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Community detection is an important line of research in un-

derstanding complex networks. In many real-world networks,

communities naturally overlap since a node usually has multiple

community memberships, which makes overlapping community

detection a trend in recent years. One popular technique to

cope with overlapping community detection is matrix factori-

zation (MF). Although all existing MF-based approaches use

links as input to identify overlapping communities as output,

the relationship between links and communities is still under-

investigated.

To view links as consequences of communities (community-

to-link), our first work proposes a preference-based non-negative

matrix factorization (PNMF) model to incorporate implicit link

preference information. Unlike conventional matrix factoriza-

tion approaches which simply approximate the original adja-
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cency matrix in value, our PNMF model maximizes the likeli-

hood of the preference order for each node by following the intui-

tion that a node prefers its neighbors than non-neighbors. Our

PNMF model overcomes the indiscriminate penalty problem in

which non-linked pairs inside one community are equally pena-

lized in objective functions as those across two communities.

Based on our first work, our second work proposes a locality-

based non-negative matrix factorization (LNMF) model to re-

fine the PNMF model by making use of “local non-neighbors”

(e.g., my friend’s friend but not my direct friend). We define

a subgraph called “k-degree local network” to set a boundary

between local non-neighbors and other non-neighbors. By dis-

criminatively treating these two classes of non-neighbors, our

LNMF model can discover more fine-grained communities.

While the LNMF model can be regarded as a generalization

of the PNMF model, our third work proposes a mutual density

based non-negative matrix factorization (MD-NMF) model as an

alternative to the PNMF model. The MD-NMF model is based

on the observation that mutual friends between two nodes can

better reflect their closeness regarding community memberships

compared with link existence. By introducing the concept of

mutual density and using it to replace links as a new indicator

to infer the similarity of community membership between two

nodes, our new objective maximizes the likelihood that node

pairs with larger mutual density are more similar in community

memberships.
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By further investigating how nodes’ community memberships

can be represented by their linked neighbors (link-to-community),

our fourth work proposes a homophily-based non-negative ma-

trix factorization (HNMF) method to boost community repre-

sentation learning by the mutual enhancement of both-sided re-

lationships between links and communities. In particular, from

the community-to-link perspective, we adopt the PNMF model

in our first work. From the link-to-community perspective, we

propose a community representation learning with network em-

bedding techniques by assuming that linked nodes have similar

community representations.

For all the models we propose, we employ a learning algo-

rithm which learns a node-community membership matrix via

stochastic gradient descent with fast sampling strategies. We

evaluate our models on several real-world networks including

large ones with ground-truth communities. Experimental re-

sults show that by exploring and modeling the two-sided relati-

onship between links and communities, our models outperform

state-of-the-art approaches on multiple measurements and are

capable of finding overlapping communities with better quality.
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摘要 ：

社區發現是理解複雜網絡的一項重要研究課題。在很多實

際的網絡中，由於一個節點經常存在多個身份，社區往往會相

互重疊，這使得可重疊社區發現成為近些年這一課題的研究趨

勢。矩陣分解是解決可重疊社區發現的一項常用的工具。雖然

現存的基於矩陣分解的方法都使用鏈接作為算法輸入去識別作

為算法輸出的可重疊社區，但是鏈接和社區之間的相互關係還

是缺乏研究。

當鏈接被看作是社區存在后的必然結果（從社區到鏈

接），我們的第一個工作提出了一個基於偏好的非負矩陣分解

（PNMF）模型來利用隱藏的鏈接偏好信息。和傳統的矩陣分

解方法使用目標函數在數值上去近似原本的鄰接矩陣不同，我

們的PNMF模型通過遵循一個節點對它的鄰接節點有更高的偏

好來最大化每個節點的偏好序列。我們的PNMF模型克服了以

前工作中不區分社區內不相鄰節點對和社區之間不相鄰節點對

的問題。

基於我們的第一個工作，我們的第二個工作通過利用局部

非鄰接節點的概念（即朋友的朋友但非直接朋友）提出了一

個基於局部性的非負矩陣分解（LNMF）模型來改善PNMF模

型。我們定義了一個叫做k度局部網絡的子圖來劃分局部非鄰
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接節點和其他非鄰接節點。通過區別對待這兩種非鄰接節點，

我們的LNMF模型可以發現更加細粒度的社區。

如果說LNMF模型可以被看做是PNMF模型的一種一般化的

話，我們的第三個工作提出了一種基於共同好友密度的非負矩

陣分解（MD-NMF）模型來替換PNMF模型。MD-NMF模型

的提出是因為我們發現兩個節點的共同好友比兩個節點之間是

否存在鏈接更好的反應了兩個節點社區從屬的相似性。通過引

入共同好友密度這個概念并將其取代鏈接作為推斷兩個節點社

區從屬關係相似性的指示符，我們的新目標函數是去最大化共

同好友密度越大的節點對之間社區從屬關係更相似的概率。

通過進一步探索節點的社區從屬關係如何被它們的鄰接節

點所表達（從鏈接到社區），我們的第四個工作提出了一種

基於趨同性的非負矩陣分解（HNMF）模型。這種模型通過鏈

接與社區之間的相互作用來加快對社區表達的學習。具體來

說，從社區到鏈接的角度，我們使用了我們的第一個工作，

即PNMF模型；從鏈接到社區的角度，我們通過假設相鄰節點

具有更相似的社區從屬關係提出了一種通過網絡嵌入技術的社

區表達學習算法。

對於我們提出的上述模型，我們都採用隨機梯度下降算法

和快速的抽樣方法來學習節點和社區之間的從屬關係矩陣。我

們的實驗數據都是實際的網絡，其中包括有真實社區信息的大

型網絡。實驗結果顯示，通過對鏈接和社區相互關係的探究和

建模，我們所提出的四個模型比現有的模型在多個指標上擁有

更好的效果，可以發現更高質量的社區。
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Chapter 1

Introduction

With the emergence and prevalence of online social networks,

it becomes much easier for geographically distant people to get

acquainted and keep in touch with each other. People, especially

teenagers, spend more and more time on online social networks

in their daily lives [15]. For example, Facebook, the currently

largest online social network, has over 1.86 billion monthly active

users with a 17% yearly increase1. Thus, the crucialness of on-

line social networks can no longer be ignored, and researchers

from various disciplines have looked into it to get a better un-

derstanding of social behaviors [36, 102].

In computer science, an online social network is usually ab-

stracted as a graph with a set of nodes and edges. Unlike a

random graph where each node pair has the same probability

to be linked [25], an online social network has certain structures

[48]. A typical structure is that there are groups of nodes clo-

sely connected inside the group but rarely making connections

1https://zephoria.com/top-15-valuable-facebook-statistics/
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: The process of community detection.

with nodes outside the group, e.g., people in the same organi-

zation or people sharing the same interest. Such structure is

called community structure [35]. Community detection is the

task of uncovering community structure in complex networks

(see Figure 1.1). Apart from finding groups in an online social

network, community detection has many other concrete applica-

tions. An online retailer can build a better recommender system

by clustering customers according to their interests [85]. A Web

service can cluster their clients according to their interests or

patterns and allocate a dedicated mirror server for each cluster

to improve the performance of the service [46].

A community detection problem is naturally viewed as a

graph partition/clustering problem and thus can be solved by

unsupervised learning algorithms. An implicit assumption be-

hind it is that each node can be assigned to one and only one

community. However, it has been shown that overlap is a signifi-

cant feature of many real-world social networks [86]. For exam-

ple, in Figure 1.2, the man in the middle has multiple identities
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Figure 1.2: Communities are overlapped.

in his social network, e.g., father, an alumnus, a company em-

ployer, a dance club member, etc. For each identity, we can

find a corresponding community to define it, e.g., his family, all

the alumni of his college, all the employees in his company, all

the members in his dance club, etc. This particular branch of

community detection is called overlapping community detection.

Since it is more realistic compared with disjoint community de-

tection, overlapping community detection has drawn more at-

tention recently.

Among various approaches dealing with overlapping commu-

nity detection, matrix factorization (MF) is one of the standard

frameworks. Figure 1.3 shows a typical MF framework where a



CHAPTER 1. INTRODUCTION 4

Figure 1.3: An illustration of a typical MF framework for overlapping com-

munity detection.

node-community membership matrix is learned to approximate

the original adjacency matrix with an optimization function.

Each entry in the node-community membership matrix repre-

sents the weight of the corresponding node in the corresponding

community. By learning the node-community membership ma-

trix, we can determine all the communities a node belongs to

according to the weights on its corresponding row.

In the rest of this chapter, we first describe the data type

of the input and output of overlapping community detection in

Section 1.1. Then we introduce the motivation of this thesis in

Section 1.2. We conclude the main contributions of this thesis

in Section 1.3 and present the overall roadmap of this thesis in

Section 1.4.
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Figure 1.4: An online social network.

1.1 Data Type

A graph (or a network) is one of the basic data structures in

computer science. The basic components of a graph are nodes

and edges (or links). A node is an entity, and an edge reveals

the relation between two nodes. As we mentioned, a real-world

graph has community structure. A community can be regarded

as a set of nodes sharing a feature. For example, in a social

network (see Figure 1.4 [77]), a node represents a person, an edge

represents the friend relationship, and a community can be a

college, a company, etc.; in a protein-protein interaction network

(see Figure 1.5 [76]), a node represents a type of protein, an
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edge represents that there is an interaction between two types of

proteins, and a community is a set of proteins with a particular

functionality.

Figure 1.5: A protein-protein interaction network.

This thesis focuses on overlapping community detection of an

undirected network. The input is the adjacency matrix, which

includes and only includes node and edge information. We can

not deny that other information is available in network data

as well, such as node attribute, edge weight, etc. But they

are beyond the content of this thesis. The output is a set of

communities where each of them contains a set of nodes. There

are certain metrics to evaluate the goodness of a community

structure, and we will discuss it in later chapters.
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1.2 Motivation

This thesis focuses on using matrix factorization framework to

model the relationship between links and communities for over-

lapping community detection. Our motivation mainly consists

of two parts: (1) previous work is problematic, and (2) we have

new insights to come up with new models to overcome these

problems.

Figure 1.6: Mismatch between labels and real values in previous work.

Given that most of the previous work based on matrix factori-

zation framework has the same or similar factorization form, it is

the optimization function that matters the most. As Figure 1.6

shows, a natural thought is to let the product of factorized ma-

trices be as close as the adjacency matrix of the network. This

type of optimization function is based on value approximation.

However, we notice that the adjacency matrix of an undirected

network only consists of binary labels representing whether a

link exists or not while the entries in the node-community mem-
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bership matrix are real values. A label can always represent the

same thing no matter what its actual value is but a value has a

physical meaning. The problem of a value approximation based

optimization function is the mismatch between a label and a

real value. Thus, we need new optimization functions that are

not based on value approximation to overcome the mismatch

problem.

Figure 1.7: How a community evolves.

While previous work only sees the static existence of com-

munities, the truth we cannot deny is that a community has

its formation process. Figure 1.7 is a toy illustration on how

a community evolves along the way. In this figure, a blue dot

represents a node, a line represents a link, and a yellow circle re-

presents a community. As the leftmost part shows, a community

is relatively small at the beginning. Nodes inside the commu-

nity may or may not know each other, and they may also know
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nodes outside the community. As times go by, new nodes join

the community mostly because of the recommendation of their

friends inside the community. On the other hand, strangers in-

side the community start to make friends with each other due to

the intrinsic property of a community that nodes inside it share

a common interest. With multiple rounds of mutual effect be-

tween links and the community itself, the community becomes

bigger and denser until reaching the status shown in the right-

most. Thus, a community can be viewed as a result of mutual

enhancement between links and the community itself. From the

community-to-link perspective, the intuition is that nodes in the

same community have a higher chance to become friends. From

the link-to-community perspective, the intuition is that friends

usually have similar community structures.

Providing the above two motivations, this thesis proposes

multiple novel optimization functions in the matrix factoriza-

tion framework to capture the relationship between links and

communities and eventually solve the problem of overlapping

community detection.

1.3 Thesis Contributions

The main contributions of this thesis can be summarized as

follows:

1. A Preference-based Non-negative Matrix Factoriza-

tion Model for Overlapping Community Detection [110]
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We propose a Preference-based Non-negative Matrix Fac-

torization (PNMF) model to incorporate implicit link pre-

ference information, i.e., a node’s preference reflected by

the links it associates with. This information has a sub-

stantial impact on overlapping community detection since

a node tends to build links with nodes inside its commu-

nity than those outside its community but has been ig-

nored in previous work. Different from conventional ma-

trix factorization approach using objective functions to ap-

proximate the given adjacency matrix in value, our new

objective function maximizes the likelihood of the prefe-

rence order for each node by following the intuition that a

node prefers its neighbors than other nodes. Our objective

function overcomes the indiscriminate penalty problem in

which non-linked pairs inside one community are equally

penalized with those across two communities. We use sto-

chastic gradient descent with bootstrap sampling to learn

the node-community membership matrix. Evaluations on

several real-world networks show that our PNMF model

outperforms state-of-the-art approaches on both modula-

rity and F1 score and is scalable for large datasets.

2. A Locality-based Non-negative Matrix Factoriza-

tion Model for Overlapping Community Detection [111]

Based on our PNMF model, we propose a Locality-based

Non-negative Matrix Factorization (LNMF) model to re-
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fine the preference system by incorporating locality into

the learning objective. Our motivation is that “local non-

neighbors” (e.g., my friend’s friend but not my direct friend)

have been ignored in previous work but are helpful when de-

tecting overlapping communities. After defining a subgraph

called “k-degree local network” to set a boundary between

local non-neighbors and other non-neighbors, we assume

that the preference of neighbors is larger than the prefe-

rence of local non-neighbors and the preference of local

non-neighbors is larger than the preference of other non-

neighbors. With a refined objective function reflecting our

new assumptions, the LNMF model can detect overlapping

community in a more precise manner. We employ a fast

sampling strategy with stochastic gradient descent as our

learning algorithm. By comparing our LNMF model with

state-of-the-art baseline methods including the PNMF mo-

del on various real-world networks, we show that our LNMF

model can achieve higher modularity and F1 score and de-

tect more fine-grained communities than the PNMF model.

3. A Mutual Density-based Non-negative Matrix Fac-

torization Model for Overlapping Community De-

tection

Through observations on real-world networks with ground-

truth communities, we find that compared with the exis-

tence of a link, the number of mutual friends between two
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nodes can better reflect their similarity regarding commu-

nity membership. Based on the concept of mutual friend,

we introduce Mutual Density as a new indicator to infer the

similarity of community membership between two nodes in

the MF framework for overlapping community detection.

We propose a Mutual Density-based Non-negative Matrix

Factorization (MD-NMF) model by maximizing the likeli-

hood that node pairs with larger mutual density are more

similar in community memberships. The new objective

function is quite similar to that of the PNMF model but

the existence of a link between two nodes has been replaced

by the value of mutual density. By conducting experiments

on various real-world networks, we show that our MD-NMF

model outperforms other state-of-the-art baselines and the

PNMF model on both modularity and F1 score.

4. A Homophily-based Non-negative Matrix Factori-

zation Model for Overlapping Community Detection [112]

Since most existing MF-based approaches only view links

as consequences of communities (community-to-link) but

fail to explore how nodes’ community memberships can be

represented by their linked neighbors (link-to-community),

we propose a Homophily-based Non-negative Matrix Fac-

torization (HNMF) to model both-sided relationships bet-

ween links and communities. From the community-to-link

perspective, the PNMF model is used since it assumes that
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nodes with common communities are more likely to build

links with each other. From the link-to-community per-

spective, we employ the Skip-gram model with network em-

bedding by assuming that linked nodes have similar com-

munity representations. We combine both parts into the

unified objective function. We conduct experiments on se-

veral real-world networks and the evaluations show that our

HNMF model achieves higher modularity and F1 score com-

pared with state-of-the-art baselines including the PNMF

model alone.

Figure 1.8: Thesis contributions.

Figure 1.8 is a summary of the relationships among the con-

tributions of this thesis mentioned above. We can see that the

HNMF model is a combination of both the PNMF model and

the Skip-Gram model that will be introduced in Chapter 6. The

LNMF model generalizes the preference system of the PNMF

model and thus can be regarded as an extension of the PNMF
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model. The MD-NMF model uses mutual density instead of

link existence to be the indicator and thus can be regarded as

an alternative to the PNMF model.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we

review the background knowledge and previous work closely re-

lated to our contributions. Particularly, we first provide an over-

view of community detection, then conduct a literature review

on overlapping community detection, finally dive into the matrix

factorization framework for overlapping community detection.

In Chapter 3, we propose a Preference-based Non-negative Ma-

trix Factorization (PNMF) model for overlapping community

detection. We first provide a brief review of related work. Then

we demonstrate model formulation and parameter learning pa-

radigm. In the end, we show our experimental results and con-

clude this work. In Chapter 4, we propose a Locality-based

Non-negative Matrix Factorization (LNMF) model for overlap-

ping community detection. We first define our problem and

briefly review some related work. Then we illustrate model for-

mulation and discuss the relationship between this model and

the previous PNMF model. In the end, we show our experimen-

tal results and conclude this work. In Chapter 5, we propose a

Mutual Density-based Non-negative Matrix Factorization (MD-

NMF) model for overlapping community detection. We first give
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some definitions and show our data observations. Then we de-

monstrate model formulation and parameter learning paradigm.

After that, we show our experimental results and discuss the dif-

ference with the previous PNMF model. Finally, we provide a

brief review of related work and conclude this work. In Chapter

6, we propose a Homophily-based Non-negative Matrix Facto-

rization (HNMF) model for overlapping community detection.

We first define our problem and show our data observations.

Then we conduct a brief review of related work. After that,

we illustrate model formulation and parameter learning para-

digm. Finally, we show our experimental results and conclude

this work. Chapter 7 summarizes this thesis and discusses some

potential directions that can be explored in future work.

To make the chapters self-contained, we briefly reiterate cri-

tical definitions and models that are related in the following

chapters.

