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Abstract of thesis entitled:

A Computational Framework for Question Processing in Com-

munity Question Answering Services

Submitted by LI, Baichuan

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in February 2014

Community Question Answering (CQA) services, such as Yahoo! An-

swers and Baidu Zhidao, provide a platform for a great number of

users to ask and answer for their own needs. In recent years, the ef-

ficiency of CQA services for question solving and knowledge learn-

ing, however, is challenged by a sharp increase of questions raised

in the communities. To facilitate answerers access to proper ques-

tions and help askers get information more efficiently, in this thesis

we propose a computational framework for question processing in

CQA services.

The framework consists of three components: popularity anal-

ysis and prediction, routing, and structuralization. The first com-

ponent analyzes the factors affecting question popularity, and ob-

serves that the interaction of users and topics leads to the difference

of question popularity. Based on the findings, we propose a mutual

reinforcement-based label propagation algorithm to predict question

popularity using features of question texts and asker profiles. Em-

pirical results demonstrate that our algorithm is more effective in

distinguishing high-popularity questions from low-popularity ones

than other state-of-the-art baselines.

The second component aims to route new questions to potential

answerers in CQA services. The proposed question routing (QR)

framework considers both answerer expertise and answerer avail-
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ability. To estimate answerer expertise, we propose three models.

The first one is derived from the query likelihood language model,

and the latter two models utilize the answer quality to refine the

first model. To estimate answerer availability, we employ an autore-

gressive model. Experimental results demonstrate that leveraging

answer quality can greatly improve the performance of QR. In addi-

tion, utilizing similar answerers’ answer quality on similar questions

provides more accurate expertise estimation and thus gives better

QR performance. Moreover, answerer availability estimation fur-

ther boosts the performance of QR.

Expertise estimation plays a key role in QR. However, current

approaches employ full profiles to estimate all answerers’ expertise,

which is ineffective and time-consuming. To address this problem,

we construct category-answerer indexes for filtering irrelevant an-

swerers and develop category-sensitive language models for esti-

mating answerer expertise. Experimental results show that: first,

category-answerer indexes produce a much shorter list of relevant

answerers to be routed, with computational costs substantially re-

duced; second, category-sensitive language models obtain more ac-

curate expertise estimation relative to state-of-the-art baselines.

In the third component, we propose a novel hierarchical entity-

based approach to structuralize questions in CQA services. Tradi-

tional list-based organization of questions is not effective for con-

tent browsing and knowledge learning due to large volume of docu-

ments. To address this problem, we utilize a large-scale entity repos-

itory, and construct a three-step framework to structuralize ques-

tions in “cluster entity trees (CETs)”. Experimental results show

the effectiveness of the framework in constructing CET. We fur-

ther evaluate the performance of CET on knowledge organization

from both user and system aspects. From a user aspect, our user

study demonstrates that, with CET-based organization, users per-

form significantly better in knowledge learning than using list-based

approach. From a system aspect, CET substantially boosts the per-
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formance on question search through re-ranking.

In summary, this thesis contributes both a conceptual framework

and an empirical foundation to question processing in CQA services.
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Chapter 1

Introduction

1.1 Overview

Since the inception of forums for asking and answering questions,

Community Question Answering (CQA) services have been provid-

ing users with web platforms to obtain useful information, such

as Yahoo! Answers1, Baidu Zhidao2, and Quora3. For instance,

lunched on 2005, Yahoo! Answers has become the most popular

CQA portal in the world, with 300 million questions asked as of

June 20124. Recently, a novel CQA site Quora [115, 142], which in-

tegrates a social network into its structure, has grown dramatically.

Between June 2011 and June 2012, it saw a 350 percent growth in

terms of total unique visitors. By June 2012, Quora has garnered

over 1.5 million unique visitors per month5 despite its short history

(Quora was launched in June 2009).

CQA services are alternatives to question answering (QA) sys-

tems [147, 49, 53] and web search engines [15, 16]. QA aims to

build systems that can automatically answer questions in forms of

1http://answers.yahoo.com/
2http://zhidao.baidu.com/
3http://www.quora.com/
4http://searchengineland.com/yahoo-answers-hits-300-million-questions-but-qa-activity-is-

declining-127314/
5http://www.digitaltrends.com/social-media/silently-but-surely-quora-is-growing-rapidly-

thanks-to-google/

1
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Table 1.1: Comparison between CQA and QA.

