estimated to t0 + n ∗ (t1 + t3). Because
efficient automatic deobfuscation is hard to achieve, t3 should not
be negligible [2, 57]. Therefore, the complexity still equals to O(n).
Note that n can be made arbitrarily large as the obfuscation task can
be fully automated.

Finally, our complexity analysis results rely on the problem
incurred by traditional anti-tampering protections. But different
from the traditional work, we do not require the anti-tampering
protections to approach theoretical secure, which can hardly be
guaranteed. We only require that the protections cannot be thwarted
automatically, which is more sound and realistic.

4.4.3 Overhead

Now, we discuss the overhead of our candidate solution for each
client. Our baseline is a networked app which has already imple-
mented a security checking mechanism which is not resilient to

CHAPTER 4. N-VERSION OBFUSCATION 116

large-scale attacks. In this way, the overhead is mainly incurred
by the traditional software protection techniques and newly added
message authentication mechanism. While the first part of the
overhead is dependent on specific protection techniques, the second
part is more easy to evaluate. In particular, the size overhead of the
SHA1 algorithm in binaries is about 10 KB, which is very small
considering the size of an app. The execution overhead and network
overhead are trivial in comparison with other popular transportation-
layer security mechanisms (e.g., SSL/TLS) adopted by such apps.

4.5 Related Work

To protect apps from unauthorized manipulation, Google offers
ProGuard, which is a free obfuscator and optimizer for Android apps
that can make the application harder to be analyzed. There are also
premium versions of such tools (e.g., DexGuard) which are more
powerful. To our best knowledge, they provide no features against
tampering replication.

Recent literature in protecting users from using tampered apps
mainly focuses on detecting repacked apps in a large scale, such as
[61, 155, 164, 171, 196, 197]. However, these investigations are not
quite related to our problem. Several other investigations focus on
detecting repacked apps with watermarking approaches [142, 195].
Zhou et al. [195] proposed the idea of manifest apps and the corre-
sponding tool, AppInk. AppInk can take the source code of an app
as input and automatically generate a new app with a transparently-
embedded watermark and the associated manifest app. The manifest
app can then be used for verification purpose by triggering certain
app control flows to regenerate the watermark. Ren et al. [142]
proposed another watermarking solution (i.e., Droidmarking) for
app plagiarism detection. Droidmarking is based on a primitive
called self-decrypting code, and the watermark locations are not
intentionally concealed. These watermarking approaches are gen-

CHAPTER 4. N-VERSION OBFUSCATION 117

erally effective for app repacking detection within the scope of code
plagiarism, but they are not effective for other kinds repacking, such
as third-party library replacement.

To protect apps from being repacked, Zhou et al. [194] proposed
an approach that re-encodes an Android app with a transformed
virtual instruction set, so that general reverse engineering tools
cannot inspect the app. To run the protected app, the developers can
use a specialized execute engine for these virtual instructions. The
idea is similar to another work proposed by Shu et al. [159]. These
approaches can increase difficulties for interpreting the program, and
they are effective against popular reverse engineering tools. But
their security relies on the secret of the instruction translation table,
which can be discovered manually by decent adversaries.

As we have discussed, existing work in this area mainly focuses
on increasing the difficulty of repacking, or the detection of repacked
apps. Our work is different from them in that we focus on decreasing
the reusability of repacked apps.

4.6 Conclusion

This chapter focuses on impeding the replication of software tam-
pering, which is a unique perspective for anti-tampering research.
Our proposed NVO approach can automatically generate and deliver
functional non-equivalent software versions to different machines.
In this way, it can disable the adaptability of a tampering approach
to different victims. To demonstrate the applicability of NVO in
practical scenarios, we propose a candidate solution for general
networked apps. Specifically, the candidate solution introduces
functional non-equivalence with a MAC mechanism. Our eval-
uation result shows that the achieved functionally non-equivalent
diversities can be effective against tampering replication, and the
complexity to tamper the software ecosystem is linearly increased
with the number of software versions, which can be automatically

CHAPTER 4. N-VERSION OBFUSCATION 118

generated with trivial cost.
Although the NVO idea is promising, this work can be extended

in various ways. Our candidate solution highly depends on the
characteristic of network communications and the MAC mechanism.
More solutions are expected in the future to help us explore the tech-
nique more thoroughly. Besides, our candidate solution incorporates
merely existing anti-tampering approaches. A systematic study on
how to effectively combine them are needed. Finally, the candidate
solution has not been examined publicly, and its security should be
further improved with real-world applications.

2 End of chapter.

Chapter 5

DeepObfuscation

This chapter investigates the piracy threat to deep learning models.
Designing and training a well-performing model is generally expen-
sive. However, when releasing them, attackers may reverse engineer
the models and pirate their design. Therefore, we propose to solve
the problem with a novel obfuscation technique.

5.1 Rationale

We are experiencing a booming development of deep learning
technologies. Nowadays, more and more systems employ deep
learning models, such as self-driving cars [21] and face recognition
systems [131]. Karpathy even proposes the concept of Software
2.0 referring to the software written in neural network weights.
If we treat deep learning as a new paradigm of programming, it
actually suffers many software security and reliability issues. For
example, DeepXplore [133] studies software testing approaches for
deep learning models, because there are already several attacks
(e.g., [126, 130]) showing the effectiveness in fooling them. Another
study [167] shows that attackers can steal machine learning models
via prediction APIs. Therefore, the security of deep learning
techniques becomes an urgent issue when being deployed in real-
world systems.

119

CHAPTER 5. DEEPOBFUSCATION 120

Figure 5.1: A sample of real-world requirement for neural networks obfuscation
solutions from an Internet forum.

In this chapter, we consider a particular security threat to deep
learning, model piracy. Programming a superior deep learning
model is expensive. It requires much domain expertise to design
an effective deep learning network and a large set of labeled data to
train the network, both of which are valuable resources. Because
well-trained models are expensive, competitors or attackers may
get interested in pirating them. An intuitive way is to copy the
architecture of a network, which dominates the learning ability of
a model. Besides, attackers may fine-tune a model for their own ap-
plication scenarios. There are already many investigations focusing
on building new deep learning applications based on existing ones,
such as those with transfer learning [69, 129, 191] and incremental
learning [141, 180] techniques. If a deep learning model runs on
the client side, which is a trend (e.g., smartphone [90, 103, 173]),

CHAPTER 5. DEEPOBFUSCATION 121

attackers can easily reverse engineer the model and further pirate the
design. Therefore, model piracy is a pressing security concern for
deep learning application providers. Figure 5.1 demonstrates such a
real-world protection requirement posted on an Internet forum1. To
our best knowledge, there are no good solutions so far.

To secure a deep learning model against piracy attack, we pro-
pose to obfuscate the structures of well-trained deep learning models
before releasing them to clients. Our idea is similar to classic
code obfuscation techniques except that we tailor the idea for deep
learning scenarios. Code obfuscation transforms code snippets
into unintelligible versions while preserving their semantics [40].
Deep learning obfuscation, on the other hand, aims to scramble the
structure of a well-designed deep learning network while preserving
the inference accuracy. In this way, users can still employ an
obfuscated model for inference, but attackers cannot learn useful
structural information from the model. To our best knowledge, it is
a first attempt to study the deep learning obfuscation problem.

Our study focuses on a prevalent type of deep learning networks,
convolutional neural networks (CNN). Many companies start to
engage CNN in their systems for image recognition tasks, e.g., in
mobile apps or auto-driving systems. To achieve a good recognition
accuracy, state-of-the-art CNNs generally contain well-designed
inception blocks for feature extraction and a fully-connected layer
for classification. For example, GoogLeNet [165] employes four
parallel convolutional sequences in one inception block with differ-
ent settings to learn different features; ResNet [84] employs a special
convolutional branch to learning residual information. For modern
CNNs, their key difference generally lies in the design of the feature
extractor, while the classifiers of different CNNs are very similar.
Therefore, hiding the real structure of a feature extraction network
is a major concern for obfuscation.

We propose to obfuscate the feature extractor of a CNN model
1https://datascience.stackexchange.com/questions/13175/neural-network-obfuscation

CHAPTER 5. DEEPOBFUSCATION 122

by simulating it with a shallow and sequential convolutional block.
Consequently, the simulation network leaks little structural informa-
tion about the original feature extractor. Meanwhile, the obfuscated
model should also be resilient to fine-tuning attacks because the
simulation network bears poor learning abilities due to a shallow
structure. To simulate a feature extraction network precisely, we
incorporate a novel recursive simulation method and a joint training
method to training the simulation network. The recursive simulation
method simulates a feature extractor in a recursive mode. In the first
round, we simulate each inception block of a feature extractor with
a simulation network. In the second round, we simulate the entire
simulated feature extractor achieved in the first round. During each
iteration of simulation, we employ the joint-training method to train
a simulation network, i.e., we employ both the intermediate output
of the original network and the labels of the training data as the
ground truth. Finally, we can obtain an obfuscated model with no
loss of accuracy.

To verify the feasibility of our idea, we have conducted real-
world experiments with popular CNNs, including GoogLeNet [165],
ResNet-18 [84] and DenseNet-121 [91]. We choose these public
CNNs for evaluation only because they are well-known to readers.
In practice, we believe that our experimental results with these
models should also be applicable to other private CNNs. Our final
experimental results show that although these networks are very
deep with tens or even hundreds of layers, we can simulate them
with a shallow network of five or seven layers. We present that the
obfuscated models suffer no loss of accuracy. On the other hand,
they are even more efficient than the original models in both model
size and inference time. We further show that the obfuscated models
demonstrate promising resilience to fine-tuning attacks. Attackers
would suffer obvious accuracy declination if they fine-tune the
obfuscated models to create new applications.

To summarize, we make several contributions as follows.

CHAPTER 5. DEEPOBFUSCATION 123

• We formulate the deep learning obfuscation problem with
respect to model piracy. In particular, we observe the potential
structure piracy and parameter piracy threats to deep learning
models and propose five metrics to evaluate a deep learning
obfuscation solution, namely cost, information leakage, fine-
tuning ability, resilience to deobfuscation attacks, and scala-
bility.

• We propose a novel solution to obfuscate CNN models with
recursive simulation and joint training. Our approach can
simulate the feature extractor of a CNN model with a shallow
convolutional block, which conceals the structural information
of the original network and also deters attackers from fine-
tuning an obfuscated model.

• We have verified the feasibility of our approach with several
real-world experiments. Our resulting obfuscated models suf-
fer no loss of accuracy, and they are even more efficient than
the original models in both model size and inference time.

We organize the rest of the chapter as follows. Section 5.2
briefly reviews the background of CNN. Section 5.3 defines our
attack model for model piracy attack. Section 5.4 discusses the deep
learning obfuscation problem. Section 5.5 introduces our structural
obfuscation approach, and the evaluation is provided in Section 5.6.
Section 5.8 compares our work with related work, and Section 5.9
finally concludes this chapter.

5.2 Preliminary

This section briefly reviews the techniques of CNN, which is a
preliminary for the deep learning obfuscation approach we propose
in this work.

CHAPTER 5. DEEPOBFUSCATION 124

Figure 5.2: Toy example of convolutional neural networks.