2 End of chapter.



Chapter 2

Background Study

In this chapter, we will go over the background knowledge re-

garding the focus of this thesis from a general view to a specific

view. We will follow the taxonomy in Figure 2.1 by starting with

the general topic of community detection, followed by overlap-

ping community detection, and ending with a specific topic of

matrix factorization framework for overlapping community de-

tection. In each part, we will first formally define the problem

and then conduct a brief literature review.

In each of the following chapters, to make the chapter self-

contained, we will reiterate critical literature reviewed in this

chapter and talk about other literature which are highly related

to that chapter but not mentioned in this chapter.

16
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Figure 2.1: The taxonomy of community detection.

2.1 Community Detection

2.1.1 Problem Description

Suppose that we have a graph/network denoted as G(V,E),

where V is the node set and E is the link or edge set. We

can formally define the concept of community as follows.

Definition 2.1 (Community). A community C is a subset of

V with a certain characteristic.

Based on this definition, nodes in a community are more li-

kely to make friends with each other. Therefore, a community

usually has stronger internal connections and weaker external

connection, which is directly proposed as an alternative defi-

nition of community in [35]. Following this, the problem of

community detection can be defined as follows.
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Definition 2.2 (Community Detection). Given a graph G(V,E),

community detection is a task to find a set of communities S =

{Ci|Ci 6= ∅, Ci 6= Cj, 1 ≤ i, j ≤ p} that maximizes a particular

objective function f , i.e.,

arg max
S

f(G, S), (2.1)

where p is the number of communities.

Classic community detection usually has two major assump-

tions:

• Completeness: every node should belong to one community,

i.e., V =
⋃
i=1,..,pCi,

• Disjointness: no node can belong to more than one com-

munities, i.e., Ci
⋂
Cj = ∅ for all i 6= j.

These two assumptions make classic community detection

more tractable since now it can be converted to other well-solved

problems.

2.1.2 Literature Review

Several surveys regarding classic community detection can be

found in [20, 30, 50, 56]. Here we would like to briefly summarize

some of the most representative approaches.

Traditional Approaches

A graph partitioning problem is to divide the nodes in a graph

into n groups such that the number of edges across two groups
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is minimal. The number of such edges is called cut size. This

objective matches the weak external connection part in the de-

finition of community. As a result, a community detection pro-

blem can be viewed as a graph partitioning problem. Since most

variants of graph partitioning are NP-hard, many heuristics are

proposed to find a good but not necessarily optimal solution,

such as the Kernighan-Lin algorithm [43], the spectral bisection

method [8], etc. Also, based on the well known max-flow min-

cut theorem [29], efficient algorithms dealing with the maximum

flow problem can be used to solve community detection at the

same time [27, 28]. However, in a graph partitioning problem,

the number of groups and the size of each group need to be de-

termined beforehand to avoid trivial solutions. Also, partitions

into more than two groups are usually achieved by performing

a bisection of the graph multiple times. These are the main

reason that algorithms for graph partitioning are bad for com-

munity detection.

Though the number and size of communities are usually unknown

in advance, a network may display a hierarchical structure, i.e.,

small groups of nodes included in a large group of nodes. Hier-

archical clustering is the technique to reveal such structure [32].

Hierarchical clustering algorithms require a similarity metric to

be defined in the beginning and only use the similarity matrix

SN∗N (Sij - the similarity between node i and node j, N -

the number of nodes) to identify groups with high similarity.

They can be classified into two categories according to the ge-
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neral strategy, which are agglomerative algorithms and divisive

algorithms. Agglomerative algorithms iteratively merge small

groups into large groups in a bottom-up fashion. Divisive algo-

rithms, on the opposite side, iteratively divide large groups into

small groups in a top-down fashion. The main weakness of hier-

archical clustering is that the partitions are highly dependent on

the similarity metric we choose but defining a similarity metric

is not trivial in a network with only link information.

Other traditional techniques include k-means algorithm [60,

63] and spectral clustering[22, 26]. K-means algorithm requires

that data can be embedded into a metric space. Although the

value of k needs to be determined beforehand, we can run this

algorithm multiple times to find a good k. On the other side,

similar to hierarchical clustering, spectral clustering requires the

similarity matrix or other matrices derived from it as well. By

using the eigenvectors of this matrix, spectral clustering can map

the nodes in a network to a space whose basis are these eigen-

vectors. Not surprisingly, both k-means algorithm and spectral

clustering also suffer from the issue that a network with only

link information is difficult to be transformed into some data

points in space or find a similarity metric.

Modularity-based Approaches

Modularity is by far the most popular quality function to me-

asure how good the detected communities are. First proposed

by Newman and Girvan [72], modularity is based on the as-
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sumption that a null model, i.e., a graph where the choice of

every node pair to have a link is regardless of any other node

pair, does not have community structure. If the density of edges

in subgraph is significantly larger than the expected density in

the null model, we can identify this subgraph as a community.

Specifically, modularity is defined as

Q =
1

2m

∑
u,v∈V

(Au,v − Pu,v)Iu,v, (2.2)

where m is the number of links, V is the node set, A is the

adjacency matrix, Pu,v is the expected number of links between

u and v in the null model, and Iu,v is an indicator function of

whether u and v belong to the same community.

In fact, a link between u and v consists of two stubs, i.e., half-

links. By maintaining the degree of each node, the probability pu

to pick a stub coming from node u is d(u)
2m and the same applies

on node v, where where d(u) is the degree of node u. So the

probability of a link between u and v is given by the product of

pu and pv, since links are independent of each other. Thus, the

expected number of links between u and v of the null model, i.e.,

Pu,v, can be computed as Pu,v = d(u)d(v)
4m2 ∗ 2m = d(u)d(v)

2m . Putting

it into Equation (2.2), the formula becomes

Q =
1

2m

∑
u,v∈V

(Au,v −
d(u)d(v)

2m
)Iu,v, (2.3)

Due to the existence of Iu,v, only node pairs in the same

community contributes to Equation (2.3). As a result, we can
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rewrite Equation (2.3) as a sum over the communities

Q =

Cp∑
c=C1

[
lc
m
− (

dc
2m

)2], (2.4)

where p is the number of communities in the network, lc is the

number of internal links in community c, and dc is the sum of

the degree of all the node in community c.

It can be inferred from Equation (2.4) that modularity will

be larger if a community is denser or has fewer links connecting

to the outside. The modularity of the whole network is always

zero if no partition is made. In other words, if we cannot find a

partition with positive modularity, the network has no commu-

nity structure. Also, modularity is always smaller than one and

can be negative.

In addition to being a quality function, modularity can be

used as an optimization objective to directly detect communi-

ties. Modularity optimization is by far the most widely-used al-

gorithms for classic community detection. As it has been proved

that modularity optimization is an NP-complete problem [12],

several heuristics have been proposed to find fairly good results

in a reasonable amount of time.

The first heuristic of modularity optimization for community

detection is a greedy algorithm of Newman [69]. It starts from

n groups with each consisting of only one node. In each step,

two groups will be merged if the modularity increase is maxi-

mum compared with the previous community structure. Since
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the number of possible merging choice is massive, especially in

early steps, computing modularity for all the choices requires

a lot of time. Clauset et al. employs heap to reduce the time

complexity from O(n2) to O(n log2 n) [16]. However, this greedy

strategy tends to merge two large groups instead of two small

ones since it yields more modularity increase if two large groups

are densely connected with each other. To alleviate this issue,

Danon et al. introduce a normalizer when computing the mo-

dularity variation ∆Q [19]. Other tricks include (1) starting

from some intermediate structure instead of the initial struc-

ture [23, 81, 104], (2) merging more than two communities at a

time [92, 93]. Both turn out to dramatically improve the accu-

racy of the greedy algorithm. Also, Blondel et al. generalize the

greedy algorithm into the case of weighted graph [10].

Since a greedy algorithm tends to be trapped into local op-

tima, other methods, in fact, achieve higher accuracy. Guimerà

et al make use of simulated annealing, a probabilistic process for

global optimization [44], on modularity optimization [37]. Duch

and Arenas, on the other hand, employ a local optimization

method called extremal optimization (EO) [11] to obtain a com-

parable accuracy but slightly faster running time [24]. Another

approach is called spectral optimization which defines a modula-

rity matrix to rewrite the formula of modularity so that we can

compute its eigenvalues and eigenvectors to optimize modularity

on a graph of two communities [70].

Despite that modularity optimization is the most popular
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class of approaches in classic community detection, it suffers

from a severe problem called resolution limit [31]. The resolu-

tion limit prevents modularity optimization methods from de-

tecting communities with small sizes compared to the whole

graph. To be more precise, one cannot determine whether a

community is a single community or a combination of smal-

ler weakly-interconnected communities when the partition with

maximum modularity consists of communities with a total de-

gree of the order of
√
m or smaller, where m is the number of

links. The resolution limit has a strongly negative impact on

practical applications. One possible way to overcome this issue

is to conduct further partitions in large communities detected

by modularity optimization algorithms [31, 89]. However, it is

difficult to decide when to stop this process. Another solution

is to use a different scoring function which incorporates both

internal and external structures [91].

Other Approaches

In this part, we mainly explore two more classes of popular

approaches for classic community detection.

One class is divisive algorithms. Similar to divisive hierarchi-

cal clustering methods, divisive algorithms identify communities

by finding inter-community links and removing them, which ma-

kes the communities disconnected from each other. However, the

main difference between divisive algorithms and divisive hierar-

chical clustering methods is that divisive algorithms aim to re-
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move inter-community links instead of links between node pairs

with low similarity. Thus, divisive algorithms need a more global

metric than divisive hierarchical clustering methods to identify

the border of communities. In the earliest algorithm proposed

by Girvan and Newman [35, 72], link betweenness, i.e., the num-

ber of shortest paths that pass through the link, is used as the

estimator of the importance of a link. In each step, the between-

ness of all links is computed and then the link with the largest

betweenness is removed. Tyler et al. proposed a modification of

the Girvan-Newman algorithm by calculating edge betweenness

only from a limited number of randomly sampled centers [100].

It improves the speed of the computation and can be applied to

large networks such as networks of gene co-occurrences. Another

possible way to detect inter-community links is to identify cy-

cles. A community usually has a high density of links so that it

is common to have cycles inside it. In contrast, inter-community

links can hardly form cycles. Based on this idea, a new mea-

sure called edge clustering coefficient is proposed by Radicchi et

al. [82] to measure the likelihood of being an inter-community

link.

Another class employs label propagation as an efficient way

to solve the community detection problem. Raghavan et al. first

propose a label propagation algorithm (LPA) which can detect

communities in a very fast speed [83]. This algorithm initially

assigns a unique community label to each node in the network.

At every propagation step, each node sequentially updates its
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label to the most frequent label among its neighbors. A tie

is broken randomly. The algorithm stops when all labels no

longer change. Barber and Clark extend LPA by relating it to

modularity [7] and Liu et al. further combine it with a greedy

agglomerative algorithm to escape local maxima [59].

2.2 Overlapping Community Detection

2.2.1 Problem Description

Much of the focus in classic community detection lies in finding

disjoint communities. However, multiple community members-

hips are quite common in real-world networks [86]. For exam-

ple, a person in a social network has multiple social identities,

an author in a collaboration network has publications in multi-

ple venues, one kind of protein in a protein-protein interaction

network has multiple biological functions, etc. To break the

restriction brought by unique community membership, overlap-

ping community detection becomes the main trend in the rese-

arch of community detection.

The definition of overlapping community detection has no

difference with classic community detection except that there is

no disjoint constraint on detected communities. Despite little

modification on the definition, most of the methods of classic

community detection can no longer be directly applied to over-

lapping community detection anymore. Thus, the demand for
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algorithms specifically designed for overlapping community de-

tection is getting bigger and bigger in the last decade.

2.2.2 Literature Review

Several surveys in the area of community detection have discus-

sed overlapping community detection as one of the subjects [17,

30] or compare both disjoint community detection algorithms

and overlapping community detection algorithms [39, 50, 56].

A comprehensive survey dedicated for overlapping community

detection can be found in [105]. Different from all existing sur-

veys, we classify overlapping community detection approaches

into local approaches and global approaches based on the bre-

akthrough idea. We will introduce some important works in

both categories in this part.

Local Approaches

Local approaches employ a divide-and-conquer strategy which

usually consists of three main phases, i.e., dividing, conquering,

and adjustment. In the dividing phase, a network is divided into

multiple small subgraphs. In the conquering phase, a particular

community detection algorithm is performed on each subgraph

to obtain initial communities. In the end, an adjustment is con-

ducted either locally or globally by merging densely overlapped

initial communities into a new community in the final commu-

nity structure. In some cases, the dividing phase and the con-
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quering phase interact heavily with each other. In other cases,

the adjustment phase is skipped.

Clique percolation (CP) is the earliest overlapping commu-

nity detection algorithm [74]. The CP algorithm first identifies

for all k-cliques, i.e., fully-connected subgraphs with size k, and

then transform the original network into a clique graph where

a node represents a k-clique and two nodes are connected if

they share n − 1 members. The final communities are all con-

nected components of the clique graph. Through experiments

on synthetic datasets, small values of k give good results. Howe-

ver, the polynomial time complexity of CP is still too large for

large networks with millions of nodes. Kumpula et al. propose

a two-phase sequential clique percolation (SCP) algorithm [49].

In the first phase, it finds k-cliques by checking (k − 2)-cliques

in the common neighbors of two endpoints when links are inser-

ted sequentially to the network. In the second phase, it turns

the original network into a bipartite graph with two types of

nodes which denotes k-cliques and (k − 1)-cliques respectively

and obtains the final communities according to this bipartite

graph. The running time of SCP grows linearly as the number

of k-cliques and thus can deal with networks of larger sizes.

Baumes et al. propose an algorithm with two steps, RankRe-

moval and Iterative Scan (IS) [9]. RankRemoval calculates the

rankings of all nodes and then continuously removes top nodes

until the network is split into small, disjoint connected compo-

nents. These connected components are regarded as seeds and
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IS adjusts them by adding or removing nodes until a density

function is maximized. The density function is defined as

f(c) =
mc
in

mc
in +mc

out

, (2.5)

where mc
in and mc

out are the total number of internal and external

links of community c. Thus, the quality of detected communities

is highly related to the quality of seeds.

Besides [9], we will discuss a few more local approaches based

on seed expansion. LFM [51] randomly selects a seed node to

construct a community by adding or removing nearby nodes

until the fitness function

f(c) =
kcin

(kcin + kcout)
α
, (2.6)

reaches its local maximal, where kcin and kcout are the total inter-

nal and external degree of community c, and α is the resolution

parameter deciding community size. After a community is dis-

covered, LFM will randomly select a node from the rest of the

network until all communities are detected. Havemann et al.

propose a smoothness term on the fitness function, i.e.,

f(c) =
kcin + 1

(kcin + kcout)
α
, (2.7)

which allows a community to only consist of a single node [40].

Whang et al. employs a kernelized distance function to deter-

mine seeds and the personalized PageRank algorithm to expand

a seed to a community [103]. OSLOM [52] employ statistical

significance test on a cluster compared with a global null model
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to determine when to cease expansion from a seed. However,

the result of OSLOM tends to leave a large number of nodes

with no community memberships.

Disjoint community detection algorithms can also be mo-

dified to detect overlapping communities. If we cluster links

instead of nodes in a network and assign both endpoints of a

link to the community this link belongs to, we can get overlap-

ping communities. This idea is first proposed by Ahn et al. as

link clustering [1]. In this algorithm, links are clustered via hier-

archical clustering and the similarity metric between two links

eik and ejk (incident on node k) is defined as the Jaccard simila-

rity between the neighborhood of node i and the neighborhood

of node j, i.e.,

s(eik, ejk) =
|Ni ∩Nj|
|Ni ∪Nj|

. (2.8)

Link clustering is not suitable for detecting densely overlapping

communities since a link cannot belong to more than one com-

munities.

Other local approaches apply disjoint community detection

algorithms on the conquering phase and merge initial disjoint

communities into overlapping communities in the adjustment

phase. For example, Coscia et al. apply label propagation al-

gorithm on ego network of each node, i.e., a node with its neig-

hbors, to detect initial communities and then merge communi-

ties with large overlap [18]. Li et al. propose a Local Expansion

via Minimum One Norm (LEMON) algorithm to expand the
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seeds by searching for a sparse vector in the span of the local

spectra such that the seeds are in its support [57].

Global Approaches

Global approaches, on the other side, perform overlapping com-

munity detection from a global view. They usually assume null

communities first and start to adjust the memberships of each

node for multiple rounds.

As a popular framework, stochastic block model [73] has alre-

ady been widely employed in disjoint community detection [42,

79]. In a stochastic block model, we have N nodes and K blocks,

and each node belongs to only one of the K blocks. We define

an indicator matrix Z ∈ {0, 1}N×K , where Zir represents whet-

her node i belongs to block r. We also define a relationship

matrix B ∈ [0, 1]K×K , where Bpq represents the probability of

connections between nodes from block p and block q, respecti-

vely. Given B and Z, we can finally define a probability matrix

Θ = ZBZT , where Θij denotes the link probability between

node i and node j. With the adjacency matrix being available

from data, the goal is to estimate Z. Several works manage to

generalize the stochastic block model for overlapping commu-

nity detection. For example, mixed membership stochastic block

model (MMSB) [3] allows a fixed number of memberships for

a node so that Z is a mixed membership matrix instead of an

indicator matrix. A general variational inference algorithm is

applied for fast approximate posterior inference of Z. Overlap-
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ping stochastic block model (OSBM) [53] exploits a multivariate

Bernoulli distribution instead of a Dirichlet distribution in [3]

to generate Z. A very recent work of Jin et al. models Z as

a probability matrix whose row sum is 1 and preserves node

degree in each of the probabilistic communities to learn model

parameters [41].

Apart from the stochastic block model, several global fra-

meworks originally used in other areas also receive attention

for overlapping community detection. Game theory has been

a classic tool with various applications. Chen et al. propose

a game-theoretical framework to identify overlapping commu-

nities in social networks [14]. In the strategic game this work

plays, each node is a selfish agent and its actions include joining

or leaving a community. The utility function is defined as the

combination of a gain function based on modularity and a loss

function related to the number of communities one node joins.