Aspect CQA QA

Answer provider registered users machine

Answer speed unsure usually several seconds

Answer quality varied high for objective questions

Question search support usually not support

Question browsing support usually not support

Question organization

semi-structured usually store questions

category hierarchies in structured

or folksonomies knowledge base

natural languages. Traditional QA systems usually utilize structured

or unstructured databases to construct answers of restricted-domain

questions [27, 104] or open-domain questions [119, 103]. How-

ever, an ideal open-domain QA system is difficult to achieve due

to the varieties of question types and topics, the large-scale back-

ground knowledge, etc. With the development of the Internet, web

search engines are more widely accepted than QA systems due to

their prompt and precise searching results, although they merely

provide relevant documents rather than answers. Search engines

like Google6 and Bing7 are able to deal with simple and objective

queries, but cannot answer complicated and subjective information

needs [81], like seeking for opinions and recommendations.

CQA systems thus aim to solve subjective, specific, and open-

ended questions [89, 128]. Different from traditional QA systems,

CQA systems allow users to answer questions of other users (see the

comparison between CQA and QA in Table 1.1).

In recent years, the efficiency of CQA services, however, is chal-

lenged by a sharp increase of questions raised in the communities.

6http://www.google.com/
7http://www.bing.com/
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Figure 1.1: The computational framework for question processing in CQA ser-

vices.

Such increasing amount of questions have thus influenced access of

answerers to their appropriate questions, with the process of ques-

tion answering being hindered [41]. Moreover, questions in CQA

services are organized through a list structure under a category hier-

archy [100, 156], which is ineffective for information browsing and

knowledge learning [71]. To facilitate answerers access to proper

questions and help askers obtain information more effectively, we

propose a computational framework for question processing in CQA

services.

Figure 1.1 shows the framework, which consists of three compo-

nents: popularity analysis and prediction, routing, and structuraliza-

tion. As the key part of the framework, question routing [69] refers

to routing newly posted questions to potential answerers; the ap-

propriateness of potential answerers is estimated based on archives

of their previously answered questions. By routing, new questions
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are directly presented to answerers who are available and have cor-

responding expertise, and the wait time of askers is reduced. On

the other hand, answerers no longer need to browse and find ques-

tions to answer, but receive recommended questions. Therefore, the

efficiency of QA is improved. Before routing, the framework first

analyzes the factors affecting question popularity (so called “so-

cial quality” in [68], QP hereafter), and predicts whether a question

would receive answers regarding to both quantity and speed. Af-

ter routing, questions obtain answers more efficiently and become

solved. Solved questions are valuable for future users to seek in-

formation. To facilitate users on browsing questions and learning

knowledge, this framework then includes a question structuraliza-

tion component, which structuralizes questions (and their answers)

with a hierarchical entity-based approach.

Under the question processing framework, we first conduct two

studies to investigate QP in CQA services. In the first study, we

apply statistical analysis to find the factors influencing QP. In the

second study, we propose a mutual reinforcement-based label prop-

agation algorithm to predict QP using features of question texts and

asker profiles.

To promote the efficiency of question answering, in the second

work we propose a question routing (QR) framework to reduce askers’

wait time and improve user satisfaction. The concept of QR contains

two meanings: (1) questions are routed to the “right” answerers who

can provide high quality answers; and (2) answerers who receive the

routed question must be able to provide quick response.

The whole process of QR is as follows. For a question to be

routed, we first extract all answerers in the portal and build their an-

swering performance profiles. Then we estimate each candidate’s

expertise on the routed question based on his performance profile.

Meanwhile, the availability of answerers is estimated based on re-

cent activities. Finally, we rank all the answerers based on both

expertise and availability.
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The essence of QR rests on the estimation of answerer exper-

tise (expertise estimation, hereafter) in routing questions. Volumes

of studies have been conducted regarding expertise estimation, in-

cluding the Query Likelihood Language Model (QLLM) [84], the

Cluster-based Language Model (CBLM) [167], and a mixture of La-

tent Dirichlet Allocation (LDA) [10] and QLLM [80]. However, two

problems of applying those models to expertise estimation are noted:

• Irrelevant answerers: For all answerers, the expertise has been

estimated for QR, even to answerers without any experience of

routed questions;

• Irrelevant questions: For an answerer, a complete set of ques-

tions the answerer has answered is utilized in the models, al-

though a certain amount of answered questions might be irrel-

evant to questions to be routed.