5.2.1 CNN Basis

CNN is a special type of deep neural networks that contains convo-
lutional layers and fully-connected layers. The convolutional layers
serve as a feature extractor of the network, which inputs images and
outputs features. The fully-connected layers serve as a classifier,
which classifies images based on the extracted features.

Figure 5.2 demonstrates a simple CNN with one convolutional
layer and one fully-connected layer. We discuss the detailed func-
tion of either layer in what follows. We use uppercase letters to
denote matrices and lowercase letters to denote the elements of a
matrix. For example, K is a matrix, and ki,j is an element of the
matrix.

The convolutional layer reads raw images X ∈ Rh×w×m with
size h × w and m channels (e.g., red, green, and blue for colorful
images), and outputs n feature images (i.e., n channels). Each
output channel corresponding to a convolutional kernel Ki and a
bias βi ∀i ∈ {1, . . . , n} is calculated as follows.

F(Ki, X) =
m∑
j=1

f(Ki, Xj) + βi, (5.1)

where Ki is a matrix whose elements are the weights of correspond-

CHAPTER 5. DEEPOBFUSCATION 125

(a) Inception block of GoogLeNet.

(b) Sub-block of ResNet for inception. (c) Partial dense block of DenseNet.

Figure 5.3: Examples of inception blocks.

ing pixels on an image X , and

f(Ki, Xj) =
h∑
p=1

w∑
q=1

kp,q · xp,q. (5.2)

The fully-connected layer connects each pixel of each feature
image to all the class labels. A label with the highest value is voted
as the final decision. The formula for computing the value of each
label is demonstrated in below.

G(X1, ...Xn) =
n∑
i=1

h×w∑
j=1

xi,jwi,j + βi,j. (5.3)

CHAPTER 5. DEEPOBFUSCATION 126

5.2.2 Modern CNNs

While conventional CNNs (e.g., LeNet [107]) only contain different
layers organized in sequential orders, the architectures of modern
CNNs are more complex. They generally include well-designed in-
ception blocks to facilitate the learning ability. An inception block is
a sub-network with convolutional layers and other nonlinear layers,
such as batch normalization [92] and ReLU (Rectified Linear Units).
These layers are similar to building blocks, and a programmer can
organize them in many ways.

Figure 5.3 demonstrates the inception blocks of several pop-
ular CNNs, including GoogLeNet, ResNet, and DenseNet. The
inception block of GoogLeNet (Figure 5.3(a)) contains four parallel
sequences, each of which has a unique convolutional function to
learn particular features. All the convolutional sequences output
feature tensors of the same size, and the inception block finally
concatenates them as its output. ResNet (Figure 5.3(b)) contains
two parallel sequences in an inception block. The sequence with a
smaller convolutional kernel is designed to propagate the residual
information. The design is essential when a neural network goes
deeper. The inception block finally adds up the tensors outputted by
the two convolutional sequences. DenseNet (Figure 5.3(c)) further
improves the mechanism for propagating residual information. In
each dense block, the output of every two convolutional layers is
propagated to the following layers of the block.

A well-designed feature extractor is a key for a CNN to improve
its performance when handling particular tasks, such as the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) [50].
Note that all our discussed modern CNNs have only one fully-
connected layer, and they mainly differ in the feature extraction
network. Therefore, hiding the structure of the feature extraction
network is the most important concern when obfuscating deep
learning models.

CHAPTER 5. DEEPOBFUSCATION 127

Figure 5.4: Our assumed attack scenario.

5.3 Attack Model

This work considers the man-at-the-end (MATE) attack [39]. Sup-
posing a well-trained deep learning model has been installed on a
client host (e.g., PC server or smartphone) for inference, the MATE
attack model assumes that attackers can have full access to the host.
If attackers have adequate domain knowledge and determination,
they may reverse engineer the application, and then they may pirate
the design of the model.

Figure 5.4 demonstrates our attack scenario. We assume that a
company (i.e., model owner) has released an application to its users,
and the application contains a deep learning model. We further
assume that the model contains a novel design of network structure,
and it is trained with a large corpus of valuable data. The assumption
is very general for real-world deep learning applications because
such data are either the private assets of a company or require many
manual efforts to get labeled. In the MATE attacker model, attackers
(e.g., competitors) may reverse engineer the application and pirate
the deep learning model. Such infringement of copyrights would

CHAPTER 5. DEEPOBFUSCATION 128

(a) GoogLeNet (a tailored version with 1024 features) incremental learning with
the CIFAR-100 dataset. INC: incremental learning.

(b) ResNet transfer learning with the STL10 dataset. TLFF: transfer learning
with frozen feature, TLFT: transfer learning with fine-tuning.

Figure 5.5: Effects of parameter piracy via fine-tuning.

cause loss to the model owner.
In this work, we consider two types of piracy behaviors: structure

piracy and parameter piracy. In structure piracy, attackers reverse
engineer an application and extract the model structure, and then
they can employ the structure to design their own networks. For
CNN models, the distinctive design of structures lies in their feature
extractors. Therefore, an effective obfuscation solution should hide
such structural information in the obfuscated model. Parameter
piracy means attackers can employ the well-tuned model states (or

CHAPTER 5. DEEPOBFUSCATION 129

parameters) to create new models, e.g., with incremental learn-
ing [180] and transfer learning [76] techniques.

Incremental learning extends the number of classes that a deep
learning network can support [180]. Attackers may leverage the
technique to empower a model. Figure 5.5(a) demonstrates the
effectiveness of a simple incremental learning approach. In this
experiment, the original model is trained with the CIFAR-10 dataset,
and it supports 10 classes. Our incremental learning program
empowers the model to support a new dataset (i.e., CIFAR-100)
with 100 classes. We change the last fully-connected layer of the
CNN to support 100 classes, and then train the model with the target
dataset. Finally, the model can achieve an accuracy of 67.95% after
200 epochs. In comparison, if we train the same CNN from scratch,
the best accuracy is only 58.49% with the same training settings.

Transfer learning adapts the domain differences between a target
dataset and what a model supports [76]. It is an effective machine
learning approach when there are insufficient training data in a target
dataset. Attackers may employ the technique to pirate a new model
and adapt it to their own scenarios. Figure 5.5(b) demonstrates the
effectiveness of a transfer learning experiment. In this experiment,
the original model is trained with the CIFAR-10 dataset. The target
dataset is STL102, which contains only 500 labeled images for each
class. If we train the model directly with the target dataset [84]),
we only achieve an accuracy of 58.67%. However, if we adopt a
straightforward transfer learning technique (i.e., ResNet-TLFT3 in
Figure 5.5(b)), the accuracy can improve to 77.94%.

In the two examples above, we both fine-tune the original feature
extractors to achieve a good accuracy. Note that fine-tuning can usu-
ally help attackers to obtain a better model than without fine-tuning.
For example, in our transfer learning example in Figure 5.5(b), if we
freeze the feature extraction layers and only tune the fully-connected

2https://cs.stanford.edu/ acoates/stl10/
3http://pytorch.org/tutorials/beginner/transfer learning tutorial.html

CHAPTER 5. DEEPOBFUSCATION 130

layer (i.e., ResNet-TLFF in Figure 5.5(b)), the model accuracy can
only achieve 72.91%.

5.4 Deep Learning Obfuscation

5.4.1 Definition

Now we discuss the concept of deep learning obfuscation. It aims
to transform the inference logic of a well-trained deep learning
model to an obfuscated version, which can prevent attackers from
learning its structural design or reusing its well-tuned parameters.
The obfuscated model should retain an equivalent inference function
as the original model contains. Meanwhile, it should incur very
limited overhead and demonstrate adequate resilience to attackers.

We borrow the term “obfuscation” from classic code obfuscation
problems because their purposes are similar. According to Coll-
berg et al. [40], classic code obfuscation scrambles code spinets
into unintelligible versions while preserving the semantics. It can
increase the difficulties for attackers to interpret the real code logic
or to further tamper the code.

However, deep learning obfuscation is a bit different from classic
software obfuscation. In particular, the parameters of deep learning
models are automatically generated via a training process. To
tamper a model, attackers do not need to understand the model, and
he can simply fine-tune it with new data. In comparison, classic
software is written by programmers. Attackers cannot modify it
without understanding the details.

5.4.2 Performance Metrics

A competent deep learning obfuscation approach should demon-
strate good performance in the following aspects.

CHAPTER 5. DEEPOBFUSCATION 131

• Cost: Cost measures the extra model size and inference time
incurred by obfuscation. A practical obfuscation approach
should not incur too much overhead. Otherwise, it would be
useless for real-world applications.

• Information leakage: It shows how much structural informa-
tion is leaked by the obfuscated model. The metric corresponds
to structure piracy issues. A potent obfuscation approach
should leak as little information as possible.

• Fine-tuning ability: It measures the how much learning ability
declination that an obfuscated model suffers. We can measure
the metric by comparing the performance of an original model
and an obfuscated model when performing the same fine-
tuning task. It reflects the resilience of an obfuscated model
to the parameter piracy attacks. A network with poor fine-
tuning ability can deter attackers from fine-tuning the model
parameters with new training data.

• Resilience: The metric reflects the resistance of an obfuscated
model to deobfuscation attacks. In our scenario, deobfuscation
means recovering the original structure of the network or em-
powering an obfuscated model with better fine-tuning ability.

• Scalability: It indicates whether an obfuscation approach can
be applied to different deep learning models. In this work,
we claim the effectiveness of our obfuscation approach for
convolutional neural network only.

Note that resilience evaluates the security of an obfuscation
approach, while information leakage and fine-tuning ability evaluate
its effectiveness (or potency). Next, we introduce our structural
obfuscation approach for protecting CNN models and then evaluate
the performance of our obfuscation approach with respect to these
metrics.

CHAPTER 5. DEEPOBFUSCATION 132

Figure 5.6: Joint-training approach to simulate the feature extractor.

5.5 Structural Obfuscation Approach

For state-of-the-art CNN models, the essential valuable design
lies in the structure of their feature extractors. Our structural
obfuscation approach, therefore, aims to hide the structures of the
feature extraction networks via simulation. Below, we first introduce
our basic idea of model simulation and then demonstrate how to
employ the idea to obfuscate CNN models.

5.5.1 Basic Idea

In high level, our obfuscation idea simulates the feature extractor of
a CNN model with a shallow and sequential network. In this way,
the simulation network does not reveal the internal structure of the
original feature extractor. Also, by employing a shallow network
as the simulator, we intend to lower the fine-tuning ability of the
obfuscated model with respect to parameter piracy attacks.

To obtain a competent simulation network, we propose a novel
joint training idea, which employs two different ground truths to
train the simulation network jointly. Our first ground truth is the

CHAPTER 5. DEEPOBFUSCATION 133

output of the target feature extractor, which is the output of a
hidden layer. A CNN model generally outputs more features in
a hidden layer than the number of classes in the output layer. In
this way, employing the intermediate output to train a simulation
network can provide more fine-grained information than pure labels,
and it will facilitate the learning process. The idea is also known
as hint-based training [145]. In hint-based training, there is a
teacher network and a student network, and the student network
learns the intermediate knowledge generated by the hidden layers
of the teacher network. However, employing a pure hint-based
training approach is insufficient for our scenario because the original
hint-based training approach is proposed for model compression
scenarios. It compresses a teacher network into a student network
which is deep and thin. Our approach, on the other hand, aims
to simulate a teacher network with a shallow network. Because a
shallow network tends to have worse learning ability, it may not
learn the teacher network as well as a deep network. If there are
simulation errors, we hope to mitigate the influence of the error with
the information of the real label. Therefore, we also employ the
label of raw input as our second ground truth for training. Figure 5.6
demonstrates our joint-training idea.