The equilibrium of this game is interpreted as the targeted com-

munity structure. McAuley and Leskovec propose a generative

node clustering framework to discover social circles in ego net-

works [64]. This framework first encodes both community cha-

racteristics and pairwise node similarities into features, which

are used to model the link probability. Then a generative ob-

jective function is constructed for parameter learning according

to the adjacency matrix. As another popular framework, matrix

factorization has been widely applied in recommender systems

and other areas. Since the models proposed by this thesis are all
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built on the matrix factorization framework, we will introduce

this framework in more detail in the following section.

2.3 Matrix Factorization Framework for Over-

lapping Community Detection

2.3.1 Problem Description

Matrix factorization (MF) has been a standard technique in

areas such as recommender systems [45, 62], image processing

[54], natural language processing [106], bioinformatics [13], etc.

Although it has many variations [55, 66, 90, 95], the main mat-

hematical form can be summarized as follows.

Definition 2.3 (Matrix Factorization). Given a matrixRm×n,

the objective of matrix factorization is to find two matrices Um×k

and V n×k whose product can minimize a particular loss function

l, i.e.,

arg min
U,V

l(R,UV T ), (2.9)

where m is the size of data, n is the dimension of data, and k is

the dimension of latent space.

When m and n are large but R is sparse, matrix factorization

is one of the most suitable frameworks to learn the unknown va-

lues in R with k << m and k << n. What matters most is the

choice of learning objective. Sometimes, the form of factoriza-

tion can also be modified. For example, some models employ
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matrix tri-factorization (MTF) which factorize R into the pro-

duct of three matrices USV T . Moreover, constraints can be ad-

ded to the factorized matrices, e.g., the non-negative constraints

on U and V making matrix factorization into non-negative ma-

trix factorization (NMF). All the above modifications are based

on the task we want to solve.

Matrix factorization is suitable for overlapping community

detection due to the following advantages:

1. adjacency matrix can be used as the input matrix,

2. the communities can be regarded as the latent space, i.e.,

k becomes the number of communities,

3. the output matrix is naturally soft-partitioning, i.e., com-

munities are allowed to overlap,

4. it does not suffer the resolution limit problem, which is

one of most severe drawbacks in modularity optimization

approaches.

2.3.2 Literature Review

There is no comprehensive survey by far on the matrix factori-

zation framework for overlapping community detection. I will

briefly review some of the most representative works in chrono-

logical order.
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A Bayesian NMF Model

The Bayesian non-negative matrix factorization (BNMF) mo-

del is the first MF-based model utilized in overlapping com-

munity detection [80]. Based on a generative graphical model,

the BNMF model assumes that there are K communities and a

scale hyper-parameter β = {βk} for different communities. The

adjacency matrix G is influenced by an unobserved expectation

network G′ ∈ RN×N and G′ is composed of two non-negative

matrices W ∈ RN×K and H ∈ RK×N so that G′ = WH. k-th

column in W and k-th row H are correspondent to the k-th

community, thus are both affected by βk. The joint distribution

over all variables is

P(G,W,H, β) = P(G|W,H)P(W |β)P(H|β)P(β), (2.10)

hence the objective function is to maximize the model posterior

given the observations, i.e., P(W,H, β|V ), or equivalently, to

minimize the negative log posterior

U = − logP(G|W,H)− logP(W |β)− logP(H|β)− logP(β).

(2.11)

Each part of Equation (2.11) is modeled with a certain distri-

bution with some prior. The final objective function is written
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as

U =
∑
i

∑
j

[gij log(
gij
g′ij

) + g′ij] +
1

2

∑
k

[(
∑
i

βkw
2
ik) + (

∑
j

βkh
2
kj)

− 2N log βk] +
∑
k

(βkbk − (ak − 1) log βk) + c,

(2.12)

where c is a constant. A fast fix-point algorithm with consecu-

tive updates is adopted for the optimization process for W , H,

and β. The solution includes W ∗ ∈ RN×K∗ and H∗ ∈ RK∗×N

for which G′ = W ∗H∗ and K∗ is the inferred number of latent

communities. When the graph is undirected, W ∗ is expected to

be the transpose of H∗.

Although the BNMF model is a good attempt to employ

matrix factorization into overlapping community detection, it

requires many prior assumptions and the time complexity for

an update is too high to deal with a large network with millions

of nodes.

An NMF Model for Different Types of Networks

Wang et al. propose three NMF models to target three different

types of networks (undirected, directed and compound) [101].

They directly apply the Euclidean loss L(A,B) = ||A−B||2F =∑
i,j(Aij −Bij)

2 as the objective function for all three models.

For the undirected case, the objective function is to minimize

||G−XXT ||2F , where G is adjacency matrix and X is the scale

partition matrix of the network whose i-row corresponds to the
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community membership of the i-th node. X can be further nor-

malized with
∑

jXij = 1 such that Xij represents the posterior

probability that i-th node is associated with k-th community.

X can be solved by the multiplicative update rule

Xik ← Xik(
1

2
+

(GX)ik
(2XXTX)ik

). (2.13)

For the directed case, since the adjacency matrix is asym-

metric, we need to introduce matrix tri-factorization. The new

objective function is to minimize ||G − XSXT ||2F . Under the

alternative update rules

Xik ← Xik(
[GTXS +GXST ]ik

[XSXTXST +XSTXTXS]ik
)
1
4 ,

Skl ← Skl
[XTGX]kl

[XTXSXTX]kl

(2.14)

the authors can guarantee that the loss in non-increasing.

For compound networks, the authors take a movie recommen-

dation as an example, where U denotes the user-user matrix, D

denotes the movie-movie matrix, and M denotes the user-movie

matrix. The target is to find a latent X, which minimizes all

three parts of the loss function ||M −X||2 + α||U −XXT ||2 +

β||D −XTX||2 simultaneously, where α > 0 and β > 0 are im-

portance coefficients. The authors also guarantee that the loss

in non-increasing under the multiplicative update rule

Xij ← Xij(
[M + 2αUX +XD̂]ij
2(α + β)[XXTX]ij

)
1
4 , (2.15)

where D̂ = 2βD − I.
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Although the objective functions of all three NMF models

are straightforward without any data assumptions, it is obvious

that the multiplicative update involves too many matrix multi-

plications and thus is computationally inefficient.

A Bounded Non-negative MTF Model

The bounded non-negative matrix tri-factorization (BNMTF)

model uses three factors to learn the community membership

of each node as we as the interaction among communities [113].

The BNMTF model considers a weighted graph with a non-

negative matrix G ∈ Rn×n
+ as the adjacency matrix and assumes

that the maximum number of possible communities k is given. It

introduces a matrix U ∈ Rn×k
+ to denote the community mem-

bership of n nodes and B ∈ Rk×k
+ to denote the community

interaction matrix. Each entry uij in U represents and thus is

between 0 and 1. The objective is to use the product of UBUT

(denoted by Ĝ) to approximate G. Two loss function, squared

loss and generalized KL-divergence, are employed to measure

the approximation. They are defined as

Lsq(G,U,B) = ||G− UBUT ||2F ,

Lsq(G,U,B) =
∑
i,j

(gij ln
gij
ĝij
− gij + ĝij),

(2.16)

where gij is the entry in G and ĝij is the entry in Ĝ. In real-world

networks, a node is not associated with too many communities

so U is sparse. Thus, a l1 norm is added to be the regularization
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term, i.e., ||U ||1 = 1TU1. The final optimization problem of the

BNMTF model is formulated as

min
U,B
L(G,U,B) + λ||U ||1 s.t. 0 ≤ U ≤ 1, B ≥ 0, (2.17)

where λ > 0 balances the trade-off between approximation error

and the complexity of U .

For parameter learning, the BNMTF model uses coordinate

descent methods which update one parameter at a time while

fixing all the others. An auxiliary function is defined for KL-

divergence loss since the original objective function has no closed-

form solution. The computation requires a lot of matrix multi-

plication, so this model only works on networks with thousands

of nodes.

An extension has been proposed by Pei et al. by taking con-

sideration of graph regularization components including user si-

milarity and message similarity in social networks on top of the

non-negative matrix tri-factorization (NMTF) framework [78].

A Link Probability-based Model

The cluster affiliation model for big Networks (BigClam) is the

first matrix factorization based model designed for large net-

works of millions of nodes and edges [109]. This model is built

on a bipartite affiliation network B(V,C,M) consisting of a node

set V as one side and a community set C as the other side with

M indicating node community affiliations. Then, a non-negative

node community weight matrix F is used to parameterize the
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affiliation between a node and a community. To be specific,

each community c connects its member u and v with probability

1 − exp(−Fuc·Fvc). By assuming that each community c connects

u and v independently, the probability that there is an edge

between a node pair (u, v) is

P(u, v) = 1− exp(FuF
T
v ). (2.18)

Given an undirected network G(V,E), the BigClam model aims

to fit the underlying network G by generating exactly the same

set of edges with maximum probability, i.e.,

F̂ = arg max
F≥0

L(F ) =
∑

(u,v)∈E

logP(u, v) +
∑

(u,v)/∈E

log(1−P(u, v)).

(2.19)

Combining Equation (2.18) and (2.19), the objective function

can be written as

L(F ) =
∑

(u,v)∈E

log(1− exp(−FuF T
v ))−

∑
(u,v)/∈E

FuF
T
v . (2.20)

To solve the above optimization problem, the BigClam mo-

del adopts a block coordinate gradient ascent algorithm which

updates Fu for each u with the other Fv fixed. As a result, the

problem of updating Fu becomes a convex optimization problem.

The gradient of Fu can be computed straightforwardly by

∂L

∂Fu
=
∑

v∈N (u)

Fv
exp(−FuF T

v )

1− exp(−FuF T
v )
−
∑

v/∈N (u)

Fv, (2.21)

where N (u) is u’s neighbors. According to Equation (2.21), a

single step of updating Fu takes linear time O(N). However, by
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replacing
∑

v/∈N (u) Fv with (
∑

v Fv −Fu−
∑

v∈N (u) Fv), the time

complexity can be reduced to O(|N (u)|). After each update, Fu

is projected to the non-negative space by Fuc = max(Fuc, 0) to

maintain the non-negative constraint.

2 End of chapter.



Chapter 3

A Preference-based NMF

Model

Community detection is an important technique to understand

structures and patterns in complex networks. Recently, overlap-

ping community detection becomes a trend due to the ubiquity

of overlapping and nested communities in the real world. Ho-

wever, existing approaches have ignored the use of implicit link

preference information, i.e., links can reflect a node’s preference

on the targets of connections it wants to build. This information

has a high impact on community detection since a node prefers

to build links with nodes inside its community than those outside

its community. In this chapter, we propose a preference-based

nonnegative matrix factorization (PNMF) model to incorporate

implicit link preference information. Unlike conventional matrix

factorization approaches, which simply approximate the original

adjacency matrix in value, our model maximizes the likelihood of

the preference order for each node by following the intuition that

42
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a node prefers its neighbors than other nodes. Our model over-

comes the indiscriminate penalty problem in which non-linked

pairs inside one community are equally penalized in objective

functions as those across two communities. We propose a lear-

ning algorithm which can learn a node-community membership

matrix via stochastic gradient descent with bootstrap sampling.

We evaluate our PNMF model on several real-world networks.

Experimental results show that our model outperforms state-of-

the-art approaches and can be applied to large datasets.

3.1 Introduction

Discovering the community structure in complex networks has

been extensively investigated in the past decade [30]. A commu-

nity is intuitively regarded as a group of nodes with more links

inside the group than between its member and outside the group

[35]. In the real world, communities can be social circles manu-

ally categorized by users in ego networks [64], authors from the

same institution in collaboration networks [68], proteins with

the same functionality in biochemical networks [33], etc. The

research issue of finding such groups is known as the community

detection problem.

Classic methods for community detection assume that one

node belongs to exactly one community. However, many com-

plex networks we encounter in daily life allow multiple members-

hips. For example, two colleagues in the same department are
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also in the same company (nested), one can join in several dis-

cussion groups in an online forum (overlapping), etc. Thus, the

topic of overlapping community detection has attracted major

attention recently [105].

Existing overlapping community detection approaches can be

categorized into two classes: one is based on dense subgraph

extraction [1, 74, 49], which uses certain criteria to find over-

lapping dense subgraphs or clusters in the network to be com-

munities; the other is based on community affiliation model

[80, 101, 109, 113], which determines the number of communi-

ties in advance and assigns each node to multiple communities

according to some optimization function. However, both classes

of approaches only focus on links themselves but ignore the im-

plicit preference information in links. In fact, a link can reflect

the preferences of both sides to some extent. For example, in a

social network, if user A wants to make friend with user B, a

typical way for A is to send a friend invitation to B and wait

for him to accept it. They cannot be friends if either step goes

wrong. Thus, when we see the fact that A and B are friends, it

is reasonable to argue that A prefers B than other strangers to

be his friend. Assuming B also receives other people’s invitati-

ons and only accepts a few of them (this is very likely to happen

in the real world), we can also argue that B prefers A than

others who are still strangers to him. Following the intuition

that a node is more likely to build links with other nodes in the

same community than those outside its community, the implicit
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preference information can be helpful for community detection.

For the second class of approaches, i.e., community affilia-

tion based approaches, nonnegative matrix factorization (NMF)

has been applied as a standard technique. The basic idea of

NMF technique is to find a node-community membership ma-

trix F (Fu,c represents the weight of node u in community c)

and approximate the adjacency matrix G via FF T . Existing

approaches use either the conventional least squares error or the

generalized KL divergence as objective function [55]. However,

both objective functions try to approximate the adjacency ma-

trix G in value, which are inevitable to cause the indiscriminate

penalty problem. Let us assume that there are two non-linked

pairs (i, j) and (i, k), where i, j belong to the same community

while i, k do not. Since i, j both have positive weights in some

community c, FiF
T
j is positive. However, existing NMF-based

approaches will penalize FiF
T
j for being positive since Gi,j = 0.

Thus, there is no difference between j and k for i, which is

against the intuition that for node i, node j in the same com-

munity is preferable than node k outside i’s community. In fact,

it is reasonable that FiF
T
j is higher than FiF

T
k , and indiscrimi-

nately penalizing the two pairs are problematic.

In this chapter, we present a preference-based nonnegative

matrix factorization (PNMF) model that not only fixes the in-

discriminate penalty problem of previous NMF based models

but also incorporates the implicit link preference information

into the model formulation. Our model uses a new objective
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function, which maximizes the likelihood of a pair-wise prefe-

rence order for each node. In other words, from a node’s per-

spective, we manage to ensure that the preference of any of its

friends is higher than any of other nodes. When factorizing the

adjacency matrix with node-community relationship matrix, our

model gives no penalty to a non-zero value appearing in the po-

sition of a non-linked pair, as long as all the pairwise preferences

are preserved. Thus, this objective function can be regarded as

a relaxation of previous approaches. We exploit stochastic gra-

dient descent with bootstrap sampling to solve the optimization

problem. We conduct experiments in several real world datasets

including some with ground-truth communities. By comparing

our model with several state-of-art approaches, we show that

our model can detect overlapping communities with higher qua-

lity on widely-used metrics in community detection. It can also

be applied to large datasets.

3.2 Related Work

Baysian Personalized Ranking (BPR) [88] is proposed to rank

items for a specific user in recommender systems while only im-

plicit feedback (e.g. clicks) is available. The basic assumption

is that a user prefers labeled items than unlabeled ones. While

traditional methods replace missing values with zeros or nega-

tive ones, BPR uses pairwise preference as training data to le-

arn the model parameters. Technically, it maximizes a posterior
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probability p(Θ| >u) where Θ is the parameter and >u is the

latent preference structure for user u. We adopt this idea into

our overlapping community detection task for a different lear-

ning goal of maximizing the probability p(>u |F ), where F is

a nonnegative matrix representing the latent node-community

membership. BPR has become a classical model in one-class

collaborative filtering, and there are several further works on

top of it. For example, Rendle et al. extend the original matrix

factorization to a tensor factorization to recommend personali-

zed tags for a user given an item [87]. Zhao et al. leverage social

connections to improve item recommendations by building a new

preference system [114].

3.3 Community Detection via PNMF

In this section, we present our PNMF model in the context

of overlapping community detection and propose a stochastic

gradient descent method with bootstrap sampling to learn model

parameters.

3.3.1 Preliminaries

Given an unweighted and undirected network N(V,E), where V

is the set of n nodes and E is the set of m edges, we can obtain

its adjacency matrix G ∈ {0, 1}n×n whose (i, j) entry gi,j is an

indicator of whether node i and node j are connected. Since the

network is undirected, G is a symmetric matrix.
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We denote the set of communities by C and the number of

communities by p. We use a nonnegative matrix F ∈ R
n×p
+

to denote the node-community membership for all the nodes.

Each entry Fu,c represents the weight between node u ∈ V and

community c ∈ C. The larger Fu,c is, the more possible that u

belongs to c. On the other hand, if Fu,c is 0, u does not belong

to c.

Given the information above, the objective is to recover G

with some properties preserved by a nonnegative matrix facto-

rization FF T , i.e.,

G ≈ FF T . (3.1)

Previous approaches simply approximate G in value. They ex-

pect FuF
t
v to be close to 1 if u, v are linked and to be 0 otherwise.

In our model, we preserve the preference orders observed in G

for all the nodes. We will discuss the details later.

The set of i’s neighbors is denoted by N+(i). In addition, we

define N−(i) := N+(i)c\{i} to be “non-neighbors” of i, where

N+(i)c denotes the complement set of N+(i). By definition,

V = N+(i) ∪ N−(i) ∪ {i} for every i. Moreover, we define a

learning set S : V × V × V by

S = {(i, j, k)|i ∈ V, j ∈ N+(i), k ∈ N−(i)},

which consists of all the triples (i, j, k), where j is a neighbor of

i while k is not.

In the end, we list three basic assumptions on implicit link

preference to make model formulation clearer.
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1. Node independence. Each node determines its preferen-

ces independently. The network can be regarded as a result

after all the nodes make their decisions. Specifically, a link

will be built between u and v if and only if u has a high

preference on v and symmetrically v has a high preference

on u.