As a result, the irrelevant answerers and questions would increase

computational costs, rather than contribute to accuracies of expertise

estimation.

In CQA services, askers must choose a category for the question

they asked. Categories would allow much latitude in filtering irrel-

evant answerers among all answerers, together with screening irrel-

evant questions of an answerer to enhance the efficiency of exper-

tise estimation. Cao et al. [19, 21] confirmed a significant improve-

ment of question retrieval due to incorporating question category

in various retrieval models (i.e., Vector Space Model (VSM) [126],

BM25 [123], QLLM [84], Translation Model [56], and Translation-

based LM [150]). To date, few attempts, however, have been made

regarding category information in studies of QR.

The third work is designed to fill the gap. In this work, we uti-

lize question categories to filter irrelevant answerers among all an-

swerers and irrelevant questions in profile of an answerer for exper-

tise estimation. More specifically, it constructs category-answerer
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indexes for filtering irrelevant answerers, and develops category-

sensitive LMs for estimating answerer expertise. By incorporating

question category, an improvement in efficiency of routing questions

is expected including two aspects:

• Higher accuracies: category-sensitive LMs will produce more

accurate results of expertise estimation for routing questions as

only relevant questions in profile of an answerer are employed.

• Lower costs: computational costs for routing questions will be

reduced due to the shortened list of answerers with purified

answer profiles used for expertise estimation.

At present, questions in CQA services are organized in a list

structure with extra information (e.g., category hierarchies in Ya-

hoo! Answers and social tags in Quora). This “list-of-content” (list-

based approach) is simple and straightforward, but ineffective for

browsing and knowledge learning. For example, a user who plans

a trip to Hong Kong would like to discover all aspects of this city,

like transportation, accommodation, food, etc. In this scenario, he

may browse some relevant categories like “Travel:Hong Kong” to

get useful information. He may also issue a query like “travel in

Hong Kong” to search relevant questions. However, both browsing

and searching provide the user a list of relevant contents, not the di-

rect knowledge. Thus, the user must read these contents, understand

them, classify them into various topics, and gain valuable knowledge

himself. Obviously, it is ineffective and time-consuming.

The above problem calls for a new approach to structuralize ques-

tions, which allows users to browse information and seek knowledge

more effectively. Traditionally, we can utilize topic models [10] or

social tagging [43] to structuralize questions. However, for topic

models, it is not easy to control the granularity of topics, and it is

hard for users to interpret a topic only based on the multinomial dis-

tribution [98]. For social tagging, it is not applicable in many sites

and has the sparsity problem [132]. Thus, both topic models and
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social tagging are not suitable for structuralizing questions in CQA

services.

To address the above issues, in the fourth work we propose a

novel hierarchical entity-based approach, known as “cluster entity

tree” or CET, to structuralize questions in CQA services by leverag-

ing an existing large-scale entity repository. A CET is a tree struc-

ture based on entity co-occurrence. In addition, topic-coherent ques-

tions are grouped to the same cluster on each layer of a CET. In this

work, we propose a three-step framework to construct CETs from

question texts, namely entity extraction, tree construction, and hier-

archical entity clustering. By utilizing a large-scale entity repository,

CET avoids the granularity, interpretation, and sparsity problems.

Entity repositories like Freebase8 provide a large number of named

entities across various pre-defined topics, which avoid the granular-

ity and sparsity problems. In addition, they usually give descriptions

of entities, which prevent the interpretation problem.

Empirical results validate the effectiveness of the framework in

constructing CET. We further evaluate the performance of CET on

knowledge organization from both user and system aspects. Our

user study demonstrates that, with CET-based organization, users

perform significantly better in knowledge learning than using the

list-based approach. In addition, CET substantially boosts system

performance on question retrieval through re-ranking.

1.2 Thesis Contribution

The main contributions of this thesis are described as follows:

1. Analyzing and Predicting Question Popularity

We conduct the first study on analyzing the factors of QP and

observe that the interaction between askers and topics results

in the differences of QP. Based on our observations, we fur-

8http://www.freebase.com/



CHAPTER 1. INTRODUCTION 8

ther propose a Mutual Reinforcement-based Label Propaga-

tion (MRLP) algorithm to predict QP. Our experimental results

demonstrate the effectiveness of our algorithm in distinguish-

ing high-popularity questions from low-popularity ones.