Let T denote the original feature extractor of a teacher network,
S denotes the simulator of a student network, S ′ denotes a mixed
network that connects the simulator with the rest layers of the
original network, and Lx denotes the real labels of the input data x.
We employ the following objective function to train the simulator.

arg min
w

‖T (x)− Sw(x) + α(Lx − S ′w(x))‖ , (5.4)

where ‖ · ‖ represents the L1-norm, and w represents the parameters
of the simulator.

Because the simulation network is shallow, we may not train it as
well as the original model. In this situation, the real labels can serve

CHAPTER 5. DEEPOBFUSCATION 134

Figure 5.7: Framework to obfuscate CNN models.

as an error corrector or a regulator. By choosing an appropriate value
for α, we can balance the resulting impacts to the learning process.

In our later evaluation section, we adopt a tricky approach to
search optimal solutions for the joint optimization problem. We
assume the two types of losses are comparable with an appropriate
α, then we can employ the two ground truths iteratively to train the
simulator.

5.5.2 Obfuscation Framework

Because real-world CNNs are very complex, we may not be able to
simulate a feature extractor directly. To achieve an acceptable simu-
lation result, we propose to simulate a feature extractor recursively.
To elaborate, we first simulate each inception block of an extractor
with a small simulator. Then we fine-tune the resulting model to
achieve a good accuracy. In the next round, we simulate the new
feature extractor which contains several small simulation networks.

The first round of simulation obtains two benefits. On one
hand, we can lower the complexity of the target feature extractor to
simulate. On the other hand, it examines whether a target model can
be simulated with a shallow network. If we cannot simulate a feature
extractor with a deep network of several small simulators, we are

CHAPTER 5. DEEPOBFUSCATION 135

unlikely to be able to simulate it with one shallower network. After
this round, we usually get an intermediate model with an equivalent
or slightly higher accuracy.

Our obfuscation framework is demonstrated in Figure 5.7. We
insert an obfuscation phase after the training phase and before the
model is released to clients. The obfuscation phase contains two
rounds. In the first round, we obfuscate each inception block of the
model iteratively. The obfuscation starts from the bottom layer and
goes up to the top layer. In this order, the residual errors of the lower
layers can be mitigated when obfuscating the upper layers. There are
several steps in each iteration.

1. Define a simulation network: We first create a small simulation
network with a shallow and sequential structure. Then we plug
the network into the original computation graph of the model
and make its input and output the same as those of the original
inception block. We defer our discussion about designing the
structure of a simulation network to Section 5.5.3.

2. Train the network: We tune the parameters of the simulation
network with the joint-training idea. The training data is the
same as those for training the original model. To preserve the
weights of other layers, we freeze all the parameters before and
after the simulator.

3. Merge the model: We delete the original inception block from
the original network and merge the corresponding parameters.
This step outputs an intermediate obfuscated model. The
obfuscation procedure goes to the next iteration until all the
inception blocks have been obfuscated.

When all the inception blocks have been simulated, we fine-tune
the model to achieve better accuracy. Now we can obtain a model
M ′ (intermediate result) with only sequential connections, which
is the input to the next simulation round. In the next round, we

CHAPTER 5. DEEPOBFUSCATION 136

also employ the joint-training approach to simulate the entire feature
extractor of M ′ at a time.

Note that the hint-based training approach requires that the
teacher network and the student network should have the same
dimension of output. So our intermediate result M ′ still leaks the
information about the interfaces (e.g., feature numbers) between
neighboring inception blocks. Our second round of simulation can
further hide such information. In this way, the finally obfuscated
model leaks little information about the internal structure of a feature
extractor.

5.5.3 Design of Simulation Networks

We should design the simulation networks carefully because they
determine the performance of an obfuscated model. If the structure
of a simulation network is too simple, it may not be able to simulate
well. If it is too complicated, the obfuscated model would incur too
much overhead.

When designing a simulation network, our main principle is
to maintain the corresponding input and output relationships of
the original inception block. For example, if a feature of output
corresponds to a 5 × 5 image of input in the original network,
we should guarantee that the simulation network also computes
the feature based on the 5 × 5 image. To fulfill the principle, we
should choose an appropriate combination of convolutional layers
and kernel sizes. Below we elaborate more on the principle.

Warm Up

We first discuss an ideal scenario which assumes no nonlinear
operators in an inception block. In this case, we can simulate the
inception block precisely with only one convolutional layer. We
draw this conjecture based on Rule 5.1 and Rule 5.2.

CHAPTER 5. DEEPOBFUSCATION 137

Rule 5.1. For any two-layered sequential convolutional block with
no nonlinear operators, there exists an equivalent convolutional
layer to simulate it.

Proof. To show that we can simulate any two-layered convolutional
layers with only one layer, we show that the feature images outputted
by a two-layered convolutional layers are linear to the input.

Supposing the first convolutional layer inputs images X of cin
channels and outputs feature images Y of cl1 channels, we can
compute a pixel value y of Y as

y =

cin∑
i=1

f(K,Xi) + β, (5.5)

where K is a kernel matrix, Xi is a corresponding image of the ith
channel, and f(K,Xi) = k1,1x1,1 + k1,2x1,2 + ... + khl1,wl1

xhl1,wl1
,

where hl1 × wl1 is the kernel size of the first convolutional layer.
Because K and β are constants in a pre-trained model and only

Xi contains variables, we can simplify Equation 5.5 as

y = α1x1,1,1 + ...+ αcl1,hl1,wl1
xcl1,hl1,wl1

, (5.6)

where αi is a constant, and y is linear to X .
Similarly, supposing the second convolutional layer outputs fea-

ture images Z of cl2 channels, we can compute a pixel value z of Z
with the form of z = α1y1,1,1 + ... + αcl2,hl2,wl2

ycl1,hl1,wl1
. Unfolding

each y, we can get

z = λ1x1,1,1 + ...+ λqxcin,h,w, (5.7)

where λi is a constant, h = hl1 + (hl2 − 1)s, w = wl1 + (wl2 − 1)s,
and s is the stride of the first convolutional layer.

Rule 5.2. For any two-paralleled convolutional layers merged with
concatenation or add, there exists an equivalent convolutional layer
to simulate it.

CHAPTER 5. DEEPOBFUSCATION 138

Proof. Suppose the input images are X with cin channels, the first
convolutional layer outputs features Y of c1 channels, and the second
convolutional layer outputs features Z of c2 channels. A pixel value
y of Y can be computed as

y =

cin∑
i=1

f(Ky, Xi) + β, (5.8)

and a pixel value z of Z can be computed as

z =

cin∑
i=1

f(Kz, Xi) + β, (5.9)

where Ky is a kernel of the first convolutional layer, and Kz is a
kernel of the second convolutional layer.

If the layers are merged with concatenation, we can directly
substitute the block with an equivalent convolutional layer with a
channel size c1+c2 and a kernel sizeMax(Size(Ky), Size(Kz)). If
the layers are merged with add, the two convolutional layers should
have an equivalent number of channels, c1 and c2.

Given any inception block without nonlinear operators, we can
apply Rule 5.1 and Rule 5.2 iteratively to compress the module
into one convolutional layer. The channel number of the resulting
convolutional layer should be equivalent to the original inception
block. Its kernel size should be selected as the max kernel size when
simulating each convolutional sequence.

Choose an Appropriate Structure

When an inception block has nonlinear operators, we cannot simu-
late the module precisely. However, we can still apply Rule 5.1 and
Rule 5.2 to compute an appropriate kernel size. Take the inception
block of ResNet (Figure 5.3(b)) as an example, we can compute that
each feature corresponds to a 5 × 5 image, so that we can simulate

CHAPTER 5. DEEPOBFUSCATION 139

the block with one convolutional layer whose kernel size is 5, or
with two convolutional layers whose kernel sizes are both 3. If an
inception block has pooling operations (e.g., the inception block of
GoogLeNet (Figure 5.3(a))), we treat them as same as convolution,
because they are also kernel-based operations.

In general, we can design a simulation network with two to four
convolutional layers to simulate an inception block. By default, we
apply both batch normalization and ReLU after each convolutional
layer. The specific choice generally depends on the complexity of
the inception block to simulate. For example, to simulate one in-
ception block of GoogleNet, two convolutional layers are sufficient.
However, if the target block has tens of convolutional layers, we
may employ a simulation network with more convolutional layers.
We will discuss more details about how we design the simulation
network for several practical deep learning models in the evaluation
section (Section 5.6).

5.6 Evaluation

In this section, we examine the performance of our obfusca-
tion approach with real-world experiments. We focus on three
aspects: 1) whether an obfuscated model can achieve negligible
accuracy declination in comparison with the original model; 2) how
much overhead will be incurred by our obfuscation approach; 3)
and whether the fine-tuning abilities of obfuscated models become
worse.

5.6.1 Experimental Setting

To show that our obfuscation approach has no bias on particular
CNN structures, we choose three prevalent CNNs to obfuscate, i.e.,
GoogLeNet [165], ResNet [84] and DenseNet [91]. We employ pub-
lic CNNs because they are well-known to the community, and they

CHAPTER 5. DEEPOBFUSCATION 140

can achieve good accuracy for image recognition tasks. Although
our purpose is to obfuscate private CNNs, the results achieved on
public CNNs should also be applicable to private ones. Figure 5.8,
5.9, and 5.10 demonstrate the architecture of the networks we
adopted in our experiments, and we train them with the CIFAR-10
dataset. To fit the CNN structures for the dataset, we have slightly
changed their original settings.

The CIFAR-10 dataset4 contains 10 classes of 32 × 32 colorful
images (e.g., airplane, automobile, bird). Each class contains 5000
images for training and 1000 images for testing. The dataset is
widely employed to benchmark the performance of CNNs, such as
ResNet [84] and DenseNet [91]. We train the CNN models using the
suggested settings of learning rates until the testing accuracy cannot
get further improved. In our experiment, it takes one thousand
epochs each to train a model. Our GoogLeNet model finally reaches
an accuracy of 90.83%, ResNet reaches 90.94%, and DenseNet
reaches 90.14%. The detailed training results are demonstrated in
Figure 5.11(a), Figure 5.12(a), and Figure 5.13(a) respectively.

To conduct obfuscation experiments, we write all of our deep
learning programs with Pytorch 3.1 and experimental scripts with
Python 3.6. Our experimental host is an Ubuntu (version 16.04)
server with a Xeon CPU (E5-2650) and 128G memory, and the
experimental GPU is Nvidia Titan Xp Pascal with 12G memory.

5.6.2 Steps of Obfuscation

Simulating GoogLeNet

Figure 5.8 demonstrates our obfuscation steps for GoogLeNet. The
original GoogLeNet has nine inception blocks, each of which is
demonstrated as Figure 5.3(a). These nine inception blocks are
separated into three groups by max pooling operations: {2A, 2B},
{3A, ..., 3E}, and {4A, 4B}.