2. Higher preference on neighbors. Let u >i v denote

that node i prefers node u than node v. For a fixed node

i, we have j >i k if j ∈ N+(i) and k ∈ N−(i), but no

preference information between j and k is indicated if j, k ∈
N+(i) or j, k ∈ N−(i). Thus, the use of the learning set

S is to record all the single triples (i, j, k) satisfying that i

prefers to build a link with j than k.

3. Pair independence. For a fixed node i, its preference on

j and k is independent with its preference on u and v when

j, u ∈ N+(i) and k, v ∈ N−(i).

3.3.2 Model Formulation

Based on our motivation, we aim to find the node-community

membership matrix, which maximizes the likelihood of observed

preference order for all the nodes. According to the “node in-

dependence” assumption, the overall likelihood can be denoted

as a product of likelihood of each node. Thus, our objective
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function can be written as

max
F∈Rn×p

+

∏
i∈V

P(>i |F ), (3.2)

where >i denotes the observed preferences for node i and F is

the node-community membership matrix.

According to the “high preference on neighbors” assumption

and the “pair independence” assumption, the probability of pre-

ference order for a single node i can be written as

p(>i |F ) =
∏

(j,k)∈V×V

P(j >i k|F )δ(j∈N
+(i))δ(k∈N−(i))

· (1− P(j >i k|F ))1−δ(j∈N
+(i))δ(k∈N−(i))

=
∏

(j,k)∈V×V

P(j >i k|F )δ((i,j,k)∈S)

· (1− P(j >i k|F ))δ((i,j,k)/∈S),

(3.3)

where S is the learning set mentioned in preliminaries and δ is

the indicator function

δ(a) =

{
1 if a is true,

0 else
.

For a triple (i, j, k), if (i, j, k) ∈ S, then (i, k, j) /∈ S. Given

P(j >i k|F ) + P(k >i j|F ) = 1, it is easy to see that P(j >i

k|F )δ((i,j,k)∈S) = (1 − P(k >i j|F )δ((i,k,j)/∈S). Applying this to

Equation (3.3), maximizing P(>i |F ) is equivalent to

max
F∈Rn×p

+

∏
(j,k)∈V×V

P(j >i k|F )δ((i,j,k)∈S). (3.4)
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Combining Equation (3.2) and (3.4), our objective function

can be rewritten as

max
F∈Rn×p

+

∏
(i,j,k)∈S

P(j >i k|F ). (3.5)

Based on the intuition that two nodes have a higher probabi-

lity to be linked if they share more communities, we define the

probability that i prefers j than k given the node-community

membership matrix as

P(j >i k|F ) = σ(Fi · F T
j − Fi · F T

k ), (3.6)

where σ is the sigmoid function σ(x) := 1
1+e−x .

The sigmoid function can map any real number into (0, 1).

We can see that the probability i prefers j than k is 0.5 when

FiF
T
j = FiF

T
k . Also, this probability is close to 0 when FiF

T
j �

FiF
T
k and is close to 1 when FiF

T
j � FiF

T
k . These properties

precisely characterize the requirements of our model.

For simplicity, we define x̂(i, j) := Fi · F T
j . Equation (3.6)

can be rewritten as

P(j >i k|F ) = σ(x̂(i, j)− x̂(i, k)). (3.7)

Now combining Equation (3.5), (3.6), and (3.7), the final
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objective function of our PNMF model is

l(F ) := max
F∈Rn×p

+

ln
∏

(i,j,k)∈S

P(j >i k|F )− λ · reg(F )

= max
F∈Rn×p

+

∑
(i,j,k)∈S

lnP(j >i k|F )− λ · reg(F )

= max
F∈Rn×p

+

∑
(i,j,k)∈S

lnσ(x̂(i, j)− x̂(i, k))− λ · reg(F ),

(3.8)

where reg(F ) is the regularization term we add to avoid overfit-

ting and λ is the regularization parameter. We choose Frobenius

norm as the regularization term, i.e., we set reg(F ) = ||F ||2F ,

since it is differentiable and fits our parameter learning process.

3.3.3 Parameter Learning

To make our model applicable to large datasets, we employ the

widely used stochastic gradient descent (SGD) as our learning

approach. In each update step, SGD randomly selects a triple in

learning set S and updates the corresponding model parameters

Θ by walking along the gradient direction,

Θt+1 = Θt + α
∂l

∂Θ
, (3.9)

where α is the learning rate. Specifically, the derivative of Equa-

tion (3.9) is calculated by

∂l

∂Θ
=

∂

∂Θ
lnσ(x̂(i, j)− x̂(i, k))− λ ∂

∂Θ
reg(F )

=
−ex̂(i,k)−x̂(i,j)

1 + ex̂(i,k)−x̂(i,j)
· ∂
∂Θ

(x̂(i, j)− x̂(i, k))− λΘ

(3.10)
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and

∂

∂Θ
(x̂(i, j)− x̂(i, k)) =


Fj,t − Fk,t if Θ = Fi,t

Fi,t if Θ = Fj,t

−Fi,t if Θ = Fk,t

0 else

, (3.11)

where λ is the regularization parameter. Regarding the non-

negative constraints, we exploit the idea of projected gradient

methods for NMF [58], which maps the value of a parameter

back to nonnegativity.

Input: G, the adjacency matrix of original graph

Output: F , the node-community membership matrix

1: initialize F

2: compute initial loss

3: repeat

4: for num samples = 1 to |E| do

5: sample node i from V uniformly at random

6: sample node j from N+(i) uniformly at random

7: sample node k from N−(i) uniformly at random

8: for each entry Θ in Fi, Fj and Fk do

9: update Θ according to Equation (3.9), (3.10), (3.11)

10: Θ← max(Θ, 0)

11: end for

12: end for

13: compute loss

14: until convergence or max iter is reached

Algorithm 1: Community detection via PNMF

The whole process of parameter learning is described in Al-

gorithm 1. As we can see, the time complexity of each iteration
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is O(mp), where m is the number of links, and p is the num-

ber of community. The space complexity is O(np), where n is

the number of nodes since we need to save the node-community

membership matrix into memory.

3.3.4 Other Issues

Choosing the number of communities. Before learning the

parameters, we need to set the number of communities p in ad-

vance. However, we have no prior knowledge about it. Here

we adopt the approach in [2]. We first reserve 10% of links as

the validation set. Then we vary p and learn model parame-

ters with the remaining 90% of links for each p. After that, we

use the node-community membership matrix F to generate the

adjacency matrix G and use G to predict the links in the va-

lidation set according to our motivation that linked pairs have

a higher value than non-linked pairs in G. Finally, we pick the

p with the best prediction score as our pre-assigned number of

communities.

Setting membership threshold. After we learn F , we

need to set a threshold δ in order to determine whether a node

belongs to a community or not. If Fu,c ≥ δ, we say that node u

belongs to community c. According to Equation (3.6), we need

p(j >i k|F ) to be closer to 1 than 0 if i prefer j than k. We

assume that i, j share exactly one community and i, k do not

share any communities. Thus FiF
T
k = 0. Due to the symmetry
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of i and j, we have

σ(FiF
T
j − FiF T

k ) = σ(δ2 − 0) =
1

1 + e−δ2
= β,

where β is in the range of (0.5, 1). When β is given, we can

compute δ by

δ =

√
− ln(

1

β
− 1). (3.12)

3.4 Experiments

In this section, we conduct several experiments to compare our

PNMF model with other state-of-the-art overlapping commu-

nity detection approaches regarding community quality and sca-

lability.

3.4.1 Datasets

We examine our model with several benchmark datasets availa-

ble on the Internet. We separate them into two categories, one

without ground-truth communities and the other with ground-

truth communities. For the first category, we choose nine un-

directed networks collected by Newman1 as our datasets. For

the second category, three large datasets from SNAP2 are used.

Among them, DBLP is a co-authorship network in computer

science, Amazon is a product co-purchase network, YouTube

is an online social network with communities of various video
1http://www-personal.umich.edu/mejn/netdata
2http://snap.stanford.edu/data/
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interests. Simple statistics for all the datasets can be found

in Table 3.1, where GT represents whether this dataset has

ground-truth communities, V is the number of nodes and E is

the number of links.

Dataset GT V E

Dolphins N 62 159

Les Misérables N 77 254

Books about US politics N 105 441

Word adjacencies N 112 425

American college football N 115 613

Jazz musicians N 198 2,742

Network science N 1,589 2,742

Power grid N 4,941 6,594

High-energy theory N 8,361 15,751

DBLP Y 317,080 1,049,866

Amazon Y 334,863 925,872

YouTube Y 1,134,890 2,987,624

Table 3.1: Statistics of twelve datasets (nine without ground-truth and three

with ground-truth).

3.4.2 Baseline Methods

We select five state-of-the-art algorithms to be our baseline met-

hods. The latter three are nonnegative matrix factorization ba-

sed models, thus are highly comparable with our PNMF model.

SCP (Sequential Clique Percolation) [49]. Since the

original Clique Percolation method [74] is slow when dealing

with large datasets, we choose a sequential alternative, which
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obtains the same performance but is much faster. For the choice

of k-clique, we set k to be 4 or 5.

LC (Link Clustering) [1]. We do not manually set the

threshold at which the dendrogram is cut. The algorithm auto-

matically chooses the threshold where the maximum partition

density is found. Among the detected communities, we get rid

of all the communities whose size is smaller than 3 since these

communities make no sense.

BNMF (Bayesian NMF) [80]. We use the classic squared

loss ||G − WHT ||2F as the loss function, where G is the adja-

cency matrix, W and H are the results of nonnegative matrix

factorization.

BNMTF (Bounded NM Tri-Factorization) [113]. To

be consistent with BNMF, we also use squared loss ||G−FBF T ||2F
as our loss function, where F and B are the results of nonnega-

tive matrix tri-factorization.

BigCLAM [109]. For the number of communities, we set

a minimum value and a maximum value and let the algorithm

find the best choice between these two numbers based on cross-

validation.

3.4.3 Metrics

We choose two well-known metrics to measure the performance

of our model. The choice of metric depends on whether the

specific dataset has ground-truth communities.
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Modularity. We employ the most widely used modularity

[71] as our measure for datasets without ground-truth commu-

nities. Since communities are overlapping in our case, we need

to modify the original definition of modularity a bit. The new

modularity Q is defined as

Q =
1

2m

∑
u,v∈V

(gu,v −
d(u)d(v)

2m
)|Cu ∪ Cv|,

where m denotes the number of links, V denotes the set of nodes,

gi,j denotes the (i, j) entry of adjacency matrix G, d(i) denotes

the degree of node i, and Cu denotes the set of communities

including u.

As we mentioned, two nodes are likely to link each other

if they have common communities. Modularity matches our

intuition very well in the way that more common communities

two nodes have, more penalty they will receive if they do not

build a link between them. d(u)d(v)
2m can be regarded as the link

probability between u and v.

F1 score. For datasets with ground-truth communities, we

employ another criterion F1 score to measure the quality of de-

tected communities. We denote the set of ground-truth com-

munities as C and the set of detected communities as Ĉ. Ci

represents the i-th community in C and Ĉi represents the i-th

community in Ĉ. We define F1 score to be the average of the

F1 score of the best-matching ground-truth community to each
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detected community, i.e,

F1 =
1

|Ĉ|

∑
Ĉi∈Ĉ

F1(Cb(i), Ĉi),

where the best matching function b(i) is defined as

b(i) = arg max
j
F1(Cj, Ĉi),

and F1(·, ·) is the harmonic mean of precision and recall.

3.4.4 Results

We compare our PNMF model with all the baseline methods

listed above and show the results in Table 3.2. For the first

nine datasets without ground-truth communities, we use modu-

larity as our measurement. The results show that our model

performs best on seven out of nine datasets. Especially, our

model dominates other nonnegative matrix factorization based

models (BNMF, BNMTF, BigCLAM) on all the datasets except

“Jazz musicians”. For the last three datasets with ground-truth

communities, we use F1 score as our measurement. We can see

that our model significantly outperforms LC and is compara-

ble with the other two methods with a fair overall advantage.

Another advantage of our model is scalability. Some results are

not shown because the corresponding baseline methods cannot

scale to networks with such size. Only SCP, BigCLAM and our

PNMF model can deal with the largest dataset, i.e. YouTube,

which consists of more than one million nodes.
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For the choice of membership threshold β, we examine diffe-

rent values from 0.5 to 1 to find a reasonable range. It is clear

that a community will contain fewer nodes if we set a higher

value to β. According to our experiments, [0.7, 0.8] appears to

be a suitable range for candidates since a community may con-

tain nearly half of the nodes when β is less than 0.7, while many

nodes may not belong to any communities when β is larger than

0.8. To determine the final value of β, we again use the cross-

validation paradigm with several candidates in this range and

pick the one with the best performance on validation data.

3.4.5 Convergence Issues

Since our PNMF model applies stochastic gradient descent as

the learning technique, we also observe convergence rate and

convergence speed while conducting experiments. For conver-

gence rate, as long as the learning rate and the regularization

parameter are appropriate, all the datasets can converge be-

fore reaching a maximum number of iteration. For convergence

speed, Figure 3.1 shows the results on five UMich datasets and

Figure 3.2 shows the results of three SNAP datasets. Here the

y-axis represents the ratio of current loss to initial loss. From

both figures, we can see that loss drops quickly in the beginning

and starts to slow down significantly after it reaches 20% of the

initial loss. Comparing these two figures, we can also find that,

although SNAP datasets need more time for one iteration than
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UMich datasets, the total number of iteration is smaller, which

proves the scalability of our model from another perspective.
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Figure 3.1: Convergence speed of learning algorithm on UMich datasets

3.5 Conclusion and Future Work

In this chapter, we have presented a Preference-based Non-negative

Matrix Factorization model for overlapping community detection.

The most significant contribution of our model is to incorporate

implicit link preference information into the model formulation.

By following the intuition that a node prefers any of its neighbors

than any of its “non-neighbors”, we maximize the likelihood of

a preference order for each node instead of simply approxima-

ting the original adjacency matrix in value. Our model can eli-

minate the unreasonable indiscriminate penalty on pairs inside
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Figure 3.2: Convergence speed of learning algorithm on SNAP datasets

and between communities. In the learning process, we choose

stochastic gradient descent with bootstrap sampling to learn the

parameters of node-community membership matrix. We apply

our PNMF model on several real-world datasets both with and

without ground-truth communities. Our results show that our

PNMF model outperforms state-of-art approaches in two me-

trics, namely modularity and F1 score, and is scalable for large

datasets.

Our current work only focuses on the difference between neig-

hbors and “non-neighbors”. We assume that all the “non-neighbors”

have the same preference. However, this assumption may not

hold in real-world networks. Considering two nodes A and B

with no link between them, if there are other nodes which are
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neighbors of both A and B, from the perspective of A it is rea-

sonable to assign higher preference on B than nodes which have

no common neighbors with A. We plan to employ the concept

of common neighbors to enhance our preference system in our

future work.

2 End of chapter.



Chapter 4

A Locality-based NMF Model

Community detection is of crucial importance in understan-

ding structures of complex networks. In many real-world net-

works, communities naturally overlap since a node usually has

multiple community memberships. One popular technique to

cope with overlapping community detection is Matrix Factori-

zation (MF). However, existing MF-based models have ignored

the fact that besides neighbors, “local non-neighbors” (e.g., my

friend’s friend but not my direct friend) are helpful when dis-

covering communities. In this chapter, we propose a Locality-

based Non-negative Matrix Factorization (LNMF) model to re-

fine a preference-based model by incorporating locality into le-

arning objective. We define a subgraph called “k-degree local

network” to set a boundary between local non-neighbors and

other non-neighbors. By discriminately treating these two class

of non-neighbors, our model can capture the process of com-

munity formation. We propose a fast sampling strategy within

65
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the stochastic gradient descent based learning algorithm. We

compare our LNMF model with several baseline methods on

various real-world networks, including large ones with ground-

truth communities. Results show that our model outperforms

state-of-the-art approaches.

4.1 Introduction

An individual in a social network can not only be regarded as

an individual. One’s behaviors are influenced by people around

her, especially close friends. And her activities will influence ot-

hers as well. A person always appears in a social network with

multiple social identities, e.g., a (former) graduate student, a fa-

mily member, a club member, a star fan, a company employee,

etc. In most cases, her behaviors are related to one or several of

these identities. Since identities can be defined by communities,

discovering such overlapping communities in social networks be-

comes an important task for understanding social relationships

and activities. This task is known as overlapping community

detection [30, 33, 68].

Unlike classic community detection assuming that commu-

nities are mutually exclusive, overlapping community detection

cannot be directly turned into the traditional graph clustering

(i.e., node clustering) problem. Thus, many heuristic methods

have been proposed in the past decade to deal with this task.

Early approaches pay most of the attention to links. Clique
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Percolation [74, 49] tries to find all k-cliques (a complete graph

with k nodes) and combine those sharing k−1 nodes to be com-

munities. Link clustering [1], on the other hand, cluster links

instead of nodes and assign each node to all communities that

its corresponding links belong to. Other recent works such as

[18, 103] select some seed node and use links to expand com-

munities. These methods aim to seek communities via links but

do not address the issue that communities are the actual reason

behind links (see Figure 4.1). Considering a user’s ego network

[64], i.e., a network of connections between her friends where

communities are social circles categorized manually, the reason

for two nodes to build a link is that they are in the same ca-

tegory. For example, the probability of one’s college mates to

be friends are usually much higher than that of one’s random

friends.

Figure 4.1: Community is the reason behind links.

Based on the idea that “communities generate links”, Ma-

trix Factorization based model has been employed for overlap-

ping community detection. To apply this model, we need to set

the number of communities and randomly assign users to each

community in advance. Then a particular objective function
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will be adopted to update the community membership for each

node. Previously, a typical objective function is to minimize

||A − FF T ||, where A is the adjacency matrix of the network

and F is the node-community membership matrix. However,

this value-approximation based objective function is problema-

tic in that A only has 0 or 1 in its entry, which is more like a label

(i.e., whether there is a link or not) than a real value. To tackle

this issue, we have proposed a Preference-based Non-negative

Matrix Factorization (PNMF) model in this thesis. Instead of

approximating the value, it maintains a pairwise preference or-

der for each node. To be specific, we assume that Ai,j = 1 and

Ai,k = 0. Previous models try to make FiF
T
j close to 1 and FiF

T
k

close to 0 while the preference based model only expects FiF
T
j

to be larger than FiF
T
k without considering their actual values.