2. Question Routing

We introduce the concept of QR in CQA services, which routes

new questions to appropriate answerers who are most likely to

provide answers in a short period of time. Our contributions in-

clude: (1) Designing a QR framework which considers both an-

swerer expertise and answerer availability; (2) Proposing three

models to estimate answerer expertise under the framework;

and (3) Demonstrating the effectiveness of our QR framework

through empirical studies.

3. Routing with Category Information

We propose a category-sensitive approach for QR. The incor-

poration of question category is designed to involve filtering ir-

relevant answerers and estimating answerer expertise for rout-

ing questions to potential answerers. For filtering irrelevant

answerers, we construct category-answerer indexes; for esti-

mating answerer expertise, we develop category-sensitive LMs.

We conduct intensive experiments, and results demonstrate that

higher accuracies of routing questions with lower computa-

tional costs are achieved, relative to traditional query likelihood

language model as well as state-of-the-art baselines.

4. Questions Structuralization with Hierarchical Entity Tree

We propose a hierarchical entity-based approach for structural-

izing questions in CQA services. By using a large-scale entity

repository, we design a three-step framework to organize ques-

tions in a novel hierarchical structure called “cluster entity tree

(CET)”. With Yahoo! Answers as a test case, we conduct exper-

iments and the results show the effectiveness of our framework

in constructing CET. We further evaluate the performance of
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CET on question structuralization in both user and system as-

pects. From a user aspect, our user study demonstrates that,

with CET-based structure, users perform significantly better in

knowledge learning than using traditional list-based approach.

From a system aspect, CET substantially boosts the perfor-

mance of traditional information retrieval models.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2

In this chapter, we first review some background knowledge

of CQA services. We then present related work in question

processing and answer processing.

• Chapter 3

In this chapter, we analyze the factors affecting QP and pro-

pose a graph-based approach to predict QP, which involves

three dimensions: (1) user attention; (2) answering attempt;

and (3) best answer. We first present the experimental data and

the ground truth setting. Two studies are then described. In

the first study, we examine the effects of askers and topics on

QP. We observe that topics themselves cannot determine QP,

and the interaction between askers and topics is mostly related

to QP. This observation motivates us to design a novel algo-

rithm to predict QP. In the second study, we propose a graph-

based algorithm called “Mutual Reinforcement Label Propaga-

tion” (MRLP) for QP prediction. Because MRLP is an iterative

system, we further prove the convergence of MRLP. Empirical

studies on Yahoo! Answers data demonstrate the superiority

of MRLP over other state-of-the-art methods. This chapter is

based on our work in [68].
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• Chapter 4

In this chapter, we propose a question routing framework to

recommend new questions to potential answerers. The frame-

work consists of four components: (1) performance profiling;

(2) expertise estimation; (3) availability estimation; and (4) an-

swerer ranking. For a new question, we first identify all an-

swerers and build their answering performance profiles. Then,

we estimate each candidate’s expertise on the routed question

based on his performance profile. We estimate answerer exper-

tise from two aspects: with and without answer quality. When

incorporating answer quality, we propose two models. The

Basic Model assumes the answerer’s answer quality on a new

question is the weighted average of similar questions’ answer

quality he answered previously. Meanwhile, the Smoothed Model

further utilizes similar answerers to smooth answer quality es-

timation. During the question-user matching, we propose an

autoregressive model to estimate answerer availability. Finally,

all answerers are ranked according to their expertise scores and

availability scores. We conduct experiments with Yahoo! An-

swers data set, and the results demonstrate the effectiveness of

our framework. In addition, utilizing similar answerers’ answer

quality on similar questions provides a more accurate exper-

tise estimation, and obtains better QR performance. Further-

more, availability estimation boosts the performance of QR.

This chapter is based on our work in [69].