4https://www.cs.toronto.edu/ kriz/cifar.html

CHAPTER 5. DEEPOBFUSCATION 141

Figure 5.8: Procedure to obfuscate GoogLeNet.

We finally obfuscate GoogLeNet with a five-layered sequential
block. To this end, we adopt the recursive simulation idea. In the
first simulation round, we simulate each group of inception blocks
with a sequential block. For the groups of {2A, 2B} and {4A, 4B},
we employ a two-layered convolutional block each. For the group
of {3A, ..., 3E}, we employ a four-layered convolutional block, and
for {4A, 4B} with a three-layered convolutional block. Then we
fine-tune the resulting model to obtain an intermediate result. Note
that when simulating each group of inception blocks, we freeze all
the parameters of other layers. When fine-tuning the model, we tune
all the parameters of the intermediate model. Then in the second
simulation round, we employ the fine-tuned intermediate model to
train a six-layered convolutional block, which is the feature extractor
of our final obfuscated GoogLeNet.

Simulating ResNet

Figure 5.9 demonstrates our process to obfuscate ResNet. We
employ ResNet-18, which contains four inception blocks, and each
block has two sub-blocks. In the first round, we simulate each
inception block of the network at one time with a two-layered

CHAPTER 5. DEEPOBFUSCATION 142

Figure 5.9: Procedure to obfuscate ResNet.

Figure 5.10: Procedure to obfuscate DenseNet.

convolutional block. In the second round, we simulate the whole
feature extractor of the intermediate model with a five-layered
convolutional block.

Simulating DenseNet

Figure 5.10 shows how we obfuscate DenseNet-121. It has four
dense blocks, and each block has 12, 24, 48, or 32 convolutional
layers respectively. Their connection mode is demonstrated as
Figure 5.3(c). In the first round, we simulate each dense block at
one time. The four simulation networks have 3,4,2,2 convolutional
layers respectively. In the second round, we simulate the whole
feature extractor at one time with a five-layered convolutional block.

CHAPTER 5. DEEPOBFUSCATION 143

0 200 400 600 800 1,000

50

60

70

80

90

100

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(a) GoogLeNet training process.

0 50 100 150 200

0.82

0.84

0.86

0.88

0.9

epoch

ac
cu

ra
cy

Simulator1
Simulator2
Simulator3

(b) The 1st round of GoogLeNet simula-
tion.

0 200 400 600 800 1,000

85

90

95

100

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(c) Fine-tune the intermediate GoogLeNet.

0 200 400 600 800 1,000
0.6

0.7

0.8

0.9

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(d) The 2nd round of GoogLeNet simula-
tion.

Figure 5.11: Experimental results for obfuscating GoogLeNet.

5.6.3 Performance of Obfuscated Models

Table 5.1 demonstrates our experimental results when obfuscating
the three models. For each obfuscation experiment, we report the
performance of the original model, the intermediate model achieved
after the first round of simulation, and the finally obfuscated model.
For each of the models, we measure its performance with testing
accuracy, model size, and average inference time. From the results,
we can observe that all our finally obfuscated models suffer no
accuracy declination, and some are even more efficient than the
original models.

For ResNet, our finally obfuscated model saves 74% size of the

CHAPTER 5. DEEPOBFUSCATION 144

0 200 400 600 800 1,000

40

50

60

70

80

90

100

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(a) ResNet training process.

0 50 100 150 200

0.65

0.7

0.75

0.8

0.85

0.9

epoch

ac
cu

ra
cy

Simulator1
Simulator2
Simulator3
Simulator4

(b) The 1st round of ResNet simulation.

0 200 400 600 800 1,000

70

75

80

85

90

95

100

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(c) Fine-tune the intermediate ResNet.

0 200 400 600 800 1,000

0.6

0.7

0.8

0.9

1

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(d) The 2nd round of ResNet simulation.

Figure 5.12: Experimental results for obfuscating ResNet.

original model, and it is about two times faster than the original
model. This is not very surprising, because ResNet is not very
efficient in model size. Note that the inception block of ResNet adds
up the results of two parallel convolutional sequences as its output.
Therefore, it needs more parameters than a sequential network to
compute the same number of features.

The results show that we can also obfuscate GoogLeNet and
DenseNet with no size overhead, and the obfuscated models can
save 63% and 84% average inference time correspondingly. This
is not easy because the two networks are already very efficient in
model size. Their inception blocks concatenate the resulting feature
images of parallel convolutional sequences. In this way, they need

CHAPTER 5. DEEPOBFUSCATION 145

0 200 400 600 800 1,000

40

60

80

100

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(a) DenseNet training process.

0 50 100 150 200

0.2

0.4

0.6

0.8

epoch

ac
cu

ra
cy

Simulator1
Simulator2
Simulator3
Simulator4

(b) The 1st round of DenseNet simulation.

0 200 400 600 800 1,000
50

60

70

80

90

100

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(c) Fine-tune the intermediate DenseNet.

0 200 400 600 800 1,000
0.5

0.6

0.7

0.8

0.9

1

epoch

ac
cu

ra
cy

TrainAcc
TestAcc

(d) The 2nd round of DenseNet simulation.

Figure 5.13: Experimental results for obfuscating DenseNet.

fewer parameters than a sequential network to compute the same
number of features. Although our intermediate results achieved in
the first round incur extra size overhead, such overhead can be fully
mitigated after the second round.

Figure 5.11, 5.12, and 5.13 demonstrates more detailed records
about each round of our obfuscation experiments. From the figures,
we can observe that after the first simulation round, the resulting
model generally suffers some accuracy declination. However, we
can fine-tune the intermediate model (with the data labels as the
ground truth) to achieve better accuracy. This is not because
the architecture of the intermediate model is more powerful, but
because it employs a good initial state for fine-tuning. Note that

CHAPTER 5. DEEPOBFUSCATION 146

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1

epoch

ac
cu

ra
cy

GoogLeNet TrainAcc
GoogLeNet TestAcc

Obf. GoogLeNet TrainAcc
Obf. GoogLeNet TestAcc

(a) Incremental learning with GoogLeNet.

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1

epoch

ac
cu

ra
cy

GoogLeNet TrainAcc
GoogLeNet TestAcc

Obf. GoogLeNet TrainAcc
Obf. GoogLeNet TestAcc

(b) Transfer learning with GoogLeNet.

Figure 5.14: Evaluation results for fine-tuning GoogLeNet.

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

epoch

ac
cu

ra
cy

RestNet TrainAcc
RestNet TestAcc

Obf. RestNet TrainAcc
Obf. RestNet TestAcc

(a) Incremental learning with ResNet.

0 100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

ac
cu

ra
cy

RestNet TrainAcc
RestNet TestAcc

Obf. RestNet TrainAcc
Obf. RestNet TestAcc

(b) Transfer learning with ResNet.

Figure 5.15: Evaluation results for fine-tuning ResNet.

we can hardly improve the accuracy of the original models before.
The interesting phenomenon provides some benefits for our second
round of simulation. The recursive simulation, therefore, can help
us to approach a more competent obfuscation result with better
accuracy. In some cases, if we could not obtain an intermediate
model with slightly better or at least equivalent accuracy, it implies
the simulation network may not be powerful enough, and we should
empower the simulation network, such as by adjusting the number
of convolutional layers or channels.

To demonstrate that our results have no bias on the dataset, we

CHAPTER 5. DEEPOBFUSCATION 147

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

epoch

ac
cu

ra
cy

DenseNet TrainAcc
DenseNet TestAcc

Obf. DenseNet TrainAcc
Obf. DenseNet TestAcc

(a) Incremental learning with DenseNet.

0 100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

ac
cu

ra
cy

DenseNet TrainAcc
DenseNet TestAcc

Obf. DenseNet TrainAcc
Obf. DenseNet TestAcc

(b) Transfer learning with DenseNet.

Figure 5.16: Evaluation results for fine-tuning DenseNet.

Table 5.1: Performance of obfuscated models. The overhead is computed as
cost2/cost1 − 1.

Model Sim.
Round

Performance Overhead
acc. size (MB) time (µs) size time

GoogLe
-Net

- 90.83% 2.51 17.85 - -
1st 90.99% 7.82 7.69 212% -59%
2nd 90.92% 2.49 7.01 -1% -63%

ResNet
- 90.94% 43.36 10.50 - -

1st 91.39% 26.80 6.76 -38% -36%
2nd 91.04% 11.38 5.17 -74% -51%

Dense
-Net

- 90.14% 4.24 35.53 - -
1st 90.87% 8.86 8.86 109% -75%
2nd 90.31% 4.21 5.52 -1% -84%

repeat the same obfuscation experiments of ResNet and DenseNet
with another dataset, which contains five classes randomly selected
from ImageNet [50]. Because the image size of ImageNet is 224
×224, we slightly tune the network structures to fit the format.
Table 5.2 presents our experimental results. In general, the results
are consistent with those using the CIFAR-10. The obfuscated
models are as accurate as the original models, and they incur no
overhead. Note that the results of some size overhead are different
from those on CIFAR-10 because the format of images in ImageNet
requires a different configuration of kernel sizes during simulation.

CHAPTER 5. DEEPOBFUSCATION 148

Table 5.2: Evaluation results of our obfuscated models using ImageNet as the
dataset.

Model Sim.
Round

Performance Overhead

acc.
size

(MB)
time
(µs) size time

ResNet
- 92.4% 43.37 89 - -

1st 92.4% 26.81 60 -38% -33%
2nd 92.4% 36.72 59 -15% -34%

Dense
-Net

- 91.6% 4.27 154 - -
1st 93.2% 8.89 72 108% -53%
2nd 92.8% 2.94 56 -31% -64%

Table 5.3: Evaluation results of fine-tuning abilities. The declination is computed
as 1− accuracy2/accuracy1.

Network CIFAR-100 STL10
accuracy decline accuracy decline

GoogLeNet 66.5% - 79.15% -
Obf. GoogLeNet 63.59% 4.4% 77.95% 1.5%

ResNet 66.92% - 78.86% -
Obf. ResNet 64.77% 3.2% 75.97% 3.7%

DenseNet 67.16% - 78.45% -
Obf. DenseNet 62.91% 6.3% 76.90% 2.0%

We ignore the details here since our configuration strategy simply
follows the principle discussed in Section 5.5.3.

5.6.4 Fine-tuning Ability

To evaluate the fine-tuning ability of each obfuscated model, we
conduct an incremental learning experiment with the CIFAR-100
dataset, and a transfer learning experiment with the STL10 dataset.
The CIFAR-100 dataset has 100 classes of images, and each class
contains 500 images for training and 100 images for testing. The
STL10 dataset has 10 classes of images, which is the same as
CIFAR-10. However, the original image format of STL10 is 96×96,
and we have to resize the images to 32×32 to fit our model. Besides,
there are also only 500 images for training in each class. Because the
training dataset of CIFAR-100 and STL10 are both 10 times smaller

CHAPTER 5. DEEPOBFUSCATION 149

than CIFAR-10 for each class, we may not achieve an accuracy as
good as CIFAR-10. Employing transfer learning and incremental
learning techniques should be helpful to achieve better accuracy.