However, PNMF simply separates nodes into two parts, i.e.,

neighbors and non-neighbors, ignoring the fact that all non-

neighbors are not supposed to be treated equally. Inspired by

the famous saying “my friend’s friend is also my friend”, in this

chapter, we propose a Locality-based Non-negative Matrix Fac-

torization (LNMF) model to refine the PNMF model by further

splitting the non-neighbors into two parts, namely “local non-

neighbors” and “distant non-neighbors”. We define a “k-degree

local network” to distinguish these two kinds of non-neighbors.

Given the two assumptions that (1) neighbors are preferred to

local non-neighbors and (2) local non-neighbors are preferred

to distant non-neighbors, we obtain the objective function by
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maximizing a product of likelihood. We use the traditional sto-

chastic gradient descent as our learning method and provide

an efficient sampling strategy. Experiments conducted on real-

world datasets show that our LNMF model does outperform the

state-of-the-art approaches, indicating that our model assump-

tion makes sense.

4.2 A Locality-based Non-negative Matrix Fac-

torization (LNMF) Model

In this section, we first define the concept of k-degree locality

and then formalize our LNMF model in the scenario of commu-

nity detection. We will also briefly talk about the process of

parameters learning and provide several candidates of the sam-

pling strategy.

4.2.1 Preliminaries

Definition 4.1 (k-Degree Local Network). Given an undi-

rected and unweighted graph G, for a node u ∈ G, u’s k-degree

local network Lk(u) is the subgraph consisting of all nodes whose

shortest path length to u is less than or equal to k.

According to the definition above, L0(u) consists of only node

u, L1(u) is the subgraph including node u and all its neighbors,

L∞(u) is the whole graph, etc. We denote the node set of Lt(u)

except u itself as Vt(u), where t = 1, 2, · · ·.
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Now we further define the terms of “local non-neighbors” and

“distant non-neighbors”.

Definition 4.2 (k-Degree Local Non-neighbors). Given a

k-degree local network Lk(u), the set of k-degree local non-neighbors

Sk(u) is defined as Sk(u) := Lk(u)\L1(u), where k ≥ 1.

Definition 4.3 (k-Degree Distant Non-neighbors). Given

a k-degree local network Lk(u), the set of k-degree distant non-

neighbors Tk(u) is defined as Tk(u) := L∞(u)\Lk(u), where k ≥
1.

We can see that when k = 1, Sk(u) = ∅ and Tk(u) = N−(u).

In this case, our model degrades to the PNMF model. When

k ≥ 2, our model will have a new class of nodes in preference

system. Thus, our model is actually a generalization of the

PNMF model.

Notation Meaning

G(V,E) Graph G with node set V and edge set E

Lk(u) u’s k-degree local network in G

Vk(u) node set of Lk(u) except u itself

Sk(u) node set of u’s k-degree local non-neighbors

Tk(u) node set of u’s k-degree distant non-neighbors

N+(u) node set of u’s neighbors

N−(u) node set of u’s non-neighbors

Table 4.1: A summary of notations.

A summary of notations is shown in Table 4.1. Four simple

propositions can be drawn from the above notations.
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Proposition 4.1. Vk(u) = N+(u)
⋃
Sk(u).

Proposition 4.2. N+(u)
⋂
Sk(u) = ∅.

Proposition 4.3. N−(u) = Sk(u)
⋃
Tk(u).

Proposition 4.4. Sk(u)
⋂
Tk(u) = ∅.

4.2.2 Model Assumption

Recall the basic assumption of PNMF in Equation ??. Incor-

porating the concept of k-degree local network, we can exploit

k-degree local non-neighbors to enhance the old model assump-

tion. The new model assumption for our LNMF model can be

represented as

ru,i ≥ ru,j, ru,j ≥ ru,d, i ∈ N+(u), j ∈ Sk(u), d ∈ Tk(u), (4.1)

where ru,p is still the preference of node u on node p. It means

(1) neighbors are preferred to local non-neighbors; (2) local non-

neighbors are preferred to distant non-neighbors. These two

assumptions are quite intuitive. Notice that when k = 1, the

new model assumption degrades to the old one.

We also adopt two independence assumptions of our PNMF

model, i.e., node independence and pair independence assump-

tions, to formalize our new model.

• Node independence. The preference order of each node

is independent with that of any other node. There will be

a link between u and v if and only if u prefers to build a
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relationship with v and symmetrically v prefers to build a

relationship with u.

• Pair independence. For a fixed node i, its preference on

j and k is independent with its preference on u and v when

j, u ∈ N+(i) and k, v ∈ N−(i).

4.2.3 Model Formulation

Given the above model assumptions, we are ready to present

our LNMF model formally. Since nodes are independent of each

other, we can consider one node at first.

For each node u, the optimization criterion is to maximize

the likelihood of preference order which can be represented as a

product of pairwise preferences, i.e.,∏
i,j∈Vk(u)

[P(ru,i ≥ ru,j|F )δ(u,i,j)

(1− P(ru,i ≥ ru,j|F ))1−δ(u,i,j)]·∏
j,d∈N−(u)

[P(ru,j ≥ ru,d|F )ξ(u,j,d)

(1− P(ru,j ≥ ru,d|F ))1−ξ(u,j,d)],

(4.2)

where δ(·) and ξ(·) are two indicator functions that

δ(u, i, j) =

{
1 if i ∈ N+(u) and j ∈ Sk(u),

0 otherwise

and

ξ(u, j, d) =

{
1 if j ∈ Sk(u) and d ∈ Tk(u),

0 otherwise
.
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Recall the four propositions in preliminaries that Vk(u) and

N−(u) can be split into two disjoint sets with different levels

of preference. Following the scheme argued in [88, 114], we can

simplify Equation 4.2 to∑
i∈N+(u),j∈Sk(u)

P(ru,i ≥ ru,j|F )

|N+(u)| · |Sk(u)|
+∑

j∈Sk(u),d∈Tk(u)P(ru,j ≥ ru,d|F )

|Sk(u)| · |Tk(u)|
.

(4.3)

Applying the sigmoid function σ(x) := 1
1+e−x to interpret

P(ru,i ≥ ru,j|F ), i.e., P(ru,i ≥ ru,j|F ) = σ(x̂(u, i) − x̂(u, j)),

we sum up the log-likelihood functions of all nodes:∑
u

[
∑

i∈N+(u),j∈Sk(u)

lnσ(x̂(u, i)− x̂(u, j))+

λ(u) ·
∑

j∈Sk(u),d∈Tk(u)

lnσ(x̂(u, j)− x̂(u, d))],
(4.4)

where x̂(u, i) := Fu · F T
i can be regarded as the correlation be-

tween u and i, and λ(u) := |N+(u)|
|Tk(u)| can be regarded a coefficient

of local influence.

In the end, to prevent our model from overfitting, we add

a regularization term reg(F ) = ||F ||2F , which is the Frobenius

norm of the node-community membership matrix. The final

objective function l is

l(F ) =
∑
u

[
∑

i∈N+(u),j∈Sk(u)

lnσ(x̂(u, i)− x̂(u, j))+

λ(u)·
∑

j∈Sk(u),d∈Tk(u)

lnσ(x̂(u, j)− x̂(u, d))]− λrreg(F ),
(4.5)

where λr is a regularization coefficient.



CHAPTER 4. A LOCALITY-BASED NMF MODEL 74

4.2.4 Parameter Learning

As an efficient and widely-used paradigm for parameter learning,

stochastic gradient descent (SGD) is employed as our learning

algorithm. Distinguished from the traditional batch gradient

descent which computes Equation 4.5 in each iteration, SGD

only picks a small number of random samples to perform update.

In our case, a sample is a (source, neighbor, local non-neighbor,

distant non-neighbor) quadruple. Mathematically, we calculate

the derivative of our final objective function l by

Θt+1 = Θt + α
∂l

∂Θ
, (4.6)

where Θ can be any entry of the node-community members-

hip matrix F . For the non-negative constraints, we apply a

projected gradient method proposed in [58], which maps the pa-

rameter vector back to the nearest point in projected space, in

our case, the non-negative space.

The whole process is described in Algorithm 2. Let sample

size be t. The time complexity of each iteration is O(tp) and

the space complexity is O(np), where n is the number of nodes

and p is the number of communities.

4.2.5 Sampling Strategy and Other Issues

Due to the nature of stochastic gradient descent, sampling stra-

tegy matters to both running time and performance. More than

what PNMF did, we need to sample a set of quadruples for each
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Input: G, the adjacency matrix of original graph

Output: F , the node-community membership matrix

1: initialize F

2: compute initial loss

3: repeat

4: for num samples = 1 to sample size do

5: sample (u, i, j, d) according to Algorithm 3

6: for each entry Θ in Fu, Fi, Fj and Fd do

7: update Θ according to Equation (4.6)

8: Θ← max(Θ, 0)

9: end for

10: end for

11: compute loss

12: until convergence or max iter is reached

Algorithm 2: Community Detection via LNMF

learning step. The process is described in Algorithm 3.

Input: G, the adjacency matrix of original graph

Output: (u, i, j, d), a quadruple to perform a step in stochastic gradient

descent

1: sample node u from V uniformly at random

2: sample node i from N+(u) uniformly at random

3: sample node j from Sk(u) uniformly at random

4: sample node d from Tk(u) uniformly at random

Algorithm 3: Sampling Strategy

For the sampling of j, we need to pre-process the whole graph

to record a set of local nodes of each u in the graph. By using the

fact that N−(u) = Sk(u)
⋃
Tk(u), we keep sampling a random

node until we get a node neither in N+(u) nor in Sk(u) and let
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d be this node.

Moreover, there are several remaining issues to be discussed.

• The number of communities. The nature of matrix fac-

torization needs us to set the number of communities which

are unknown in advance. A cross-validation paradigm is

used. In detail, we reserve 10% of nodes as the valida-

tion set at first. After learning the node-community mem-

bership matrix F , we compute the sum of log-likelihood

function for all nodes in the validation set via Equation 4.3.

Since the computational cost is enormous for cross-validation,

only a small set of quadruple will be sampled.

• The community membership threshold. Obtaining

the node-community membership matrix F is still one step

away from getting the final node-community correspon-

dence. We need to set a threshold to decide whether a

community accepts a node. Similar to what we employ

in the PNMF model, we set a probability threshold to

P(ru,i ≥ ru,j|F ) and use the sigmoid function to reversely

compute the lower bound of community membership weight

assuming that u and i share one community but u and j

do not share any community.

• The convergence criterion. First, we randomly generate

a subset of quadruples to be our loss sample and compute

initial loss on this set according to Equation 4.5. After each

iteration, we compute loss again and stop when the absolute
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difference between the current loss and the previous loss is

smaller than a small percentage, say ε, of the initial loss.

4.3 Experiments

In this section, we compare our LNMF model with both classic

and state-of-the-art overlapping community detection methods

on various real-world datasets. We will show our experimental

results with two metrics, namely modularity and F1 score, and

have a brief discussion.

4.3.1 Data Description

Six benchmark networks collected by Newman1 are used as our

datasets. These networks are relatively small and have no ground-

truth communities. Basic information of these datasets can be

found in Table 4.2, where V is the number of nodes and E is

the number of links.

Dataset V E

Dolphins 62 159

Les Misérables 77 254

Books about US politics 105 441

Word adjacencies 112 425

American college football 115 613

Coauthorship in network science 1,589 2,742

Table 4.2: Statistics of six Newman’s datasets.

1http://www-personal.umich.edu/ mejn/netdata/
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Moreover, we choose three large networks with ground-truth

communities collected by SNAP2 [108] to test the scalability of

our model. These networks are of different types:

• YouTube dataset: a social network of a video-sharing web

site.

• DBLP dataset: a collaboration network of research paper

authors in computer science.

• Amazon dataset: a products co-purchasing network based

on Customers Who Bought This Item Also Bought feature

of the Amazon website.

Simple statistics for these three datasets are shown in Table 4.3,

where V is the number of nodes, E is the number of links, C is

the number of ground-truth communities, and U is the average

number of nodes per community.

Dataset V E C U

DBLP 317k 1.0M 2.5k 429.8

Amazon 335k 926k 49k 100.0

YouTube 1.1M 3.0M 30k 9.7

Table 4.3: Statistics of three SNAP datasets.

4.3.2 Experimental Setup

We conduct our experiments on a computer with a Xeon 2.60GHz

CPU and 64GB memory.
2http://snap.stanford.edu/data/
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Comparison methods. We select both classic and state-of-

the-art methods to compare with our model. The latter four

are Non-negative Matrix Factorization (NMF) based models.

• SCP [49] accelerates the original CP method [74] in a se-

quential manner. We set k to be 4 or 5 when finding k-

cliques.

• LC [1] clusters link instead of node to get overlapping com-

munities. We ignore all communities with only one or two

nodes since they are meaningless.

• BNMF [80] is one of the earliest work which applies MF

into community detection. The squared loss is used as loss

function.

• BNMTF [113] incorporates a community interaction ma-

trix into the classic MF to become a Matrix Tri-Factorization

model. Squared loss is used as loss function.

• BigCLAM [109] is claimed by its authors as a scalable

model. It can search for the best number of communities

given a range.

• PNMF is the model we propose in Chapter 3.

Evaluation metrics.

• Modularity. We use the classic modularity as our metric
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for Newman’s datasets. Modularity Q is defined as

Q =
1

2m

∑
u,v∈V

(Au,v −
d(u)d(v)

2m
)|Cu ∪ Cv|,

where m is the number of links, V is the node set, A is the

adjacency matrix, d(u) is the degree of node u, and Cu is

the set of communities to which node u belongs. This defi-

nition indicates that for each node pair (u, v) which shares

communities, its contribution to modularity is positive if

u, v are linked and is negative otherwise. It matches our

intuition that nodes inside one community tends to build

links with each other.

• F1 score. For SNAP datasets with ground-truth commu-

nities, F1 score is obviously one of the best measurements.

The F1 score of a detected community Si is defined as

the harmonic mean of precision(Si) and recall(Si), where

precision(Si) and recall(Si) are defined as

precision(Si) = max
j

|Cj
⋂
Si|

|Cj|
,

and

recall(Si) = max
j

|Cj
⋂
Si|

|Si|
,

where Cj is the node set of a ground-truth community. The

average F1 score for the set of detected communities S is

F1(S) =
1

|S|
∑
Si∈S

F (Si).
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Setting the k. Remember that if we set k = 1 in k-degree

local network, our model will degrade to the PNMF model. Ac-

cording to our observation on several datasets, if k is set to be

larger than 2, the average number of common communities two

nodes in a k-degree local network share is not significantly lar-

ger than that two random nodes in the whole network share.

Thus, we set k to be 2, which means only a friend’s friends are

considered as local non-neighbors.

4.3.3 Results

We set the regularization coefficient to be 0.5 and the conver-

gence parameter ε to be 0.001 for all experiments. The sample

size t is determined according to data size. For Newman’s data-

sets, we set t = m, i.e., the number of links. For SNAP datasets,

we set t = 10
√
n to finish one iteration without taking too much

time, where n is the number of nodes. The maximum times of

iteration are set to 100, though in fact, all datasets converge

before reaching the limit.

Table 4.4 shows the performance of our LNMF model on

Newman’s datasets, where RI denotes the relative improvement

over PNMF. From the results, we find that under the metric of

modularity, our LNMF model outperforms all baseline methods

on all datasets.

Table 4.5 shows the our experimental results on SNAP data-

sets, where RI denotes the relative improvement over PNMF.
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Dataset BigCLAM PNMF LNMF(RI)

DBLP 0.039 0.098 0.107(9.2%)

Amazon 0.044 0.042 0.048(11.4%)

YouTube 0.019 0.060 0.057(0.0%)

Table 4.5: Experimental results on SNAP datasets in terms of F1 score.

The other baselines methods are not listed here since none of

them can finish all three datasets in time. This fact can re-

flect the scalability of our LNMF model to some extent. It can

be seen that our model outperforms BigCLAM on all datasets

and has an improvement over PNMF on two of three datasets.

For YouTube, we find its community formation pattern quite

random due to the small size of communities and the large vari-

ety of users. In other words, our model assumption does not fit

the community pattern of this dataset so well, which explains

why LNMF fails to improve on it. The running time of one

iteration is about one or two hours for DBLP and Amazon. For

YouTube, it takes about four to five hours to finish an iteration.

The convergence speed of our learning algorithm on Amazon

and DBLP is illustrated in Figure 4.2. A point in the figure

represents the ratio of current loss to initial loss after i-th ite-

ration. The results show that our LNMF can converge within a

fair number of iterations. In fact, if we do not consider the re-

gularization term, the final losses of both datasets are less than

10% of the initial loss.
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Figure 4.2: Convergence speed of learning algorithm.

4.4 Conclusion

In this chapter, we propose a Locality-based Non-negative Ma-

trix Factorization model to improve the performance of existing

work on overlapping community detection. Our LNMF model

is based on a pairwise preference learning scheme. We exploit

local area around a node formally defined as a k-degree local

network to enhance the previous preference system. In detail,

we extend a two-level preference system which only distinguishes

neighbors and non-neighbors to a three-level preference system

which split the set of non-neighbors into local non-neighbors and

distant non-neighbors. Experiments on several real-world data-

sets including large ones with ground-truth communities show

that this extension can indeed improve the quality of overlap-
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ping community detection.