• Chapter 5

This chapter focuses on incorporating category information in

QR. Traditional question routing approaches usually take the

complete set of answerers as candidates, even many of them

are not familiar with routed questions. In addition, these meth-

ods utilize all answered questions as user profiles, although a

certain amount of answered questions might be irrelevant to

questions to be routed. To solve this problem, we utilize cate-
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gory information provided in CQA services to sift out irrelevant

answerers, and make better expertise estimation. To filter irrel-

evant answerers, we build two category-answerer indexes. To

better estimate answerer expertise, we propose two category-

sensitive language models. The first model utilizes the routed

question’ category to construct language models within that

particular category. The second model incorporates profiles of

similar categories to solve the sparsity problem and improve es-

timation accuracy. Experiments with large-scale data sets pro-

vide empirical evidence to validate the application of category

to QR. This chapter is based on our work in [70].

• Chapter 6

In this chapter, we propose a novel hierarchical entity-based ap-

proach, known as “cluster entity tree (CET)”, to structuralize

questions by leveraging an existing large-scale entity reposi-

tory. To construct CETs, we design a three-step framework:

entity extraction, tree construction, and hierarchical entity clus-

tering. Then, we conduct a user study to investigate the influ-

ence of CET on question browsing and knowledge learning.

In addition, we extend CET to question retrieval, and propose

a CET-based question re-ranking algorithm. We perform re-

ranking with Yahoo! Answers data and report that CET-based

re-ranking substantially improves the performance of both the

VSM and the QLLM. This chapter is based on our work in [71].

• Chapter 7

The last chapter summarizes this thesis and raises some future

directions that can be further explored.

2 End of chapter.



Chapter 2

Background Review

2.1 Yahoo! Answers

Launched on 2005, Yahoo! Answers has become the most popular

CQA portal among the world, with 300 million questions asked as

of June 2012. On average, two questions are asked and six are an-

swered every second.

In Yahoo! Answers, questions are organized through a category

hierarchy, which consists of 26 top categories and over 1,000 leaf

categories. These categories provide shadow semantics to the cor-

responding questions and answers in these categories, and facilitate

question browsing and searching. When a user asks a question, he

has to select the specific leaf category that the question belongs to.

The life of a question in Yahoo! Answers is shown in Figure 2.1.

When a new question is posted, its status becomes Open and this

status will remain for four days. The time period can be extended

by the asker upon expiration. During the Open period, other users

can post their answers to this question. If no answer is obtained, it

will expire and be automatically deleted. If the question receives at

least one answer, the asker is allowed to select one answer as the

best answer, starting from one hour after obtaining the first answer,

or he can ask the community to vote for best answer. In the first case,

the question life ends with changing to the Resolved status. In the

second case, however, the question’s status turns to In Voting, which

12
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Figure 2.1: A question’s life in Yahoo! Answers.

means all registered users have the right to vote for best answer.

At the end of this phrase the answer with most votes would be se-

lected as best answer, and the question’s status would consequently

becomes Resolved.

2.2 Studies in CQA Services

Most studies of CQA services focus on question and answering pro-

cessing, which aim to achieve effective and efficient QA. As shown

in Figure 2.2, these studies include:

1. Question Retrieval. It finds semantically equivalent questions

to users’ new questions (queries) [56, 163, 121]. Question re-

trieval saves users’ time if their questions have been asked and

well solved.

2. Question Classification. It classifies questions based on vari-
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ous properties, such as urgency [90], subjectivity [73, 72, 166],

quality [63, 30, 28], and topics [23]. Question classification

can be utilized for improving question retrieval. It also helps to

understand user intent, which enables a CQA system to provide

better services.

3. Question Routing. It routes new questions to appropriate an-

swerers [58, 112, 148]. In some literatures [139], it is also

called question recommendation. In CQA services, questions

are passively listed, and may not be seen by potential answer-

ers. Question routing seeks potential answerers actively when

new questions are posted, which makes QA more effective.

4. Answer Quality Evaluation. It analyzes the features that re-

lated to answer quality, and utilizes them to predict answer

quality [140, 42, 26]. Sometimes, predicting the best answer

is the main propose of this study [11, 80]. As any registered

users can answer any open questions, the quality of answers

varies. Answer quality evaluation helps both the system and

the askers to judge answer quality and select the best answer.

5. Answer Summarization. It summarizes all received answers

to a complete, structured, succinct, and quality answer [85,

24, 113]. For some subjective questions such as seeking for

opinions or asking for recommendations, answerers may pro-

vide various answers. It would be inefficient for askers to look

through answers if the questions obtain many answers. There-

fore, categorizing and summarizing answers will help askers

get information more effectively.