Table 5.3 demonstrates our experimental results. As a compar-
ison, we also report the corresponding performance of the original
model. Overall, the obfuscated models suffer obvious accuracy dec-
lination when performing both the incremental learning and transfer
learning tasks, ranging from 1.5% to 6.3%. Our detailed experi-
mental records are demonstrated in Figure 5.14, 5.14, and 5.14. To
compare the performance fair, we employ the same training strategy
for each model and its obfuscated model. The experimental results
verify our idea that an obfuscated model with shallow structure
should have worse fine-tuning ability than its original model.

In particular, the declination degrees are related to specific fine-
tuning tasks and the structures of simulation networks. In our
experiment, the declinations of the incremental learning experiments
are more obvious than those of the transfer learning experiments. We
think one reason is that the incremental learning task is more difficult
than transfer learning task because it requires distinguishing 10×
classes. The fine-tuning ability declination may further exaggerate
when pursuing more difficult tasks. Therefore, the metric of fine-
tuning ability is related to particular tasks, and such results only
provide developers a relative measurement about the resilience of
obfuscated models to fine-tuning attacks. In practice, one may try
several different simulation networks and choose one with the best
performance and the worst fine-tuning ability as the final solution.

5.6.5 Discussion

Besides the cost and fine-tuning ability which we have already
evaluated, a competent obfuscation approach should also perform
well concerning information leakage, resilience, and scalability.
Below, we discuss the performance of our obfuscation approach in

CHAPTER 5. DEEPOBFUSCATION 150

these aspects.

Information Leakage

Our obfuscation approach conceals the internal structures of the fea-
ture extraction network. We simulate the entire feature extractor of a
CNN model with a simulation network. In this way, the obfuscated
model exposes no information about the original feature extraction
network expect the interfaces of input and output, including the
raw image size and the number of extracted features. Besides, the
fully-connected layer also leaks the number of classes supported.
However, when attackers want to pirate a deep learning model, such
information is not very critical. The most important information lies
in the design of the feature extraction network, which has already
been protected by our approach.

Resilience to Deobfuscation

We discuss the resilience of our approach in two aspects. Firstly,
can attackers recover the structure of an original network? The
answer is no. Attackers cannot figure out the original structure of
a feature extractor, because such information is not retained within
the obfuscated model.

Secondly, can attackers empower an obfuscated model with
respect to learning? One possible way might be employing another
powerful network to simulate the obfuscated model. However, there
are two barriers for attackers to launch such attacks. One barrier is
that attackers should know a powerful network, and another barrier
is that they should have high-quality data to train the simulation
network. Note that in our attacker model, we assume the original
training data are unavailable to attackers. Without the training
data, attackers can only tune the new kernel parameters with other
artificial datasets (e.g., some randomly generated images).

CHAPTER 5. DEEPOBFUSCATION 151

Scalability

Currently, we have only evaluated the feasibility of our approach for
several CNN models. Therefore, we claim the effectiveness of our
solution for CNN models only. However, we may extend the idea to
other types of neural networks, such as recurrent neural networks.
This is a direction of our future work.

For CNN models, the performance of our obfuscation approach
could be related to the complexity of a target model, such as
the depth of the network to simulate and the knowledge it con-
tains. In this chapter, we have verified that our approach can
effectively obfuscate a well-trained DenseNet-121 model, which is
already very deep with more than a hundred layers. Therefore, our
simulation-based approach is very promising to obfuscate different
convolutional neural networks. Besides, several recent processes
(e.g., [80, 81]) achieved in model compression area also adopt
simulation-based ideas, and their results also coincide the scalability
of our approach.

However, our approach may not be able to obfuscate a model
efficiently if it is already very efficient. For example, we can
hardly obfuscate a compressed model with no cost, because such
models memorize knowledge efficiently with only a small number
of parameters. In that case, we may apply obfuscation techniques
on an uncompressed model first and then compress the obfuscated
model.

5.7 Comparison with Model Compression

We obfuscate deep learning models via a simulation-based ap-
proach. The similar approaches are also employed in model com-
pression work (e.g., [51, 80, 81, 85, 108]). However, since obfus-
cation has a different purpose from compression, their priorities in
designing the simulation network are different. Note that obfus-

CHAPTER 5. DEEPOBFUSCATION 152

cation intends to conceal the structure of the neural network and
degrade its learning ability by making the simulation network much
shallower. But these two goals are not considered by compression.
As a result, the security effectiveness of model compression against
piracy attacks is very limited. Below, we discuss more details about
existing model compression techniques.

Some investigations compress a well-trained model without chang-
ing its structure, such as network pruning [81, 108], and quantiza-
tion [80]. Network pruning compresses well-trained CNN models
by prune the less important connections and weights. A quantization-
based approach employs fewer bits for each parameter of the model.
They all show that the compressed models after fine-tuning suffer
no declination of accuracy.

There also other compression approaches which intend to com-
press the structure of the network. They try to distill the knowl-
edge learned by the large and cumbersome network, and install
the knowledge into another small model [85]. FitNets [145] is a
representative work in this area. To compress a model, FitNets
simulates a deep learning model with another network that is deeper
and thinner. Our work, on the other hand, attempts to simulate a
model with a shallow network. This is because the purpose of our
work is different from model compression. As a result, we may
have different priorities when designing the simulation networks.
Specifically, we purposely hide the structure of a model and degrade
its fine-tuning ability. Therefore, employing a deeper simulation
network is not our prior choice, because a deep network is likely to
have good learning abilities. On the other hand, model compression
aims to compress a model with high efficiency, while security is
not a concern. FitNets proposes a hint-based training approach
to train the simulation networks. Our joint-training approach also
incorporates the idea, while it is an enhancement of joint-based
training.

In brief, model compression is a technique orthogonal to ours.

CHAPTER 5. DEEPOBFUSCATION 153

Although our approach and existing model compression investiga-
tions share some common technical background concerning network
simulation, they are different in both purposes and detailed designs.
We may further employ model compression techniques to compress
an obfuscated model in our future work.

5.8 Related Work

In this work, we study model piracy threats and the deep learning
obfuscation problem. To our best knowledge, it is a pilot study
in this area. There are other investigations which also focus on
the security issues of deep learning models (e.g., [86, 126, 167],
but their attack models and purposes are very different from ours.
For example, Hitaj et al. [86] and Tramer et al. [167] studied
the information leakage issue of deep learning models. Nguyen
et al. [126] studied how to generate images to fool deep learning
models.

5.9 Conclusion

In this chapter, we have discussed the piracy threats to deep learning
models, and we propose to obfuscate such models before releasing
them to clients. To our best knowledge, it is a first attempt to
investigate the deep learning obfuscation problem. In particular,
we have discussed the concept of deep learning obfuscation and
the performance metrics for evaluating a competent obfuscation
solution. Moreover, we propose a structural obfuscation approach
for obfuscating CNN models. Our obfuscation approach simu-
lates the feature extractor of a CNN model with a shallow and
sequential convolutional block. We train the simulation network
incorporating a novel joint-training method and a recursive training
method. We have verified the effectiveness of our approach with
three prevalent CNNs, and the results show that we can obfuscate

CHAPTER 5. DEEPOBFUSCATION 154

their structures with no declination of accuracy. Furthermore, the
obfuscated models can be even more efficient than their original
models. As a security benefit, our obfuscated model leaks no critical
information about internal structure of the original CNN network.
In the meanwhile, by choosing a shallow simulation network with
a poor fine-tuning ability, the obfuscated model can be resilient to
parameter piracy attacks.

2 End of chapter.

Chapter 6

Related Work

This chapter summarizes the novelty of the thesis and compares with
related work.

This thesis aims to obfuscate software with layered security. To
facilitate developers in adopting the idea. We proposed a taxonomy
hierarchy to categorize software obfuscation techniques. It is the
first taxonomy that considers the complicated nature of current
software. In this way, it is different from other existing obfuscation
surveys (e.g., [7, 56, 118, 146, 151]) which generally consider
obfuscation techniques in code-component layer.

Next, we enriched the taxonomy with three novel obfuscation
techniques: symbolic opaque predicates, N-version obfuscation, and
deep learning obfuscation.

Symbolic opaque predicates is an original work that systemati-
cally discussed how to compose opaque predicates leveraging the
challenges faced by symbolic execution techniques. It is different
from other work (e.g., [176]) which tries to employ particular
problems to secure opaque predicates. Our approach is more general
and is not limited to any particular challenging problems. Moreover,
we proposed a novel logic bomb-based approach to benchmark
symbolic execution tools accurately and efficiently. Some exist-
ing papers may also include systematizations of such challenges
(e.g., [9, 46, 94, 138]. However, our investigated challenge cate-
gories are more complete, and our benchmarking approach is more

155

CHAPTER 6. RELATED WORK 156

general than them.
N-version obfuscation employs program diversities to impede

large-scale software tampering attacks. We addressed the threats
of both static software repacking and dynamic injection. In compar-
ison, existing program diversification approaches [89] are mainly
resilient to dynamic injection.

Our deep learning obfuscation work is a pilot study for obfus-
cating deep learning models. It is the first solution for protect-
ing deep learning models against structure piracy and parameter
piracy attacks. Our approach shares some similar basis with model
compression (e.g., [85, 145]) in knowledge distillation, but their
purposes are very different.

2 End of chapter.

Chapter 7

Conclusion and Future Work

This chapter concludes the thesis and discusses our future work.

7.1 Summary of Thesis

In this thesis, we have presented the idea of layered obfuscation,
which extends the classic layered security concept to software
obfuscation area. We have justified the validity of the idea, and we
believe it should be a promising way towards reliable obfuscation in
the future.

To promote the idea, we have achieved contributions on two
folds. Firstly, we have developed a novel taxonomy for present
obfuscation techniques. Our taxonomy follows the idea of layered
obfuscation and can assist developers in choosing and integrat-
ing various obfuscation techniques. Secondly, we have enriched
the taxonomy of obfuscation with three novel techniques. These
techniques provide developers more options in designing layered
obfuscation solutions. Our first obfuscation technique is bi-opaque
predicates, which enables current control-flow obfuscation tech-
niques with resilience to attackers with symbolic executions. Our
second technique is n-version obfuscation, which can impede large-
scale software tampering attacks by introducing diversities among
software instances. Our third technique is deepobfuscation, which

157

CHAPTER 7. CONCLUSION AND FUTURE WORK 158

focus on protecting private deep learning models with a simulation-
based approach.

To summarize, this thesis lays a foundation for layered obfusca-
tion, and we believe it is important to the development of software
obfuscation area. On one hand, it presents that the critical path
towards achieving reliable obfuscation is layered security. On the
other hand, it relaxes the evaluation requirements for obfuscation
whereas an obfuscation technique should not be secure-against-all
but only mitigates some specific risks. In this way, it may inspire
more obfuscation techniques in the future.

7.2 Future Work

Our future work will mainly focus on practicing layered obfuscation
with real-world software, such as mobile apps, and deep learning
software. We plan to develop a whole methodology for practicing
the idea, from software risk analysis and to obfuscation solutions. In
this process, we believe we will find some information that cannot
be obfuscated well with present obfuscation techniques and some
techniques that will become vulnerable as attackers are evolving.
We will generalize such attacker models and investigate new obfus-
cation techniques to handle such problems.