2 End of chapter.



Chapter 5

A Mutual Density-based NMF

Model

Community detection provides a way to unravel complicated

structures in complex networks. Overlapping community de-

tection allows nodes to be associated with multiple communi-

ties. Matrix Factorization (MF) is one of the standard tools to

solve overlapping community detection problems from a global

view. Existing MF-based methods only exploit link information

revealed by the adjacency matrix, but ignore other critical in-

formation. In fact, compared with the existence of a link, the

number of mutual friends between two nodes can better reflect

their similarity regarding community membership. In this chap-

ter, based on the concept of mutual friend, we introduce Mutual

Density as a new indicator to infer the similarity of community

membership between two nodes in the MF framework for over-

lapping community detection. We conduct data observation on

real-world networks with ground-truth communities to validate

86
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an intuition that mutual density between two nodes is corre-

lated with their community membership cosine similarity. Ac-

cording to this observation, we propose a Mutual Density-based

Non-negative Matrix Factorization (MD-NMF) model by maxi-

mizing the likelihood that node pairs with larger mutual density

are more similar in community memberships. Our model em-

ploys stochastic gradient descent with sampling as the learning

algorithm. We conduct experiments on various real-world net-

works and compare our model with other baseline methods. The

results show that our MD-NMF model outperforms the other

state-of-the-art models on multiple metrics in these benchmark

datasets.

5.1 Introduction

In complex networks, there usually exist groups inside which

nodes are connected more densely with one another than with

the nodes outside. These groups of nodes are called communi-

ties [35]. In reality, these groups usually have physical meanings

such as members of the same organization, scientists with publi-

cations in the same area, or proteins sharing the same function

[47]. Thus, uncovering such latent communities in complex net-

works has attracted great research interests in the past decade

[30]. Classic methods assume communities are mutual exclu-

sive, i.e., each node of a network belongs to one and only one

community. However, in real-world complex networks like social
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networks and biological networks, such community membership

restriction does not apply because a node may have multiple

characteristics and thus belongs to multiple communities. As a

result, a more challenging problem named overlapping commu-

nity detection has been introduced in recent years [105].

Matrix Factorization (MF), as one of the standard frame-

works to solve the problem of overlapping community detection,

detects communities from a global view [105]. Taking the adja-

cency matrix G of the given network as input, MF-based mo-

dels assign the number of communities in advance and seek out

a node-community weight matrix F , which matches the infor-

mation revealed by the input as accurately as possible. Early

work [80, 101] simply aims to approximate G entry by entry with

FF T , which only makes use of the mathematical representation

of adjacency matrix, but ignores its physical meaning. The most

obvious information an adjacency matrix provides is the link in-

formation. Thus, recent work [107] assumes that nodes sharing

more communities have a higher probability to be linked and

formulates the problem with a generative objective function. In

other words, a link can be regarded as an indicator to reflect the

similarity of community membership between two nodes.

However, a link is not a perfect indicator for two major rea-

sons. First, it is common that two nodes sharing several com-

munities do not have a link between them, or two nodes with no

common community are connected. A survey conducted on Fa-

cebook [21] shows that edges between two individuals from diffe-
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rent communities outnumber edges connecting users in the same

community. For example, a salesperson may make connections

with many strangers to sell his products, and the establishment

of links between salespeople and customers does not indicate any

similarity between their community memberships. In cases like

these, links become noise instead of evidence. Second, a link is

a binary indicator in an unweighted network. Given two linked

node pairs with no other information at all, it is impossible to

distinguish which one is more similar.

Inspired by the definition of tie strength [34], we introduce a

more powerful indicator, which is the number of mutual friends

between two nodes, to reflect their community membership simi-

larity. The definition of tie strength reveals that the stronger tie

the two nodes own, the larger overlap in their friendship circles

they will have. This idea can be incorporated into our matrix

factorization framework for overlapping community detection,

which meets the common sense that the more communities two

nodes share, the more mutual friends they will have. For exam-

ple, if two individuals attended the same class in high school,

joined the same basketball team, and work in the same com-

pany now, they should know many mutual friends in different

communities, i.e., their ego-networks (friend circles) are densely

overlapped. Compared to a link, the number of mutual friends

is no longer a binary indicator and it provides more confidence

to predict the similarity of community membership between two

nodes. However, it still suffers from several issues: the lack of
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friends of two nodes may limit the number of mutual friends

between them, and communities with different sizes may con-

tribute different numbers of mutual friends to each node pair.

To handle these limitations, we introduce Mutual Density as a

more consistent indicator, which is defined as the Jaccard simi-

larity of two nodes’ ego-networks. Under the general description

of “neighborhood similarity”, the concept of mutual density has

been applied in community detection under different assumpti-

ons [1, 4, 67, 96, 99]. However, none of these methods are based

on matrix factorization, and none of them use mutual density to

measure the similarity of community membership between two

nodes.

In this chapter, we introduce mutual density and the number

of mutual friends as the new indicators instead of links themsel-

ves for inferring community membership similarity in the matrix

factorization framework. We conduct data observation on real-

world networks with ground-truth communities to validate that

mutual density is more consistent with community memberships

similarity than the other two indicators. Thus, we formulate our

Mutual Density-based Non-negative Matrix Factorization (MD-

NMF) model, which incorporates mutual density as the commu-

nity similarity indicator and employs a novel objective function

to ensure that a node pair with higher mutual density is more

likely to have a higher community membership similarity. From

a node’s perspective, we ensure that it is more likely to join the

same communities with its acquaintances than with its stran-
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gers. To solve the optimization problem, we apply projected

stochastic gradient descent with sampling. By using our model

to real-world and open-source network datasets, we find that

our new MD-NMF model outperforms several state-of-the-art

methods on either modularity or F1 score.

The main contributions of this chapter are:

1. We introduce Mutual Density as a new indicator to reflect

the community membership similarity between two nodes

in substitution for a link within the matrix factorization

framework for overlapping community detection.

2. We find that there is consistency between the mutual den-

sity of two nodes and their community memberships si-

milarity by empirically studying real-world networks with

ground-truth communities.

3. We propose a novel Mutual Density-based Non-negative Ma-

trix Factorization (MD-NMF) model for overlapping com-

munity detection by formulating mutual density properly

in the matrix factorization framework. Our model outper-

forms state-of-the-art baselines.

In the rest of this chapter, we first list out indicator defi-

nitions and show our data observations in Section 5.2. Then

we formulate our MD-NMF model and discuss parameter le-

arning in Section 5.4. Experimental results are illustrated in

Section 5.5, followed by related work in Section 5.3 and conclu-
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sion in Section 5.6.

5.2 Definition and Data Observation

In this section, we first define the community detection problem.

Then we define three indicators mentioned in Introduction for

indicating community membership similarity. Finally, we con-

duct data observation experiments on two real-world networks

with ground truth communities and examine which indicator

has the best consistency.

5.2.1 Indicator Definitions

To infer the community membership similarity between two no-

des, we have mentioned three indicators in Introduction. They

are link existence l(u, v), the number of mutual friends m(u, v)

and mutual density d(u, v), where u and v are both nodes in V .

We formally define each of them as follows.

Definition 5.1 (Link Existence). Given a graph G(V,E) and

two nodes u, v ∈ V , the link existence between u and v is

l(u, v) =

{
1 if Guv = 1,

0 else
. (5.1)

Definition 5.2 (The Number of Mutual Friends). Given a graph

G(V,E) and two nodes u, v ∈ V , the number of mutual friends

between u and v is

m(u, v) = | {i|(u, i) ∈ E and (v, i) ∈ E} |. (5.2)
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Definition 5.3 (Mutual Density). Given a graph G(V,E) and

two nodes u, v ∈ V , the mutual density between u and v is

d(u, v) =
| {i|(u, i) ∈ E and (v, i) ∈ E} |
| {j|(u, j) ∈ E or (v, j) ∈ E} |

. (5.3)

5.2.2 Data Observation

To validate (1) the number of mutual friends is better than a link

in inferring community membership similarity, and (2) mutual

density is more stable compared with the number of mutual

friends, we conduct two experiments on two large real-world

networks with ground-truth communities [108]. Table 5.1 shows

the statistics of these two networks, where |V | is the number of

nodes, |E| is the number of edges, |C| is the number of ground-

truth communities, D is the average degree of nodes, M is the

average number of nodes per community, and A is the average

number of joined communities per node.1

Dataset |V| |E| |C| D M A

Amazon 335k 926k 49k 3.38 100.0 14.83

DBLP 317k 1.0M 2.5k 4.93 429.8 2.57

Table 5.1: Dataset statistics.

To quantify the community membership similarity between

two nodes, we use cosine similarity as our measurement, which

is defined as follows.
1http://snap.stanford.edu/data/
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Definition 5.4 (Cosine similarity of community membership).

Given a graph with p ground-truth communities {Ci|i = 1, 2, · · · , p},
the cosine similarity of community membership s(u, v) between

u and v is

s(u, v) =
~u · ~vT

‖~u‖2‖~v‖2
, (5.4)

where ~u ∈ Rp is the community membership vector of node u

and ui represents the weight u belongs to community Ci.

First, we randomly sample 100,000 node pairs with links as

well as 100,000 node pairs with at least two or four mutual

friends and compute the cosine similarity of community mem-

bership for each node pair. Figure 5.1 plots the number of 3

different types of node pairs with the same value of cosine si-

milarity. We expect all three types of node pairs to share at

least one community and thus to have non-zero cosine simila-

rity. However, nearly 14,000 node pairs with links do not share

any communities. The error rate is about 14%. On the other

side, less than 8% of the node pairs with at least two mutual

friends and only about 1% of the node pairs with at least four

mutual friends are out of our expectation. When the value of

cosine similarity is nonzero, all three types are pretty similar,

and the number of node pairs with four mutual friends is slightly

greater than the other types.

In contrast, we randomly draw 50,000 non-linked node pairs

and the same number of node pairs that have no mutual friends.

We expect both sets of node pairs to have s(u, v) = 0. Table 5.2
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Figure 5.1: The number of sampled node pairs having a same value of cosine

similarity
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Indicator s(u, v) = 0 s(u, v) > 0

l(u,v) = 0 45793 4207

m(u,v) = 0 49816 184

Table 5.2: Comparison of error rate for 50,000 non-linked node pairs between

the number of mutual friends and the existence of links.

shows the number of node pairs with s(u, v) = 0 or s(u, v) > 0.

We can see that the number of mutual friends has a smaller error

rate than the existence of links. Combining the observations

from both Figure 5.1 and Table 5.2, we can conclude in strong

confidence that the number of mutual friends is a more accurate

and more flexible indicator compared to the existence of links.

Second, we compare the stability of indicator between the

number of mutual friends and mutual density. A stable indicator

is expected to be monotonic while community membership simi-

larity increases. We sample 10,000 node pairs each time with a

certain value of cosine similarity and calculate the average num-

ber of mutual friends and average mutual density of these node

pairs. The result is shown in Figure 5.2. We can see that on

the DBLP data, the average number of mutual friends vibrates

up and down while average mutual density is almost monotonic

as cosine similarity increases. Thus, mutual density is a more

stable indicator than the number of mutual friends to infer com-

munity membership similarity.

In summary, mutual density is the best indicator among all

three indicators we mentioned with highest accuracy and stabi-
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Figure 5.2: Averaged value of each indicator as a function of cosine similarity

in community membership
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lity.

5.3 Related Work

In this section, we will review several works related to this chap-

ter. We first investigate the applications of mutual friends in

community detection. Then, we introduce the background of

the learning objective of our MD-NMF model.

5.3.1 Mutual Friends

Mutual friend as a strong factor to indicate the closeness be-

tween two nodes has been investigated in many social-related

tasks. Friend recommender systems provide the potential friends

list through discovering the latent information behind network

topology and friends in common [5, 94]. Link prediction mo-

dels in complex networks use common neighbors to evaluate the

probabilities of link establishments [6, 61]. Online social rating

networks make use of the co-commenting and co-rating beha-

viors of users to recommend products and predict new rating

[97]. In community detection problem, mutual friends have also

been employed to measure the strength of connections between

nodes. Newman defines connection strength as the normali-

zed term of mutual friends and uses it to cluster nodes [67].

Tang and Liu directly interpret Jaccard similarity as node si-

milarity to fit into K-means algorithm for community detection

[99]. Steinhaeuser and Chawla exam Jaccard coefficient as an
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edge weighting method and employ it in community detection.

However, this algorithm fails to detect any community structure

without the addition of node attribute [96]. Alvari et al. regard

neighborhood similarity, i.e., the number of common neighbors,

as a similarity measure and incorporate it into a game theory

framework [4]. Ahn et al. explicitly define link similarity and

hierarchically cluster links accordingly [1].

In this chapter, mutual density has the same mathematical

form as Jaccard similarity or link similarity but is used for mea-

suring the community membership similarity. Thus, we can still

calculate mutual density between two nodes even if they are

not linked. Also, our model is built on the matrix factorization

framework instead of link clustering.

5.3.2 Bayesian Personalized Ranking

The pairwise objective function of our model is based on the

Bayesian Personalized Ranking [88]. This method and its ex-

tensions are originally proposed to solve the ranking problem in

recommender systems [75, 87, 114]. Also, in the PNMF model

in Chapter 3 and the LNMF model in Chapter 4, we employ

BPR on the overlapping community detection problem. We fo-

cus on the link indicator and assume that each node shares more

common communities with its neighbors than its non-neighbors,

which is more realistic both conceptually and experimentally.
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5.4 Mutual Density-based NMF Model

In this section, we formally define our model assumption and

formulate our pairwise learning objective in a matrix factori-

zation framework. We apply stochastic gradient descent with

sampling to learn model parameters.

5.4.1 Model Assumption

From the data observation, we can see that the cosine similarity

of community membership between two nodes is correlated with

their mutual density. It leads to the intuition of our model that

two nodes with larger mutual density are more likely to have

higher cosine similarity of community membership.

To formally illustrate our model assumption, we need to de-

fine two relationships between two nodes in the first place: α-

acquaintance and β-stranger.

Definition 5.5 (α-acquaintance). Given α ∈ [0, 1], for two no-

des u, v ∈ V , v is u’s α-acquaintance if and only if

d(u, v) ≥ α.

By the symmetry of d(u, v), u is also v’s α-acquaintance.

Definition 5.6 (β-stranger). Given β ∈ [0, 1], for two nodes

u, v ∈ V , v is u’s β-stranger if and only if

d(u, v) ≤ β.

By the symmetry of d(u, v), u is also v’s β-stranger.
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In both definitions, d(u, v) is the mutual density between u

and v defined in Equation (5.4). Moreover, for a node u, we

define its set of α-acquaintances as A(u, α) = {i|d(u, i) ≥ α}
and its set of β-strangers as B(u, β) = {j|d(u, j) ≤ β}.

Following our intuition, our model assumption can be for-

mally defined as

s(u, i) > s(u, j),

if i ∈ A(u, α), j ∈ B(u, β), and α > β,
(5.5)

where s(u, i) is the cosine similarity of community memberships

between u and i.

In other words, we expect that the cosine similarity between u

and any of its α-acquaintances should be greater than the cosine

similarity between u and any of its β-strangers. Adjusting α and

β for different graphs enables us to make sure that the difference

of cosine similarity is significant. If α is only slightly greater than

β, we are not confident enough to make such assumption.

5.4.2 Model Formulation

In the MD-NMF model, we aim to find the node-community

weight matrix F which maximizes the likelihood that every node

in the graph has higher cosine similarity in community members-

hip with all its α-acquaintances than with all its β-strangers. For

each node u, we want to maximize

P(>
u
|F, α, β) =

∏
i∈A(u,α)

∏
j∈B(u,β)

P(s(u, i) > s(u, j)|F ). (5.6)
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Given any two nodes u, v ∈ V , we can obtain their node-

community weight vectors Fu, Fv from F . From the observation

that the higher cosine similarity of community membership vec-

tors between two nodes, the greater mutual density they will

have, we define the probability that s(u, i) > s(u, j) given the

node-community membership matrix as

P(s(u, i) > s(u, j)|F ) = σ(
FuF

T
i

‖Fu‖2‖Fi‖2
−

FuF
T
j

‖Fu‖2‖Fj‖2
), (5.7)

where σ is the sigmoid function σ(x) = 1
1+e−x . For simplicity, we

define φ(i, j) =
FiF

T
j

‖Fi‖‖Fj‖ , so we have

P(s(u, i) > s(u, j)|F ) = σ(φ(u, i)− φ(u, j)). (5.8)

Since the sigmoid function maps any real value into (0, 1), this

probability approaches to 1 when φ(u, i)� φ(u, j) and approa-

ches to 0 when φ(u, i)� φ(u, j).

By multiplying Equation (5.6) for each node and combining

Equation (5.7) and (5.8), we can derive the final learning ob-

jective of the MD-NMF model, which is

l(F ) = max
F∈Rn×p

+

log
∏
u∈V

P(>
u
|F, α, β)− λ · reg(F )

= max
F∈Rn×p

+

∑
u∈V

∑
i∈A(u,α)

∑
j∈B(u,β)

logP(s(u, i) > s(u, j)|F )

− λ · reg(F )

= max
F∈Rn×p

+

∑
u∈V

∑
i∈A(u,α)

∑
j∈B(u,β)

log σ(φ(u, i)− φ(u, j))

− λ · reg(F ),

(5.9)
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where reg(F ) is a regularization term in order to prevent over-

fitting of F , and λ is the regularization parameter. For the

simplicity of differentiation, we set reg(F ) = ‖F‖2F , which is

the Frobenius norm of F .

In Equation (5.7), maximizing the difference of cosine simi-

larity gives the model a geometrical meaning. If we set the

number of communities as p, then each row vector Fi is a node-

community weight vector in Rp. When optimizing the lear-

ning objective, the cosine similarity between α−acquaintances is

maximized, which means angles between their node-community

weight vectors will be narrowed; likewise, angles between the

weight vectors of β-acquaintances will be enlarged. In this way,

Fi will finally converge to the community membership vector of

node i.