In addition, there are user-based research topics which focus on

expert finding [160, 92], user analysis [44, 1], and user satisfaction

prediction [87, 88, 81]. Common approaches for expert finding in-

clude language models [84], link analysis [59, 109], Bayesian infor-

mation criterion [14], competition-based models [78], graph-based
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Figure 2.2: Research topics of CQA services

models [153, 17], Gaussian classification models [111], and hybrid

approaches [60, 149, 161]. Studies on user analysis include user

classification [39], collaboration analysis [40], together with activity

and behavior analysis [124, 99]. Moreover, some studies focus on

system level analysis, such as community [86, 106, 74, 75], system

architecture [134, 51, 108], reputation system [105], sentiment [65],

and information quality [35].

In the following, we review related work on the listed five topics

in turn. Although user-based research is not explicitly covered, some

issues such as expert finding and user analysis are implicitly con-

tained in the above topics. For instance, question routing includes

expertise estimation [69, 70], and some answer quality evaluation

approaches utilize user analysis to enhance prediction [146, 42].
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Table 2.1: Basic models for question retrieval.

Model Paper

Vector space model [32, 19]

Okapi BM25 model [56, 19]

Query likelihood language model [56, 32, 21, 19]

Translation model [32, 150, 19]

Translation-based language model [150, 19]

2.3 Question Retrieval

In CQA services, question retrieval means finding semantically equiv-

alent questions to users’ new queries. Here queries can be either

keywords or natural questions. Various information retrieval models

have been applied on question retrieval, as summarized in Table 2.1.

In the following, we first briefly introduce these basic models (Sec-

tion 2.3.1). Then, we summarize some advanced approaches which

incorporate category information (Section 2.3.2), syntactic and se-

mantic information (Section 2.3.3), question segmentation (Section

2.3.4), and answer quality (Section 2.3.5) for retrieving similar ques-

tions. For consistency, we use the notations listed in Table 2.2 through-

out this section.

2.3.1 Basic Models

Vector Space Model (VSM). The vector space model calculates

the cosine similarity between a query and a question, and has been

widely applied for question retrieval [32, 19]. In one popular varia-

tion of this model [172], the similarity score of query q and question

d is calculated as follows:

Sim
V SM

(q, d) =

∑

t∈q∩dwq,twd,t

WqWd
, (2.1)
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Table 2.2: Notations used in Section 2.3.

Symbol Description

q a query

d a question

a an answer

t a term

Coll the whole collection of questions

N the number of questions in the whole collection

dft the number of questions containing the term t

tft,q the frequency of term t in q

tft,d the frequency of term t in d

tft,Coll the frequency of term t in the whole collection

Sim(q, d) similarity score between a query q and a question d

where

wq,t = ln(1 +
N

dft
), (2.2)

wd,t = 1 + ln(tft,d), (2.3)

Wq =

√

∑

t

w2
q,t, (2.4)

Wd =

√

∑

t

w2
d,t. (2.5)

Note that wq,t captures the IDF (inverse document frequency) of

term t in the collection, and wd,t captures the TF (term frequency)

of term t in d. Since Wq is a constant for a given query, it can be

neglected without affecting the final rankings.

Okapi BM25 Model. One shortcoming of the vector space model

is that it favors short questions. As shown in Eq. (2.1), short ques-

tions with small Wd will get higher similarity scores when other con-

ditions are the same. To overcome this problem, the Okapi BM25
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model takes into account question length [56]. The following presents

a widely used version of Okapi BM25 model [172, 19].

Sim
BM25

(q, d) =
∑

t∈q∩d

wq,twd,t, (2.6)

where

wq,t = ln(
N − dft + 0.5

dft + 0.5
)
(k3 + 1)tft,q
k3 + tft,q

, (2.7)

wd,t =
(k1 + 1)tft,d
Kd + tft,d

, (2.8)

Kd = k1(1− b+ b
Wd

WA
). (2.9)

In the above equations, k1, b, and k3 are parameters. Wd is the ques-

tion length (number of words) of d, and WA is the average question

length in the whole collection. In this model, the influence of ques-

tion length to similarity score is determined by the parameter b. If

b is small, question length contributes little to similarity score, and

vice versa.