In the meanwhile, we plan to develop practical obfuscation tools
for conducting large-scale real-world experiments. Currently, the
novel obfuscation techniques we discussed in this thesis only have
prototypes. We will improve those prototypes with the capability
and compatibility to handle large projects. Such tasks require a
complete design of obfuscation tools and involve many issues in
software engineering fields.

2 End of chapter.

Appendix A

Publications Related to the Thesis

1. “Benchmarking the Capability of Symbolic Execution Tools,”
Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu, IEEE
Transactions on Dependable and Secure Computing, 2018.

2. “Manufacturing Resilient Bi-Opaque Predicates against Sym-
bolic Execution,” Hui Xu, Yangfan Zhou, Yu Kang, Fengzhi
Tu, and Michael R. Lyu, in Proc. of the 48th IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks
(DSN), 2018.

3. “Concolic Execution on Small-Size Binary Codes: Challenges
and Empirical Study,” Hui Xu, Yangfan Zhou, Yu Kang,
and Michael R. Lyu, in Proc. of the 47th IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), 2017.

4. “Assessing the Security Properties of Software Obfuscation,”
Hui Xu, and Michael R. Lyu, in IEEE Security & Privacy
Magazine, Oct, 2016.

5. “N-Version Obfuscation,” Hui Xu, Yangfan Zhou, and Michael
R. Lyu, in Proc. of the 2nd Cyber-Phsical System Security
Workshop (in conjunction with AsiaCCS), 2016.

6. “DeepObfuscation: Obfuscating Deep Neural Networks via

159

APPENDIX A. PUBLICATIONS RELATED TO THE THESIS 160

Knowledge Distillation,” Hui Xu, Yuxin Su, Zirui Zhao, Yang-
fan Zhou, Michael R. Lyu, and Irwin King, under review.

7. “Layered Obfuscation: A Taxonomy of Software Obfuscation
Techniques for Layered Security,” Hui Xu, Jiang Ming, Yang-
fan Zhou, and Michael R. Lyu, under review.

2 End of chapter.

Bibliography

[1] D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff. Imple-
menting cryptographic program obfuscation. IACR Cryptol-
ogy ePrint Archive, 2014.

[2] A. Appel. Deobfuscation is in np. Princeton University, Aug,
2002.

[3] G. Arboit. A method for watermarking java programs via
opaque predicates. In The 5th International Conference on
Electronic Commerce Research, 2002.

[4] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo,
and D. Brumley. Automatic exploit generation. Communica-
tions of the ACM, 2014.

[5] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhanc-
ing symbolic execution with veritesting. In Proc. of the 36th
International Conference on Software Engineering (ICSE).
ACM, 2014.

[6] V. Balachandran and S. Emmanuel. Software code obfusca-
tion by hiding control flow information in stack. In Proc. of
the IEEE International Workshop on Information Forensics
and Security, 2011.

[7] A. Balakrishnan and C. Schulze. Code obfuscation literature
survey. CS701 Construction of Compilers, 2005.

161

BIBLIOGRAPHY 162

[8] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and
I. Finocchi. A survey of symbolic execution techniques. ACM
Computing Survey (CSUR), 2018.

[9] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and
A. Pretschner. Code obfuscation against symbolic execution
attacks. In Proceedings of the 32nd Annual Conference on
Computer Security Applications (ACSAC). ACM, 2016.

[10] S. Banescu, M. Ochoa, and A. Pretschner. A framework for
measuring software obfuscation resilience against automated
attacks. In Proc. of the 1st IEEE/ACM International Workshop
on Software Protection, 2015.

[11] B. Barak. Hopes, fears, and software obfuscation. Communi-
cations of the ACM, 2016.

[12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im) possibility of obfuscat-
ing programs. In Advances in Cryptology. Springer, 2001.

[13] J. K. Barr, B. A. Bradley, B. T. Hannigan, A. M. Alattar, and
R. Durst. Layered security in digital watermarking, 2012. US
Patent 8,190,901.

[14] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović.
Randomized instruction set emulation. ACM Transactions on
Information and System Security (TISSEC), 2005.

[15] D. A. Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in NC1. In Proc.
of the 18th Annual ACM Symposium on Theory of Computing
(STOC), 1986.

[16] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution
of multithreaded programs from arbitrary program contexts.
2014.

BIBLIOGRAPHY 163

[17] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address ob-
fuscation: An efficient approach to combat a broad range
of memory error exploits. In USENIX Security Symposium,
2003.

[18] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev. Statistical
deobfuscation of android applications. In Proc. of the ACM
SIGSAC Conference on Computer and Communications Se-
curity (CCS), 2016.

[19] F. Biondi, S. Josse, A. Legay, and T. Sirvent. Effectiveness of
synthesis in concolic deobfuscation. 2015.

[20] D. Bohannon and L. Holmes. Revoke-obfuscation: power-
shell obfuscation detection using science. BlackHat, 2017.

[21] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[22] J.-M. Borello and L. Mé. Code obfuscation techniques for
metamorphic viruses. Journal in Computer Virology, 2008.

[23] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution
of floating-point computations. Software Testing, Verification
and Reliability (STVR), 2006.

[24] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. Bap:
A binary analysis platform. In Proc. of the International
Conference on Computer Aided Verification. Springer, 2011.

[25] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. In Proc. of the 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2008.

[26] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex

BIBLIOGRAPHY 164

systems programs. In Proc. of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2008.

[27] C. Cadar and K. Sen. Symbolic execution for software testing:
three decades later. Communications of the ACM, 2013.

[28] J. Cappaert and B. Preneel. A general model for hiding
control flow. In Proc. of the 10th Annual ACM Workshop on
Digital Rights Management, 2010.

[29] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleash-
ing mayhem on binary code. In IEEE Symposium on Security
and Privacy, 2012.

[30] J.-T. Chan and W. Yang. Advanced obfuscation techniques
for Java bytecode. Journal of Systems and Software, 2004.

[31] H. Chang and M. J. Atallah. Protecting software code by
guards. In Security and Privacy in Digital Rights Manage-
ment. Springer, 2002.

[32] H. Chen, L. Yuan, X. Wu, B. Zang, B. Huang, and P.-c. Yew.
Control flow obfuscation with information flow tracking. In
Proc. of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2009.

[33] L. Chen and A. Avizienis. N-version programming: a
fault-tolerance approach to reliability of software operation.
In Proc. the 8th IEEE International Symposium on Fault-
Tolerant Computing (FTCS), 1978.

[34] Y. Chen, R. Venkatesan, et al. Oblivious hashing: A stealthy
software integrity verification primitive. In Information Hid-
ing. Springer, 2003.

[35] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform
for in-vivo multi-path analysis of software systems. 2011.

BIBLIOGRAPHY 165

[36] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot. White-
box cryptography and an aes implementation. In Proc. of the
International Workshop on Selected Areas in Cryptography.
Springer, 2002.

[37] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot. A
white-box DES implementation for DRM applications. In
ACM Workshop on Digital Rights Management. Springer,
2002.

[38] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An approach
to the obfuscation of control-flow of sequential computer
programs. In Information Security. Springer, 2001.

[39] C. Collberg, J. Davidson, R. Giacobazzi, Y. X. Gu,
A. Herzberg, and F.-Y. Wang. Toward digital asset protection.
IEEE Intelligent Systems, 2011.

[40] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical report, The University
of Auckland, 1997.

[41] C. Collberg, C. Thomborson, and D. Low. Breaking abstrac-
tions and unstructuring data structures. In Proc. of the IEEE
International Conference on Computer Languages, 1998.

[42] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proc. of
the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 1998.

[43] R. Corin and F. A. Manzano. Efficient symbolic execution for
analysing cryptographic protocol implementations. ESSoS,
2011.

BIBLIOGRAPHY 166

[44] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz.
Thwarting cache side-channel attacks through dynamic soft-
ware diversity. In NDSS, 2015.

[45] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz.
It’s a TRaP: table randomization and protection against
function-reuse attacks. In Proc. of the 22nd ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2015.

[46] L. Cseppento and Z. Micskei. Evaluating symbolic execution-
based test tools. In Proc. of the IEEE 8th International
Conference on Software Testing, Verification and Validation,
2015.

[47] M. Dalla Preda and F. Maggi. Testing android malware detec-
tors against code obfuscation: a systematization of knowledge
and unified methodology. Journal of Computer Virology and
Hacking Techniques, 2017.

[48] D. Davidson, B. Moench, T. Ristenpart, and S. Jha. FIE on
firmware: Finding vulnerabilities in embedded systems using
symbolic execution. In USENIX Security Symposium, 2013.

[49] L. De Moura and N. Bjørner. Z3: An efficient SMT solver.
In Proc. of the International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer,
2008.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database. In
Proc. of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

[51] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for

BIBLIOGRAPHY 167

efficient evaluation. In Advances in Neural Information
Processing Systems (NIPS), 2014.

[52] S. Dolan. mov is Turing-complete, 2013.

[53] D. Dolz and G. Parra. Using exception handling to build
opaque predicates in intermediate code obfuscation tech-
niques. Journal of Computer Science and Technology (JCST),
2008.

[54] C. Domas. The movfuscator: Turning ’move’ into a soul-
crushing RE nightmare. REcon, 2015.

[55] S. Drape et al. Obfuscation of abstract data types. Citeseer,
2004.

[56] S. Drape et al. Intellectual property protection using obfusca-
tion. Proc. of SAS, 2009.

[57] D. Dunaev and L. Lengyel. Complexity of a special deobfus-
cation problem. In Proc. of the 19th IEEE International Con-
ference and Workshops on Engineering of Computer Based
Systems, 2012.

[58] E. Eilam. Reversing: secrets of reverse engineering. John
Wiley & Sons, 2011.

[59] L. Ertaul and S. Venkatesh. Jhide-a tool kit for code ob-
fuscation. In IASTED Conf. on Software Engineering and
Applications, 2004.

[60] L. Ertaul and S. Venkatesh. Novel obfuscation algorithms
for software security. In Proc. of the 2005 International
Conference on Software Engineering Research and Practice.
Citeseer, 2005.

[61] P. Faruki, V. Laxmi, V. Ganmoor, M. S. Gaur, and A. Bhar-
mal. Droidolytics: robust feature signature for repackaged

BIBLIOGRAPHY 168

android apps on official and third party android markets. In
Proc. of the 2nd IEEE International Conference on Advanced
Computing, Networking and Security, 2013.

[62] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic
testing. In Proc. of the 9th Joint Meeting on Foundations of
Software Engineering (FSE). ACM, 2013.

[63] C. Foket, B. De Sutter, B. Coppens, and K. De Bosschere.
A novel obfuscation: class hierarchy flattening. In Interna-
tional Symposium on Foundations and Practice of Security.
Springer, 2012.

[64] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse
computer systems. In Proc. of the 6th IEEE Workshop on Hot
Topics in Operating Systems, 1997.

[65] K. Fukushima, S. Kiyomoto, T. Tanaka, and K. Sakurai.
Analysis of program obfuscation schemes with variable en-
coding technique. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 2008.

[66] K. Fukushima, T. Tabata, and K. Sakurai. Evaluation of
obfuscation scheme focusing on calling relationships of fields
and methods in methods. Communication, Network, and
Information Security, 2003.

[67] M. N. Gagnon, S. Taylor, and A. K. Ghosh. Software
protection through anti-debugging. 2007.