5.4.3 Parameter Learning

To make our model scalable to large datasets, we employ the

widely used paradigm of Stochastic Gradient Descent (SGD)

as our learning algorithm. Also considering the non-negativity

constraint, we apply a projected gradient method [58] which

maps the vector with negative parameters back to the nearest

point in the projected space. Following the learning objective l,

we update the matrix F by

Θt+1 = max{Θt + δ
∂l

∂Θ
, 0} , (5.10)
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where δ is the learning rate and Θ can be any entry of matrix

F . Defining x̂ := FuF
T
i

‖Fu‖2‖Fi‖2 −
FuF

T
j

‖Fu‖2‖Fj‖2 , the partial derivatives

can be calculated by

∂x̂

∂Fu,t
=
‖Fu‖2‖Fi‖2 · Fi,t − FuF T

i ·
‖Fi‖2
‖Fu‖2 · Fu,t

‖Fu‖22‖Fi‖22

−
‖Fu‖2‖Fj‖2 · Fj,t − FuF T

j ·
‖Fj‖2
‖Fu‖2 · Fu,t

‖Fu‖22‖Fj‖22
∂x̂

∂Fi,t
=
‖Fu‖2‖Fi‖2 · Fu,t − FuF T

i ·
‖Fu‖2
‖Fi‖2 · Fi,t

‖Fu‖22‖Fi‖22
∂x̂

∂Fj,t
= −
‖Fu‖2‖Fj‖2 · Fu,t − FuF T

j ·
‖Fu‖2
‖Fj‖2 · Fj,t

‖Fu‖22‖Fj‖22

. (5.11)

Algorithm 4 describes the whole iterative process of parame-

ter learning. In each iteration, the time complexity is O(|E|p),
where |E| is the number of edges and p the number of communi-

ties. Because we need to save the whole node-community weight

matrix F in memory, the space complexity of the algorithm is

O(|V |p), where V is the number of nodes. When V becomes

too large, the algorithm needs huge memory to store the whole

matrix F , which is the limitation of the algorithm. To scale this

algorithm to billions of nodes, distributed storage and update of

F should be considered.

Choosing the number of communities.

Before running Algorithm 4, we need to set the number of com-

munities p in advance. After conducting some experiments on

small datasets, we find that if we set p to be larger than the
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Input: G, the adjacency matrix of original graph; α, the acquaintance

threshold; β, the stranger threshold

Output: F , the node-community weight matrix

1: initialize F

2: compute initial loss

3: repeat

4: for num samples = 1 to |E| do

5: sample node u from V uniformly at random

6: sample node i from u’s α-acquaintances set A(u, α) uniformly at

random

7: sample node j from u’s β-strangers set B(u, β) uniformly at

random

8: for each entry Θ in Fi, Fj and Fk do

9: update Θ according to Equation (5.10)

10: end for

11: end for

12: compute loss

13: until convergence or max iter is reached

Algorithm 4: Overlapping community detection using MD-NMF

intended p and learn the parameters accordingly, our detected

communities contain the results we obtain with the intended p

as well as some duplicated communities or trivial communities

with few nodes. Thus, our strategy is to pick a relatively large

p based on the number of nodes and edges in the network and

further refine our results via merging or deletion.
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Acquaintances and strangers sampling

For node u ∈ V and any of its α-acquaintances i, if α > 0, then

it is guaranteed that u and i have mutual friends. To find i,

we first do a breadth-first search and group all u’s neighbors as

well as friends of these neighbors into a set. Then we filter out

any node k with d(u, k) < α in this set and sample i from the

remaining nodes uniformly at random. If u does not have any α-

acquaintance, we sample another u and repeat the above process

until we get a valid u. To sample the β-stranger of u, we simply

sample a random node from graph until we get the β-stranger.

From Table 1 we can see that in each graph, the average degree

of nodes is much smaller than the number of edges. Thus the

time complexity of sampling acquaintances and strangers for a

node remains constant.

Different values of α and β may affect the result, so we need

to choose the thresholds empirically. For α, we sample ten thou-

sand node pairs with mutual friends and observe the distribution

of mutual density of these node pairs. We can choose the average

mutual density among these pairs or any value that with 30%

or 40% of the samples greater than it. For β, we sample ten

thousand node pairs without mutual friends and make the same

observation.
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Setting membership threshold

For each node, since its final community membership should be

binary, our strategy is to set a membership threshold t for each

entry of its node-community weight vector, i.e., if Fu,k ≥ t, we

say that node u is associated with community t. To determine

the threshold, we assume that the node-community weight vec-

tor is a unit vector and each node can join at most n communi-

ties, with all the weights being the same. Thus, the membership

threshold can be set as t = 1√
n
. Since our raw output, i.e., the

node-community weight matrix F is not normalized, we need to

normalize each row of it and then apply the membership thres-

hold for each entry.

5.5 Experiments

In this section, we conduct experiments on our model with va-

rious real-world datasets. We compare the result of our model

with other classic or state-of-the-art overlapping community de-

tection methods. To evaluate the quality of the result, we use

two metrics, which are modularity and F1 score.

5.5.1 Dataset

The real-world datasets we use include the two large networks

we have described in the data observation section, as well as six
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Dataset |V| |E|

Dolphins 62 159

Books about US politics 105 441

American college football 115 613

Network science 1,589 2742

Power grid 4,941 6,594

High-energy theory 8,361 15,751

Table 5.3: Statistics of six Newman’s datasets.

benchmark networks collected by Newman2. Table 5.3 lists the

basic information of the six benchmark datasets, where |V | is

the number of nodes and |E| is the number of edges. They are

relatively small compared to the two large networks and have

no ground-truth communities.

5.5.2 Comparison Methods

For comparison, we select the following seven baseline approa-

ches:

• Sequential Clique Percolation (SCP) [49]. This method im-

proves the original Clique Percolation method [74] in a se-

quential manner. We set k to be 4 or 5 when finding k-

cliques.

• Link Clustering (LC) [1]. This method uses the concept of

link similarity that has the same definition as our mutual

2http://www-personal.umich.edu/mejn/netdata
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density to cluster links instead of nodes and finally obtain

overlapping communities. We ignore all the trivial commu-

nities with only one or two nodes.

• Demon [18]. This method employs label propagation to

detect small communities on ego network of each node and

merge communities with large overlap.

• Bayesian Non-negative Matrix Factorization (BNMF) [80].

This method is the first MF-based model utilized in overlap-

ping community detection, which is based on a generative

graphical model.

• Bounded Non-negative Matrix Tri-Factorization (BNMTF)

[113]. This method uses three factors to learn the com-

munity membership of each node as well as the interaction

among communities. We use the squared loss as its loss

function.

• BigCLAM [109]. This method is the first MF-based model

designed for large networks. It is built on a bipartite affi-

liation network and aims to fit the underlying network by

generating the same set of edges with maximum probabi-

lity.

• Preference-based Non-negative Matrix Factorization (PNMF).

The method we propose in Chapter 3, which uses the same

framework as the BigCLAM model but incorporates the im-

plicit preference information inside a link to come up with
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a novel objective function.

Notice that the latter four approaches are also based on matrix

factorization.

5.5.3 Evaluation Metrics

We use modularity as the evaluation metric for small datasets

without ground-truth communities and F1 score for large data-

sets with ground truth communities.

Modularity

The classic modularity is defined as

Q =
1

2|E|
∑
u,v∈V

(Gu,v −
d(u)d(v)

2|E|
)Iu,v,

where d(u) is the degree of node u, Gu,v is the (u, v) entry of

the adjacency matrix G, and Iu,v = 1 if u, v are in the same

community otherwise 0 [71].

In the overlapping scenario, since a node pair may share more

than one communities, a minor modification has been made by

replacing Iu,v with |Cu ∩ Cv|, i.e., the number of overlapped

community between u and v:

Q̂ =
1

2|E|
∑
u,v∈V

(Gu,v −
d(u)d(v)

2|E|
)|Cu ∩ Cv|.

From the definition, we can see that greater value of modula-

rity reveals denser connectivity within the detected communities

because only linked node pairs sharing common communities
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contribute positively to the value. This metric has also been

frequently used in previous MF-based works [109].

As we know, modularity has been directly used as an optimi-

zation objective in community detection, and those approaches

are called modularity-based methods [16, 24, 37, 69]. However,

when we compare the quality of detected communities among

non-modularity-based models, modularity can still be served as

a useful metric.

F1 score

The F1 score of a detected community Si is defined as the har-

monic mean of

precision(Si) = max
j

|S ′j ∩ Si|
|Si|

and

recall(Si) = max
j

|S ′j ∩ Si|
|S ′j|

,

i.e.,

F1 =
precision(Si) · recall(Si)
precision(Si) + recall(Si)

,

where S
′

j is one of the given ground-truth communities. The

overall F1 score of the result of detected communities is the

average F1 score of all communities in the detected communities

set.
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Dataset SCP BigCLAM PNMF MD-NMF

Amazon 0.0315 0.0441 0.0419 0.0961

DBLP 0.0967 0.0390 0.0985 0.1013

Table 5.4: Comparison of experiment results in terms of F1 score.

5.5.4 Results

For the small networks, we set the learning rate θ as 0.5 and p

ranging from 10 to 50. We assume each node joins at most 3

to 10 communities and set the threshold based on this assump-

tion. For the large network datasets, we set θ much greater

because the normalized term in cosine similarity limits the alte-

red amount of weight in each gradient descent iteration. We set

p ranging from 1,000 to 5,000 and assume that each node joins

at most 100 communities. The maximum number of iteration is

set to be 100, while in most cases F converges before reaching

the iteration limit.

Figure 5.3 shows the results regarding modularity on six small

benchmark networks without ground-truth communities. We

can see that our MD-NMF model outperforms all baseline met-

hods on all datasets on modularity, including LC that leverages

the general concept of “neighborhood similarity” as well and

PNMF that is also based on a pairwise objective function but

employs links as the indicator.

Table 5.4 shows the results on two large benchmark networks

with ground-truth communities. We can see that only three of
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our comparison methods can scale to networks of such size. On

both Amazon and DBLP dataset, our MD-NMF model prevails

on the metric F1 score.

5.5.5 Discussion

The learning objective of our MD-NMF model is similar to the

PNMF model regarding formulation. The main difference be-

tween these two model is that the PNMF model uses link ex-

istence as the indicator of community membership similarity

while our MD-NMF model uses mutual density. Thus, by com-

paring the results of both models on our benchmark networks,

we can validate whether the results of MD-NMF model is con-

sistent with its model assumption and whether mutual density

is a better indicator than link existence.

The first issue we want to validate is the correctness of our

MD-NMF model. From all the node pairs where both nodes

belong to the same community, we count the number of pairs

with no mutual friends (see Table 5.5). As we expect, the results

of MD-NMF model have fewer node pairs with no mutual friends

than the results of PNMF model, which illustrates the tendency

of MD-NMF model to cluster nodes with mutual friends into

same community.

The second issue we want to validate is the superiority of our

MD-NMF model. From all the node pairs with no links where

both nodes belong to the same community, we count the number



CHAPTER 5. A MUTUAL DENSITY-BASED NMF MODEL 114

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
M

o
d
u
la

ri
ty

SCP
LC
Demon
BNMF
BNTMF
BigCLAM
PNMF
MD-NMF

(a) Dolphins

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
o
d
u
la

ri
ty

SCP
LC
Demon
BNMF
BNTMF
BigCLAM
PNMF
MD-NMF

(b) Books about US politics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
o
d
u
la

ri
ty

SCP
LC
Demon
BNMF
BNTMF
BigCLAM
PNMF
MD-NMF

(c) American College football

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

M
o
d
u
la

ri
ty

SCP
LC
Demon
BNMF
BNTMF
BigCLAM
PNMF
MD-NMF

(d) Network science

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
o
d
u
la

ri
ty

SCP
LC
Demon
BNMF
BNTMF
BigCLAM
PNMF
MD-NMF

(e) Power grid

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
o
d
u
la

ri
ty

SCP
LC
Demon
BNMF
BNTMF
BigCLAM
PNMF
MD-NMF

(f) High-energy theory

Figure 5.3: Comparison in terms of modularity.
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of pairs with one or more mutual friends (see Table 5.6). The

statistics show that the results of MD-NMF model have fewer

node pairs without neither links nor mutual friends than results

of PNMF model, which means the communities detected by the

MD-NMF model is denser than those detected by the PNMF

model. Another interesting phenomenon we observe is that even

though our MD-NMF model focuses more on the mutual friend,

it has more linked pairs inside communities than the PNMF

model except in Dolphin. Thus, we are confident to say that

mutual friend is a better indicator of community similarity than

link existence.

5.6 Conclusion

In this chapter, we propose a Mutual Density-based Non-negative

Matrix Factorization model for overlapping community detection.

We introduce mutual density as a more consistent indicator of

community membership similarity than links in traditional met-

hods. The formulation of our model is based on empirical fin-

dings that mutual density correlates with the cosine similarity of

community membership. Our learning objective maximizes the

likelihood that each node has a more similar community mem-

bership with its acquaintances than its strangers. Experiment

results show that our new model outperforms the other baseline

methods as well as the link-based PNMF model in real-world

datasets.
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2 End of chapter.



Chapter 6

A Homophily-based NMF

Model

Overlapping community detection has drawn much attention

recently since it allows nodes in a network to have multiple

community memberships. A standard framework to deal with

overlapping community detection is Matrix Factorization (MF).

Although all existing MF-based approaches use links as input to

identify communities, the relationship between links and com-

munities is still under-investigated. Most of the approaches only

view links as consequences of communities (community-to-link)

but fail to explore how nodes’ community memberships can be

represented by their linked neighbors (link-to-community). In

this chapter, we propose a Homophily-based Non-negative Ma-

trix Factorization (HNMF) to model both-sided relationships

between links and communities. From the community-to-link

perspective, we apply a preference-based pairwise function by

assuming that nodes with common communities have a higher

119
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probability to build links than those without common communi-

ties. From the link-to-community perspective, we propose a new

community representation learning with network embedding by

assuming that linked nodes have similar community representa-

tions. We conduct experiments on several real-world networks,

and the results show that our HNMF model can find communi-

ties with better quality compared with state-of-the-art baselines.

6.1 Introduction

A network is an abstraction representing relationships among

real-world objects. A typical pattern of a network is that there

are groups of nodes closely connected within the group but ra-

rely making connections with nodes outside the group. Such

groups are defined as communities [35]. The task of finding

such communities from complex networks is referred as com-

munity detection, an important research topic in web mining

for more than a decade. Usually, the more complex a network

is, the more challenging it will be to identify such communi-

ties. It is mainly due to the infeasibility of visualization and the

variety of community structure. Classic graph-partition-based

community detection approaches assume that a node belongs to

one and only one community, which contradicts with the fact

that a node often appears with multiple memberships. To relax

this unrealistic constraint, several new algorithms for overlap-

ping community detection have been proposed in recent years.
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A majority of existing methods for overlapping community

detection is based on Matrix Factorization (MF) [80, 101, 113],

which has been a standard technique in other areas such as re-

commender systems and natural language processing. The ba-

sic idea of MF here is to use low-dimensional latent vectors to

represent nodes’ features in networks. MF naturally fits into

overlapping community detection since the dimensions of facto-

rized latent vectors of nodes can be interpreted as their com-

munity memberships and hence are no longer latent. The MF-

based overlapping community detection can be summarized into

three steps: (1) assign the number of communities, (2) compute

the node-community weight matrix F through a learning ob-

jective, and (3) obtain the final community set according to F .

Here the most important part is the selection of learning ob-

jective. The simplest way is to recover the adjacency matrix of

original network A by F with minimum error, i.e., to minimize

||A− FF T || [80, 101]. However, an entry in A is a label (either

0 or 1) whereas an entry in F is a real value. The mismatch

between label and entry does not make sense. To fix it, recent

approaches such as [109] adopt generative objectives, which are

based on the intuition that a node is more likely to build a link

with another node inside its community than outside.

When we look into this intuition, it implicitly reveals that

links are the consequence of communities (community-to-link),

i.e., if two nodes share common communities, they will have a

higher probability to be linked. However, the investigation in
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reverse perspective (link-to-community) is largely ignored, i.e.,

whether a node’s community membership can be represented

by its neighbors’ community membership. Taking MF as an

example, the link-to-community perspective can be interpreted

as to learn a node’s community representation via the commu-

nity representations of its neighbors. Here we use the word ho-

mophily, the tendency of an individual node to associate with

similar others [98], to recapitulate both perspectives.

In this chapter, we propose a Homophily-based Non-negative

MF (HNMF) to explicitly model the effect of homophily from

both perspectives. From the community-to-link perspective, we

apply a pairwise objective function in the Preference-based Non-

negative MF (PNMF) model. From the link-to-community per-

spective, we develop a novel generative objective function based

on unsupervised representation learning and network embed-

ding. We combine both objective functions into a joint learning

objective, in which parameter learning can be easily parallelized

using asynchronous stochastic gradient descent. Through ex-

periments on various real-world datasets, we demonstrate that

our model can identify communities with better quality compa-

red with state-of-the-art baselines and can be applied to large

datasets.

Contributions. We summarize our main contribution of this

chapter as follows,

1. Our work is the first to explore the link-to-community side
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of homophily effect between links and communities in over-

lapping community detection. We justify it via observation

on real-world datasets with ground-truth communities;

2. We propose a new learning objective to model both per-

spectives of homophily within the non-negative MF frame-

work. Experiments show that our HNMF model can detect

overlapping communities with better quality.

6.2 Data Observation

To validate the link-to-community perspective, we observe two

large network datasets with ground-truth communities1 [108]

to see whether linked node pairs have more similar community

representations than non-linked ones. These two datasets are:

• Amazon: a products co-purchasing network based on Cu-

stomers Who Bought This Item Also Bought feature of the

Amazon website.

• DBLP: a collaboration network of research papers authors

in computer science;

Dataset |V | |E| |S| M A

Amazon 335k 926k 49k 100.0 14.83

DBLP 317k 1.0M 2.5k 429.8 2.57

Table 6.1: Data statistics.

1http://snap.stanford.edu/data/
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A simple statistics can be found in Table 6.1, where |V | is the

number of nodes, |E| is the number of links, |S| is the number

of ground-truth communities, M is the average number of nodes

per community, and A is the average community memberships

per node.