Query Likelihood Language Model (QLLM). The basic idea

is to estimate a language model for each question, and then rank

questions by the likelihood of the query according to the estimated

language models. With the Jelinek-Mercer smoothing [157], the lan-

guage model is:

Sim
QLLM

(q, d) =
∏

t∈q

(1− λ)Pml(t|d) + λPml(t|Coll), (2.10)

where

Pml(t|d) =
tft,d

∑

t′∈d tft′,d
, (2.11)

Pml(t|Coll) =
tft,Coll

∑

t′∈Coll tft′,Coll
. (2.12)

In Eq. (2.10), λ ∈ [0, 1] is a smoothing parameter which adjusts the

weight of whole collection’s influence on the similarity score.
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Translation Model (TM). QLLM may suffers when there are

few vocabulary overlaps between q and d. For instance, “How to

lose weight” and “I want to be slim, what should I do” are two

semantically similar questions. However, they share few common

words, which leads to ineffective similarity estimation for QLLM.

The translation model [56, 150] exploits word-to-word translation

probabilities in the language modeling framework, and alleviates

the above vocabulary mismatch problem. In a typical translation

model [56],

Sim
TM

(q, d) =
∏

t∈q

(1− λ)
∑

w∈d

T (t|w)Pml(w|d) + λPml(t|Coll),

(2.13)

where T (t|w) denotes the probability that word w is the translation

of word t. In [56], it assumes that the probability of self-translation

is 1, i.e., T (w|w) = 1.

Translation-based Language Model (TBLM). Xue et al. [150]

combined QLLM and TM for question retrieval, and showed that the

model gained better performance than both QLLM and TM. In this

model,

Sim
TBLM

(q, d) =
∏

t∈q

(1− λ)(β
∑

w∈d

T (t|w)Pml(w|d)

+ (1− β)Pml(t|d)) + λPml(t|Coll), (2.14)

where β is the weighting parameter for QLLM and TM. When β =

0, TBLM becomes QLLM; when β = 1, TBLM reduces to TM.

2.3.2 Category Information

CQA services like Yahoo! Answers usually provide a category hi-

erarchy to organize questions in different levels of abstraction. Cat-

egory information provides extra knowledge for question retrieval.

Intuitively, the more related a category is to a query q, the more

likely that the category contains questions relevant to q. Utilizing
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category information, Cao et al. [19] proposed a series of retrieval

models based on the basic models in Table 2.1. The basic idea of

these models is to combine two similarity scores in question re-

trieval: one is a global relevance score (denoted as Sq,cat(d)) which

models the similarity between q the d’s category (cat(d)), and the

other is a local relevance score (denoted as Sq,d) between q and d
within d’s category. After normalizing both the global relevance and

the local relevance scores, the final similarity score is computed as

Sim
CI
(q, d) = (1− β)N(Sq,d) + βN(Sq,cat(d)), (2.15)

where β is the weighting parameter and N(·) is the normalization

function.

2.3.3 Syntactic Tree Matching

Bag-of-word approaches, such as VSM and QLLM, may perform

poorly when similar questions do not share many common words.

Under this circumstance, syntactic and semantic features become

crucial. Wang et al. [144] employed syntactic features and proposed

a syntactic tree matching (STM) approach for question retrieval.

Given a query q’s parsing tree T1 and a question d’s parsing tree

T2, the similarity score of these two trees is defined as follows:

Sim
STM

(q, d) =
S(T1, T2)

√

S(T1, T1)S(T2, T2)
, (2.16)

S(T1, T2) =
∑

r1∈T1

∑

r2∈T2

M(r1, r2), (2.17)

where M(r1, r2) is the matching score of two nodes r1 and r2. It is

computed as follows:

M(r1, r2) =

{

δr1δr2λ
Sr1

+Sr2µDr1
+Dr1 , if r1, r2 are terminals;

δηr1δ
η
r2
λ2ηµη[2−(1+nc(r1))(Dr1

+Dr2
)]×G, otherwise.