[68] V. Ganesh and D. L. Dill. A decision procedure for bit-
vectors and arrays. In Proc. of the International Conference
on Computer Aided Verification. Springer, 2007.

[69] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation
by backpropagation. In International Conference on Machine
Learning (ICML), 2015.

BIBLIOGRAPHY 169

[70] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear
maps from ideal lattices. In Proc. of the Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2013.

[71] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and
B. Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In Proc. of the 54th
IEEE Annual Symposium on Foundations of Computer Sci-
ence (FOCS), 2013.

[72] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and
B. Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits (full version). In Cryp-
tology ePrint Archive, 2013.

[73] J. Ge, S. Chaudhuri, and A. Tyagi. Control flow based
obfuscation. In Proc. of the 5th ACM Workshop on Digital
Rights Management, 2005.

[74] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In ACM Sigplan Notices, 2005.

[75] D. Goldberg. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys
(CSUR), 1991.

[76] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow
kernel for unsupervised domain adaptation. In Proc. of
the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[77] Y. Guillot and A. Gazet. Automatic binary deobfuscation.
Journal in Computer Virology, 2010.

[78] S. Guo, M. Kusano, and C. Wang. Conc-iSE: Incremental
symbolic execution of concurrent software. In Proc. of

BIBLIOGRAPHY 170

the 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2016.

[79] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Asser-
tion guided symbolic execution of multithreaded programs.
In Proc. of the 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015.

[80] S. Han, H. Mao, and W. J. Dally. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. 2016.

[81] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances in
Neural Information Processing Systems (NIPS), 2015.

[82] W. A. Harrison and K. I. Magel. A complexity measure based
on nesting level. ACM Sigplan Notices, 1981.

[83] N. Hasabnis and R. Sekar. Extracting instruction semantics
via symbolic execution of code generators. In Proc. of
the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), 2016.

[84] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[85] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. In NIPS Deep Learning and Representa-
tion Learning Workshop, 2014.

[86] B. Hitaj, G. Ateniese, and F. Pérez-Cruz. Deep models
under the GAN: information leakage from collaborative deep
learning. In Proc. of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2017.

BIBLIOGRAPHY 171

[87] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 1969.

[88] M. Horváth and L. Buttyán. The birth of cryptographic
obfuscation-a survey. 2016.

[89] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvi-
tie, S. Hyrynsalmi, and V. Leppänen. Diversification and
obfuscation techniques for software security: a systematic
literature review. Information and Software Technology, 2018.

[90] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[91] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely connected convolutional networks. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[92] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning (ICML),
2015.

[93] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. Obfuscator-
LLVM: software protection for the masses. 2015.

[94] R. Kannavara, C. J. Havlicek, B. Chen, M. R. Tuttle, K. Cong,
S. Ray, and F. Xie. Challenges and opportunities with
concolic testing. In Proc. of the National Aerospace and
Electronics Conference. IEEE, 2015.

[95] P. Khodamoradi, M. Fazlali, F. Mardukhi, and M. Nosrati.
Heuristic metamorphic malware detection based on statistics
of assembly instructions using classification algorithms. In

BIBLIOGRAPHY 172

Proc. of the 18th CSI International Symposium on Computer
Architecture and Digital Systems (CADS). IEEE, 2015.

[96] J. Kilian. Founding crytpography on oblivious transfer. In
Proc. of the 20th Annual ACM Symposium on Theory of
Computing (STOC), 1988.

[97] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and
S. K. Cha. Testing intermediate representations for binary
analysis. In Proc. of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017.

[98] A. Kovacheva. Efficient code obfuscation for android. In
International Conference on Advances in Information Tech-
nology. Springer, 2013.

[99] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient
state merging in symbolic execution. ACM Sigplan Notices,
2012.

[100] N. Kuzurin, A. Shokurov, N. Varnovsky, and V. Zakharov. On
the concept of software obfuscation in computer security. In
Information Security. Springer, 2007.

[101] J. C. Lagarias. The 3x + 1 problem and its generalizations.
The American Mathematical Monthly, 1985.

[102] W. Landi and B. G. Ryder. Pointer-induced aliasing: a
problem classification. In Proc. of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages
(POPL), 1991.

[103] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar. Deepx: a software accelerator
for low-power deep learning inference on mobile devices.
In Proc. of the 15th ACM/IEEE International Conference on
Information Processing in Sensor Networks, 2016.

BIBLIOGRAPHY 173

[104] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK:
Automated software diversity. In IEEE Symposium on Secu-
rity and Privacy, 2014.

[105] T. László and A. Kiss. Obfuscating C++ programs via control
flow flattening. Annales Universitatis Scientarum Budapesti-
nensis de Rolando Eötvös Nominatae, Sectio Computatorica,
2009.

[106] C. Lattner and V. Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proc.
of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization.
IEEE Computer Society, 2004.

[107] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. E. Hubbard, and L. D. Jackel. Handwritten digit
recognition with a back-propagation network. In Advances in
Neural Information Processing Systems (NIPS), 1990.

[108] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain
damage. In Advances in Neural Information Processing
Systems (NIPS), 1990.

[109] K. Lewi, A. J. Malozemoff, D. Apon, B. Carmer, A. Foltzer,
D. Wagner, D. W. Archer, D. Boneh, J. Katz, and M. Raykova.
5gen: A framework for prototyping applications using multi-
linear maps and matrix branching programs. In Proc. of the
23rd ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2016.

[110] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zähl,
and K. Wehrle. Floating-point symbolic execution: A case
study in N-version programming. In Proc. of the 32nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017.

BIBLIOGRAPHY 174

[111] D. S. Liew. Symbolic execution of verification languages and
floating-point code. 2018.

[112] Z. Lin, R. D. Riley, and D. Xu. Polymorphing software by
randomizing data structure layout. In Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2009.

[113] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proc. of the 10th
ACM Conference on Computer and Communications Security
(CCS), 2003.

[114] D. Low. Protecting java code via code obfuscation. Cross-
roads, 1998.

[115] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic
instrumentation. In ACM Sigplan Notices, 2005.

[116] M. R. Lyu and Y.-T. He. Improving the n-version program-
ming process through the evolution of a design paradigm.
IEEE Transactions on Reliability (TR), 1993.

[117] A. Majumdar and C. Thomborson. Manufacturing opaque
predicates in distributed systems for code obfuscation. In
Proc. of the 29th Australasian Computer Science Conference.
Australian Computer Society, Inc., 2006.

[118] A. Majumdar, C. Thomborson, and S. Drape. A survey of
control-flow obfuscations. In Information Systems Security.
Springer, 2006.

[119] A. Marcelli, E. Sanchez, G. Squillerò, M. U. Jamal, A. Imtiaz,
S. Machetti, F. Mangani, P. Monti, D. Pola, A. Salvato,
et al. Defeating hardware trojan in microprocessor cores

BIBLIOGRAPHY 175

through software obfuscation. In the 19th Latin-American
Test Symposium. IEEE, 2018.

[120] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and
P. Maniatis. Path-exploration lifting: Hi-fi tests for lo-fi
emulators. In Proc. of the 17th International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2012.

[121] T. J. McCabe. A complexity measure. IEEE Trans. on
Software Engineering (TSE), 1976.

[122] J. Ming, D. Xu, L. Wang, and D. Wu. Loop: Logic-oriented
opaque predicate detection in obfuscated binary code. In
Proc. of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[123] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis
for malware detection. In Proc. of the 23rd IEEE Annual
Computer Security Applications Conference (ACSAC), 2007.

[124] G. Myles and C. Collberg. Software watermarking via opaque
predicates: Implementation, analysis, and attacks. Electronic
Commerce Research, 2006.

[125] N. Nethercote. Dynamic binary analysis and instrumentation.
PhD thesis, PhD thesis, University of Cambridge, 2004.

[126] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecog-
nizable images. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[127] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software ob-
fuscation on a theoretical basis and its implementation. IEICE
Trans. on Fundamentals of Electronics, Communications and
Computer Sciences, 2003.

BIBLIOGRAPHY 176

[128] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and
Y. Zhang. Experience with software watermarking. In Proc.
of the 16th IEEE Annual Computer Security Applications
Conference (ACSAC), 2000.

[129] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and
K. Talwar. Semi-supervised knowledge transfer for deep
learning from private training data. Proc. of the 4th Interna-
tional Conference on Learning Representations (ICLR), 2016.

[130] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami. Practical black-box attacks against machine
learning. In Proc. of the 2017 ACM Asia Conference on
Computer and Communications Security (AsiaCCS), 2017.

[131] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face
recognition. In BMVC, 2015.

[132] A. Pawlowski, M. Contag, and T. Holz. Probfuscation:
an obfuscation approach using probabilistic control flows.
In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2016.

[133] K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore: automated
whitebox testing of deep learning systems. Proc. of the 26th
ACM Symposium on Operating Systems Principles (SOSP),
2017.

[134] I. V. Popov, S. K. Debray, and G. R. Andrews. Binary
obfuscation using signals. In Proc. of 16th USENIX Security
Symposium on USENIX Security Symposium, 2007.

[135] M. Protsenko and T. Muller. Pandora applies non-
deterministic obfuscation randomly to android. In Proc. of
the 8th International Conference on Malicious and Unwanted
Software. IEEE, 2013.

BIBLIOGRAPHY 177

[136] J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray, and X. Su.
Identifying and understanding self-checksumming defenses
in software. 2015.

[137] J. Qiu, B. Yadegari, B. Johannesmeyer, et al. A framework
for understanding dynamic anti-analysis defenses. In Proc.
of the 4th ACM Program Protection and Reverse Engineering
Workshop, 2014.

[138] X. Qu and B. Robinson. A case study of concolic testing
tools and their limitations. In Proc. of the IEEE International
Symposium on Empirical Software Engineering and Measure-
ment, 2011.

[139] M. Quan. Hotspot symbolic execution of floating-point
programs. In Proc. of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE),
2016.

[140] N. Razavi, F. Ivančić, V. Kahlon, and A. Gupta. Concur-
rent test generation using concolic multi-trace analysis. In
Asian Symposium on Programming Languages and Systems
(APLAS). Springer, 2012.

[141] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.
icarl: Incremental classifier and representation learning. In
Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[142] C. Ren, K. Chen, and P. Liu. Droidmarking: Resilient soft-
ware watermarking for impeding android application repack-
aging. In Proc. of the 29th ACM/IEEE International Confer-
ence on Automated Software Engineering (ASE), 2014.

[143] E. Rescorla. SSL and TLS: designing and building secure
systems. Addison-Wesley Reading, 2001.

BIBLIOGRAPHY 178

[144] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TIS-
SEC), 2012.

[145] A. Romero, S. E. Kahou, and Y. Bengio. Fitnets: Hints for
thin deep nets. 2015.

[146] K. A. Roundy and B. P. Miller. Binary-code obfuscations
in prevalent packer tools. ACM Computing Surveys (CSUR),
2013.

[147] T. Sander and C. F. Tschudin. Protecting mobile agents
against malicious hosts. In Mobile Agents and Security.
Springer, 1998.

[148] F. Saudel and J. Salwan. Triton: a dynamic symbolic
execution framework. In Symposium sur la sécurité des
technologies de linformation et des communications, SSTIC,
France, Rennes, 2015.