We exploit the average number of shared communities (SC)

and average Jaccard similarity of community memberships (JS)

for all linked node pairs as our measurements. They are calcu-

lated by

SC =
1

2|E|
∑
i∈V

∑
j∈N+(i)

|Ci ∩ Cj|, (6.1)

and

JS =
1

2|E|
∑
i∈V

∑
j∈N+(i)

|Ci ∩ Cj|
|Ci ∪ Cj|

, (6.2)

respectively, where N+(i) is the set of i’ neighbors and Ci re-

presents the set of communities containing i. We also draw ten

thousand random node pairs that do not need to be linked and

compute the same measurements for these pairs. The compari-

son results are shown in Table 6.2, where SC is the average num-

ber of shared communities per linked node pair, SCr is average

number of shared communities per random node pair, JS is

the average Jaccard similarity of community memberships per

linked node pair, and JSr is the average Jaccard similarity of

community memberships per random node pair. The huge gap

between linked ones (bold) and random ones (normal) reveals

that two linked nodes share much more communities than two



CHAPTER 6. A HOMOPHILY-BASED NMF MODEL 125

random nodes in average and thus strongly supports the neces-

sity of link-to-community perspective.

Dataset SC SCr JS JSr

Amazon 6.767 0.178 0.490 0.010

DBLP 2.078 0.009 0.347 0.002

Table 6.2: Data observations.

Moreover, we count the number of linked node pairs that

share a particular number of communities in Figure 6.1 and Fi-

gure 6.2. In both networks, the number of linked node pairs rea-

ches the peak near their average number of shared communities

for linked node pairs and starts to decrease when this number

continues to increase. This observation shows that average num-

ber of shared communities can be used to measure how strong

the link-to-community side of homophily effect is. For exam-

ple, we can claim that the link-to-community side of homophily

effect in Amazon is much stronger than that in DBLP.

6.3 A Homophily-based Non-negative Matrix

Factorization (HNMF) Model

In this section, we first introduce our model assumptions. Then

we formalize our HNMF model from both perspectives and com-

bine them into a unified model. In the end, we exhibit our para-

meter learning algorithm and discuss some more detailed issues.

All the notations are listed in Table 6.3.
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Figure 6.1: The number of linked node pairs sharing a particular number of

communities for Amazon.
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Figure 6.2: The number of linked node pairs sharing a particular number of

communities for DBLP.
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Notation Meaning

G(V,E) graph G (node set V , edge set E)

A ∈ {0, 1}|V |×|V | adjacency matrix of G

S the set of detected communities

Cu the set of communities containing u

F ∈ R|V |×|S| node-community weight matrix

Fu u’s community representation

N+(u) node set of u’s neighbors

N−(u) node set of u’s non-neighbors

Table 6.3: A summary of notations.

6.3.1 Model Assumption

Since we model homophily from both community-to-link and

link-to-community perspectives, our model assumption will be

introduced in two separate parts as well.

For the community-to-link perspective, the basic assumption

is that two nodes should have higher probability to build links

with each other if they share more communities, i.e.,

P(Au,i = 1) > P(Au,j = 1), if |Cu ∩ Ci| > |Cu ∩ Cj|. (6.3)

Since we apply the PNMF model for this part, we also need to

adopt the preference assumption, i.e.,

ru,i > ru,j, if i ∈ N+(u) and j ∈ N−u , (6.4)

where ru,i is the preference of node u on node i. It indicates that

a node prefers to build links with neighbors over non-neighbors.

For the link-to-community perspective, we assume that two

linked nodes are more similar than two non-linked nodes. It is
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formally denoted as:

simu,i > simu,j, if i ∈ N+(u) and j ∈ N−u , (6.5)

where simu,i is the similarity between node u and node i.

6.3.2 Modeling Community-to-link Perspective

We demonstrate our learning objective of community-to-link

perspective by following the formulation of the PNMF model.

For each node u, the objective of PNMF is to maximize the

likelihood of a pairwise preference order, which can be denoted

as P(>u). According to the preference assumption, logP(>u)

can be represented as:∑
i∈N+(u)

∑
j∈N−(u)

logP(i >u j). (6.6)

Following the core idea of the community-to-link assumption, we

use the community representations of node i, j, and k to model

P(i >u j). It can be written as

P(i >u j) = σ(F T
u (Fi − Fj)), (6.7)

where σ(·) is the sigmoid function σ(x) := 1
1+e−x . We choose

sigmoid function because it is a differentiable function which

can map any real number into the range between 0 and 1.

Based on Eq. (6.6) and Eq. (6.7), the learning objective of

the community-to-link perspective can be derived by summing
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up log-likelihoods of all the nodes, i.e.,

C(F ) :=
∑
u

∑
i∈N+(u)

∑
j∈N−(u)

logP(i >u j)

=
∑
u

∑
i∈N+(u)

∑
j∈N−(u)

log σ(F T
u (Fi − Fj)).

(6.8)

6.3.3 Modeling Link-to-community Perspective

Motivated by the success of Skip-Gram model [65] where word

representations are learned in terms of representations of sur-

rounding words in the same context, we here adopt a similar

idea to learn a node’s community representation from other no-

des in its local scope. In our case, for a node u, its local scope

is constrained within u’s’ neighbors. According to our link-to-

community assumption, u’s neighbors should have similar com-

munity representations with u. Formally, given a node u and

its neighbors, our learning objective for the link-to-community

perspective is to maximize the sum of log-likelihoods for a node

to represent its neighbors as follows,∑
i∈N+(u)

logP(i|u). (6.9)

Following the formulation in Skip-Gram, we apply a softmax

function to define P(i|u) as

P(i|u) =
exp(F ′Ti Fu)∑|V |
i′=1 exp(F ′Ti′Fu)

. (6.10)

Note that F ′ needs to be introduced into our model and should

be regarded as the latent community representation matrix which
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is corresponding to the ‘output’ vector representations. Like-

wise, our learning target F is corresponding to the ‘input’ vector

representations.

A computationally efficient approximation of the full softmax

function is Negative Sampling (NEG), which is simplified ver-

sion of Noise Contrastive Estimation (NCE) [38]. It substitutes

Eq. (6.10) with

P(i|u) = σ(F ′
T
i Fu) + hEi′∼PN−(u)

[
σ(−F ′Ti′Fu)

]
, (6.11)

where σ(·) is also the sigmoid function, h is the number of ne-

gative samples, and PN−(u) is the unigram distribution raised to

the power 3
4 .

Thus, we can obtain the learning objective of the link-to-

community perspective as follows,

L(F, F ′) :=
∑
u

∑
i∈N+(u)

(
log σ(F ′

T
i Fu)

+ hEi′∼PN−(u)

[
log σ(−F ′Ti′Fu)

])
.

(6.12)

6.3.4 The Unified Model

Now we can combine the two perspectives, i.e., Eq. (6.8) and

Eq. (6.12), into one unified model. The final learning objective
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of our HNMF model is to maximize

U(F, F ′) := C(F ) + βL(F, F ′)− λR(F )

=
∑
u

∑
i∈N+(u)

( ∑
j∈N−(u)

log σ(F T
u (Fi − Fj))

+ β log σ(F ′
T
i Fu) + βhEi′∼PN−(u)

[
log σ(−F ′Ti′Fu)

])
− λ||F ||F ,

(6.13)

where R(F ) is a regularization term, where we employ the Fro-

benius norm of F , β is the homophily coefficient used to adjust

the importance of one perspective compared with the other, and

λ is the regularization coefficient.

6.3.5 Parameter Learning

Considering time efficiency and the non-negativity constraint,

we use projected stochastic gradient descent [55, 58] as our pa-

rameter learning method. It updates the corresponding parame-

ters whenever a single sample or a small batch of samples arrive

and maps the parameters back to the nearest point in the pro-

jected space, in our case, the non-negative space. The update

rule for a parameter Θ is

Θt+1 = max{Θt + α
∂U
∂Θ

, 0}, (6.14)

where α is the learning rate.

The whole process of our learning method is shown in Algo-

rithm 5. Here we discuss some of the steps in more detail.
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Input: A, the adjacency matrix of original graph.

Output: F , the node-community weight matrix.

Initialization:

Initialize F (uniformly at random);

for each node u do
Construct N+(u);

end

Training:

Compute initial loss;

repeat

for each node u do
Uniformly sample node i from N+(u);

Community-to-link:

Uniformly sample node j from N−(u)

Fu = Fu + α ∂C
∂Fu

;

Fi = Fi + α ∂C
∂Fi

;

Fj = Fj + α ∂C
∂Fj

;

Link-to-community:

Sample h negative nodes i′ ∼ PN−(u);

Fu = Fu + αβ ∂L
∂Fu

; F ′i = F ′i + αβ ∂L
∂F ′i

;

for each node i′ do

F ′i′ = F ′i′ + αβ ∂L
∂F ′i′

;

end

Regularization and Projection:

Fu = max{Fu − αλ ∂R
∂Fu

, 0};
Fi = max{Fi − αλ ∂R

∂Fi
, 0};

Fj = max{Fj − αλ ∂R
∂Fj

, 0};

end

Compute loss;

until Convergence or max iter is reached ;

Algorithm 5: Overlapping community detection using HNMF
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• Initialization. We initialize each entry of F to be a random

real value between 0 and 1 divided by the number of com-

munities, i.e., the number of columns in F .

• Negative sampling. For the negative sample j from N−(u),

we keep sampling j from V until j /∈ N+(u).

• Convergence criterion. We randomly sample a number of

triples (u, i, j) and use them to compute the initial loss on

according to Eq. (6.13) without considering the regulariza-

tion term. After each iteration, we repeat the same process

with a different set of samples and stop when the difference

between the current loss and previous loss is less than a

small value, say ε, of the initial loss.

• Setting the number of communities. We adopt a cross-

validation paradigm by reserving 10% of nodes as a valida-

tion set. Since the computational cost on the validation set

is still huge, sampling will be used as well.

6.3.6 Other Issues

Scalability. To scale up our HNMF model on large networks,

we employ an asynchronous version of stochastic gradient des-

cent to update the parameters. Since most updates only modify

a small part of all the parameters, the chance that a parame-

ter is simultaneously being updated by more than one worker is

very small. Thus, a lock-free approach [84] can be adopted to
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parallelize our parameter learning process. We will show in the

experiments that the convergence speed is satisfactory.

Community membership threshold. After we obtain the

node-community weight matrix F , we still need to figure out

community memberships for each node. A standard solution is

to set a threshold and discard all the nodes whose weights are

below the threshold. Here we employ the same approach as the

PNMF model.

6.4 Experiments

In this section, we compare our HNMF model with six baseli-

nes on various real-world datasets, including large networks with

ground-truth communities. We measure the quality of commu-

nities with two metrics, modularity and F1 score. Our experi-

mental procedures and results are described as follows.

6.4.1 Data Description

Apart from the two large networks with ground-truth commu-

nities introduced in Section 6.2, we also use six benchmark net-

works collected by Newman2 as our datasets. These networks

are relatively small and have no ground-truth communities. We

list the basic information of these datasets in Table 6.4, where

|V | is the number of nodes, |E| is the number of links.

2http://www-personal.umich.edu/ mejn/netdata/
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Dataset |V | |E|

Dolphins 62 159

Les Misérables 77 254

Books about US politics 105 441

Word adjacencies 112 425

American college football 115 613

High-energy theory 8,361 15,751

Table 6.4: Statistics of six Newman’s datasets.

6.4.2 Experimental Setup

Comparison methods. We select two local approaches, na-

mely Sequential Clique Percolation (SCP) [49] and Demon [18],

and four state-of-the-art global approaches, namely BNMF [80],

BNMTF [113], BigCLAM [109], and PNMF, to compare with

our HNMF model.

Evaluation metrics. We use modularity for datasets wit-

hout ground-truth communities and F1 score for datasets with

ground-truth communities.

• Modularity. The well-known modularity [71] Q is defined

as

Q =
1

2|E|
∑
u,v∈V

(Au,v −
d(u)d(v)

2|E|
)|Cu ∪ Cv|,

where d(u) is u’s degree. We can see that a node pair (u, v)

positively contributes to modularity if they are linked and

negatively contributes otherwise.

• F1 score. F1 score of a detected community Si is defined
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as the harmonic mean of

precision(Si) = max
j

|Ŝj
⋂
Si|

|Ŝj|

and

recall(Si) = max
j

|Ŝj
⋂
Si|

|Si|
,

where Ŝj is one of ground-truth communities. The overall

F1 score of the set of detected communities S is the average

F1 score of all communities in S.

6.4.3 Results

Results on Newman’s networks in terms of modularity are shown

in Table 6.5. Despite that PNMF already has a large impro-

vement over other baselines, our HNMF model further out-

performs PNMF on all datasets, which reflects the significance

of the link-to-community perspective in overlapping community

detection.

Results on two large networks in terms of the F1 score are

shown in Table 6.6. We notice that the improvement on Amazon

is much larger than that of DBLP. Recall our claim in data ob-

servation that the link-to-community side of homophily effect in

Amazon is much stronger than that in DBLP. This explains such

difference of improvement between these two datasets. With

asynchronous stochastic gradient descent, the running time of

our learning algorithm is about 4 hours for Amazon and about
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6 hours for DBLP on a computer with a Xeon 24-core 2.60GHz

CPU and 128GB memory.

Dataset Demon BigCLAM PNMF HNMF

Amazon 0.082 0.044 0.042 0.122

DBLP 0.102 0.039 0.098 0.104

Table 6.6: Experimental results on two large networks in terms of F1 score.

Figure 6.3 illustrates the convergence speed of our learning

algorithm on Amazon and DBLP. Since our computation of loss

employs a global sampling strategy, we can directly sort the

losses from all workers according to the time sequence. We set

the ε in Section 4.5 to be 0.001. We can see that our learning

algorithm can converge within a small number of iterations.
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Figure 6.3: Convergence speed of our learning algorithm.
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6.5 Conclusion

In this chapter, we propose a Homophily-based Non-negative Ma-

trix Factorization model to capture both sides of homophily ef-

fect for overlapping community detection. Our unified learning

objective is a combination of a preference-based pair-wise lear-

ning objective for the community-to-link perspective and a gene-

rative community representation learning with network embed-

ding for the link-to-community perspective. We adopt an asyn-

chronous stochastic gradient descent to learn model parameters

efficiently. Experiments on real-world networks show that this

model can indeed improve the quality of detected overlapping

communities.

2 End of chapter.



Chapter 7

Conclusion

In this chapter, we summarize the main contributions of this

thesis and discuss several potential research directions.

7.1 Summary

This thesis mainly focus on the matrix factorization framework

for overlapping community detection. We propose several non-

negative matrix factorization models with novel learning objecti-

ves which incorporate various concepts including link preference,

locality, mutual density, and homophily.

In Chapter 3, we present a Preference-based Non-negative

Matrix Factorization (PNMF) model which incorporates im-

plicit link preference information into model formulation. We

make a intuitive assumption that a node prefers its neighbors

than its “non-neighbors” and thus build a novel learning ob-

jective of maximizing the likelihood of a preference order for

each node. Our PNMF model eliminates indiscriminate pen-

140
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alty issue caused by on pairs inside and between communities.

We employ stochastic gradient descent with bootstrap sampling

to learn the node-community membership matrix. By applying

our PNMF model on several real-world datasets both with and

without ground-truth communities, we show that our PNMF

model outperforms state-of-art approaches in multiple metrics

and is scalable for large datasets.

In Chapter 4, we present a Locality-based Non-negative Ma-

trix Factorization (LNMF) model to further improve the per-

formance of the PNMF model. Same as the PNMF model,

our LNMF model is also based on a pairwise preference lear-

ning scheme. The main contribution is that we exploit local

area around a node, formally defined as a k-degree local net-

work, to enhance the previous preference system. To be speci-

fic, we extend the two-level preference system of PNMF which

only distinguish neighbors and non-neighbors to a three-level

preference system which further splits non-neighbors into local

non-neighbors and distant non-neighbors. Experiments on se-

veral real-world datasets including large ones with ground-truth

communities illustrate the effectiveness of this extension.

In Chapter 5, we present a Mutual Density based Non-negative

Matrix Factorization (MD-NMF) model which incorporates mu-

tual density to replace link existence as the indicator of commu-

nity membership similarity. The formulation of our MD-NMF

model is based on empirical observations that mutual density

correlates with the cosine similarity of community membership.
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A novel learning objective is proposed by maximizing the likeli-

hood that each node has a more similar community membership

with its acquaintances than its strangers. Experiment results on

multiple real-world datasets show that our MD-NMF model out-

performs baseline methods including those using link existence

as the indicator of community membership similarity.

Finally, in Chapter 6, we present a Homophily-based Non-

negative Matrix Factorization (HNMF) model to capture both

sides of homophily effect. We propose a unified learning ob-

jective which combines a preference-based pair-wise learning ob-

jective for the community-to-link perspective and a generative

community representation learning with network embedding for

the link-to-community perspective. We adopt an asynchronous

stochastic gradient descent to learn model parameters in paral-

lel. Experiments on various real-world networks show that our

HNMF model successfully captures the homophily effect.

7.2 Future Work

Although the LNMF model is already an extension of our PNMF

model, we can further generalize the preference system from

three-level to an n-level. However, according to the six degrees

of separation theory that all living things and everything else

in the world are six or fewer steps away from each other, it is

meaningless to set n larger than six. Also, a natural extension of

our sampling strategy employed in the LNMF model suffers from
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scalability issue. For each node, processing the whole network

to save node sets of all preference levels in advance is equal to a

breadth-first search starting from this node, which is too time-

consuming for large networks.

The MD-NMF model can be combined with the PNMF mo-

del so that the indicator of mutual density and the indicator

of link existence together can reveal more comprehensive prefe-

rences for a node. For example, we can simply unite learning

objectives of these two models in a linear joint model with hyper-

parameters controlling the weights.

The HNMF model employs the PNMF model to represent

the community-to-link perspective. In fact, the PNMF model

can be replaced by several alternatives, including our LNMF

model and the BigClam model proposed by Yang et al. [109].

Comparison among different choices may give interesting insig-

hts on both datasets and models.

2 End of chapter.
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Sequential algorithm for fast clique percolation. Physical

Review E, 78(2):026109, 2008.

[50] A. Lancichinetti and S. Fortunato. Community detection

algorithms: a comparative analysis. Physical review E,

80(5):056117, 2009.

[51] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting

the overlapping and hierarchical community structure in



BIBLIOGRAPHY 152

complex networks. New Journal of Physics, 11(3):033015,

2009.

[52] A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. Fortu-

nato, et al. Finding statistically significant communities

in networks. PloS one, 6(4):e18961, 2011.
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