[149] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-
extended symbolic execution on binary programs. In Proc. of
the eighteenth International Symposium on Software Testing
and Analysis (ISSTA). ACM, 2009.

[150] S. Schrittwieser and S. Katzenbeisser. Code obfuscation
against static and dynamic reverse engineering. In Informa-
tion Hiding. Springer, 2011.

[151] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik,
and E. Weippl. Protecting software through obfuscation: Can
it keep pace with progress in code analysis? ACM Computing
Surveys (CSUR), 2016.

[152] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever
wanted to know about dynamic taint analysis and forward

BIBLIOGRAPHY 179

symbolic execution (but might have been afraid to ask). In
IEEE Symposium on Security and Privacy, 2010.

[153] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating
hard satisfiability problems. Artificial Intelligence, 1996.

[154] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In ACM SIGSOFT Software Engineering
Notes, 2005.

[155] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang. Towards
a scalable resource-driven approach for detecting repackaged
android applications. In Proc. of the 30th ACM Annual
Computer Security Applications Conference (ACSAC), 2014.

[156] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. Impeding
malware analysis using conditional code obfuscation. In
NDSS, 2008.

[157] T. Shields. Anti-debugging: a developers view, 2010.

[158] Y. Shoshitaishvili and et al. SoK: (State of) the art of war:
Offensive techniques in binary analysis. In IEEE Symposium
on Security and Privacy, 2016.

[159] J. Shu, J. Li, Y. Zhang, and D. Gu. Android app protection
via interpretation obfuscation. In Proc. of the 12th IEEE
International Conference on Dependable, Autonomic and
Secure Computing, 2014.

[160] C. Simonyi. Hungarian notation. MSDN Library, 1999.

[161] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakr-
ishnan. Rigorous estimation of floating-point round-off errors
with symbolic taylor expansions. In International Symposium
on Formal Methods. Springer, 2015.

BIBLIOGRAPHY 180

[162] M. Sosonkin, G. Naumovich, and N. Memon. Obfuscation of
design intent in object-oriented applications. In Proc. of the
Third ACM workshop on Digital Rights Management, 2003.

[163] T. Su, Z. Fu, G. Pu, J. He, and Z. Su. Combining symbolic
execution and model checking for data flow testing. In Proc.
of the 37th International Conference on Software Engineering
(ICSE). IEEE Press, 2015.

[164] M. Sun, M. Li, and J. Lui. Droideagle: seamless detection
of visually similar android apps. In Proc. of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile
Networks, 2015.

[165] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[166] R. Tiella and M. Ceccato. Automatic generation of opaque
constants based on the k-clique problem for resilient data
obfuscation. In Proc. of the 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2017.

[167] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Stealing machine learning models via prediction APIs. In
USENIX Security Symposium, 2016.

[168] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation:
reverse engineering obfuscated code. In Proc. of the 12th
IEEE Working Conference on Reverse Engineering, 2005.

[169] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection
of software-based survivability mechanisms. In Proc. of the
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2001.

BIBLIOGRAPHY 181

[170] C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical
report, University of Virginia, 2000.

[171] H. Wang, Y. Guo, Z. Ma, and X. Chen. Wukong: a scal-
able and accurate two-phase approach to android app clone
detection. In Proc. of the ACM International Symposium on
Software Testing and Analysis (ISSTA), 2015.

[172] P. Wang, Q. Bao, L. Wang, S. Wang, Z. Chen, T. Wei,
and D. Wu. Software protection on the go: A large-scale
empirical study on mobile app obfuscation. In Proc. of
the 40th International Conference on Software Engineering
(ICSE), 2018.

[173] P. Wang and J. Cheng. Accelerating convolutional neural
networks for mobile applications. In Proc. of the 2016 ACM
Multimedia Conference, 2016.

[174] P. Wang, S. Wang, J. Ming, Y. Jiang, and D. Wu. Translingual
obfuscation. In IEEE European Symposium on Security and
Privacy, 2016.

[175] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A
checksum-aware directed fuzzing tool for automatic software
vulnerability detection. In IEEE Symposium on Security and
Privacy, 2010.

[176] Z. Wang, J. Ming, C. Jia, and D. Gao. Linear obfuscation to
combat symbolic execution. In ESORICS. Springer, 2011.

[177] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and
S. Fahl. A large scale investigation of obfuscation use in
google play. arXiv preprint arXiv:1801.02742, 2018.

[178] G. Wroblewski. General method of program code obfusca-
tion. PhD thesis, Wroclaw University of Technology, 2002.

BIBLIOGRAPHY 182

[179] G. Wurster, P. V. Oorschot, and A. Somayaji. A generic attack
on checksumming-based software tamper resistance. In IEEE
Symposium on Security and Privacy, 2005.

[180] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang. Error-
driven incremental learning in deep convolutional neural net-
work for large-scale image classification. In Proc. of the 22nd
ACM International Conference on Multimedia, 2014.

[181] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-
guided path exploration in dynamic symbolic execution. In
Proc. of the 39th IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN), 2009.

[182] Z. Xin, H. Chen, H. Han, B. Mao, and L. Xie. Misleading
malware similarities analysis by automatic data structure ob-
fuscation. In Information Security. Springer, 2010.

[183] D. Xu, J. Ming, and D. Wu. Cryptographic function detection
in obfuscated binaries via bit-precise symbolic loop mapping.
In IEEE Symposium on Security and Privacy, 2017.

[184] H. Xu, Y. Su, Z. Zhao, Y. Zhou, M. R. Lyu, and I. King.
DeepObfuscation: Securing the structure of convolutional
neural networks via knowledge distillation. arXiv preprint
arXiv:1806.10313, 2018.

[185] H. Xu, Y. Zhou, C. Gao, Y. Kang, and M. R. Lyu. Spyaware:
Investigating the privacy leakage signatures in app execution
traces. In Proc. of the 26th IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2015.

[186] H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu. Concolic execution
on small-size binaries: challenges and empirical study. In
Proc. of the 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2017.

BIBLIOGRAPHY 183

[187] H. Xu, Y. Zhou, and M. R. Lyu. N-version obfuscation.
In Proc. of the 2nd ACM International Workshop on Cyber-
Physical System Security (CPSS), 2016.

[188] B. Yadegari and S. Debray. Symbolic execution of obfuscated
code. In Proc. of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2015.

[189] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray.
A generic approach to automatic deobfuscation of executable
code. In IEEE Symposium on Security and Privacy, 2015.

[190] M. Yildiz, J. Abawajy, T. Ercan, and A. Bernoth. A layered
security approach for cloud computing infrastructure. In
International Symposium on Pervasive Systems, Algorithms,
and Networks. IEEE, 2009.

[191] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? In Advances in
Neural Information Processing Systems (NIPS), 2014.

[192] I. You and K. Yim. Malware obfuscation techniques: a brief
survey. In Proc. of International Conference on Broadband,
Wireless Computing, Communication and Applications, 2010.

[193] X. Zhang, F. He, and W. Zuo. Theory and practice of program
obfuscation. INTECH Open Access Publisher, 2010.

[194] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang. Divilar: Diversi-
fying intermediate language for anti-repackaging on android
platform. In Proc. of the 4th ACM Conference on Data and
Application Security and Privacy, 2014.

[195] W. Zhou, X. Zhang, and X. Jiang. Appink: watermarking
android apps for repackaging deterrence. In Proc. of the 8th
ACM Symposium on Information, Computer and Communi-
cations Security (AsiaCCS), 2013.

BIBLIOGRAPHY 184

[196] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party android
marketplaces. In Proc. of the 2nd ACM Conference on Data
and Application Security and Privacy, 2012.

[197] Y. Zhou and X. Jiang. Dissecting android malware: Charac-
terization and evolution. In IEEE Symposium on Security and
Privacy, 2012.

[198] W. Zhu and C. Thomborson. A provable scheme for homo-
morphic obfuscation in software security. In The IASTED
International Conference on Communication, Network and
Information Security, 2005.

[199] W. Zhu, C. Thomborson, and F.-Y. Wang. Applications of ho-
momorphic functions to software obfuscation. In Intelligence
and Security Informatics. Springer, 2006.

[200] W. F. Zhu. Concepts and techniques in software watermark-
ing and obfuscation. PhD thesis, ResearchSpace, Auckland,
2007.

[201] J. Zimmerman. How to obfuscate programs directly. In Proc.
of the Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2015.

	Abstract
	Acknowledgement
	Introduction
	Rationale
	Critical Challenge of Obfuscation
	Layered Security for Obfuscation

	Summary of Contributions
	Thesis Organization

	Taxonomy of Obfuscation Techniques
	Rationale
	Motivating Examples
	Obfuscating Mobile Apps
	Obfuscating JavaScript Programs

	Our Study Approach
	Survey Scope
	Survey Approach

	Code-Element-Layer Obfuscation
	Obfuscating Layout
	Obfuscating Controls
	Obfuscating Data
	Obfuscating Methods
	Obfuscating Classes

	Software-Component-Layer Obfuscation
	Code Translation
	Decompilation Prevention
	Code Diversification

	Cross-Component-Layer Obfuscation
	Application-Layer Obfuscation
	Obfuscating DRM Systems
	Obfuscating Neural Networks

	Threats to Validity
	Practical Obfuscation Techniques
	Theoretical Obfuscation Research
	Other Supportive Work

	Related Work
	Conclusions

	Symbolic Opaque Predicates
	Rationale
	Motivation
	Motivating Examples
	Adversary Model

	Preliminary Knowledge about Symbolic Execution
	Theoretical Basis
	Symbolic Execution Framework
	Implementation Variations

	Challenges of Symbolic Execution
	Symbolic-Reasoning Challenges
	Path-Explosion Challenges

	Benchmarking Symbolic Execution Tools
	Objective and Challenges
	Approach based on Logic Bombs
	Automated Benchmarking Framework
	Benchmarking Results

	Designing Bi-Opaque Predicates
	Idea in a Nutshell
	Bi-Opaque Property
	Demonstration
	Template Generalization
	Template Enrichment

	Performance Evaluation
	Evaluation Criteria
	Prototype Implementation
	Stealth
	Cost

	Related Work
	Symbolic Execution for Deobfuscation
	Comparison with Existing Opaque Predicates

	Conclusion

	N-Version Obfuscation
	Rationale
	Motivation and Background
	Adversary Model
	Tampering-Resilience Background
	Challenge of Tampering-Resilient Apps

	Our Proposed Approach
	General Idea of NVO
	Our Candidate Solution
	Approach Discussion

	Evaluation
	Security Effectiveness
	Security Strength
	Overhead

	Related Work
	Conclusion

	DeepObfuscation
	Rationale
	Preliminary
	CNN Basis
	Modern CNNs

	Attack Model
	Deep Learning Obfuscation
	Definition
	Performance Metrics

	Structural Obfuscation Approach
	Basic Idea
	Obfuscation Framework
	Design of Simulation Networks

	Evaluation
	Experimental Setting
	Steps of Obfuscation
	Performance of Obfuscated Models
	Fine-tuning Ability
	Discussion

	Comparison with Model Compression
	Related Work
	Conclusion

	Related Work
	Conclusion and Future Work
	Summary of Thesis
	Future Work

	Publications Related to the Thesis
	Bibliography