(2.18)
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In the above equation, δr1 denotes the importance of node r1 in T1,

Sr1 and Dr1 represent the size and depth of the tree fragment with

the root node r1. Sr1 is defined by the number of nodes that the

tree fragment contains, and Dr1 is defined as the level of the tree

fragment root in the entire syntactic parsing tree. λ and µ are two

parameters denoting the preference between size and depth, η is the

total number of matched tree fragments, and nc(r1) means the total

number of children of the node r1. In addition,

G =

nc(r1)
∏

j=1

M(ch(n1, j), ch(n2, j)). (2.19)

where ch(n, j) is the jth child of node n in the tree. To capture

more semantic meanings, STM is further smoothed through utilizing

WordNet [34].

2.3.4 Segmentation-aided Retrieval

A multi-sentence query (containing many sub-questions) usually con-

tains different information needs, and the above retrieval models can

hardly distinguish these different information needs and provide sat-

isfying retrieval results. To address this, Wang et al. [145] proposed

the segmentation-aided retrieval model to address this problem. This

model contains two key steps: question segmentation and question

matching.

• Question segmentation groups each sub-question with its con-

text sentences and separates it from the other sub-questions;

• Question matching step matches two question sentences with

the assistance of additional related contexts.

Segmentation-aided retrieval overcomes the drawback of bag-of-

word retrieval models. However, since the model does not incorpo-

rate semantic information, it may suffer from the vocabulary mis-
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match problem. In addition, question segmentation treats each sub-

question equally important, and does not distinguish the importance

of each information need.

2.3.5 Answer Quality

Bian et al. [8] employed the learning-to-rank technique [82] for ques-

tion retrieval, which considers both question relevance and answer

quality. In this framework, queries, questions, and answers are mod-

eled as preference data, and gradient boosting [37] is applied for

learning ranking function. Let S = {〈xi, yi〉|xi ≻ yi}(i = 1, ..., N)
denote the set of preference data, in which x and y are the feature

vectors for two query-question-answer triples with the same query.

x ≻ y means that x is preferred over y, i.e., x should be ranked

higher than y.

Given S, the objective of learning to rank is to find a function h
that minimizes the risk:

R(h) =
1

2

N
∑

i=1

(max{0, h(yi)− h(xi) + τ})2, (2.20)

where τ is a small-enough positive number. With gradient boosting,

the ranking function h can easily be learned.

This approach is suitable for factoid questions where the prefer-

ence data are easy to label. However, in CQA websites where there

are many non-factoid questions, such as opinion questions and rec-

ommendation questions, for which answer quality is hard to mea-

sure. In this case, automatic extraction of preference data seems

impossible and manual labeling is time-consuming.

2.3.6 Latent Semantic Tensor Indexing

The above retrieval models usually treat a question as a whole, but in

the real world a question is composed of two components: question

title and question content. Qiu et al. [121] represented questions
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with a triple form 〈question title, question content, answer content〉,
and proposed a latent semantic tensor indexing (LSTI) approach to

model word association in different parts of triples, e.g., question

title-question title and question title-question content. For a set of

triples 〈qti, qci, ai〉 (i = 1, ..., N), a tensor D ∈ R
N×3×T is utilized

to represent the collection, where T is the number of terms. In D, the

three dimensions correspond to entries, parts, and terms respectively.

Given a new question q and an archived question d, their corre-

sponding triples Dq ∈ R
1×3×T and Dd ∈ R

1×3×T are first projected

to term space. Let D̂q and D̂d denote the projection matrices, the

similarity score is then defined as the normalized Forensics inner

product of these two matrices:

Sim
LSTI

(q, d) =

∑

i,j D̂qi,jD̂di,j
∑

i,j D̂
2
qi,j ×

∑

i,j D̂
2
di,j

. (2.21)

LSTI is a unified model which solves the problem of semantic

gap in question retrieval. However, tensor decomposition of CQA

collections faces the sparsity problem in term space. In addition,

due to the lack of answers, answer content contributes little for new

questions.

2.4 Question Classification

Question classification aims to categorize questions into different

groups based on various properties. Liu et al. [90] classified ques-

tions according to time-sensitivity. In their work, two classes are de-

fined: urgent and non-urgent. Utilizing question text, category, and

answer features, they applied both a SVM and a decision tree clas-

sifiers on a Yahoo! Answers data set. Ground truth was manually

labeled on Amazon Mechanical Turk 1. Empirical results show that

the two classifiers performed similarly. In addition, question text

1https://www.mturk.com/mturk/welcome/
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features alone provide satisfying classification results, while cate-

gory features slightly improve the performance. However, answers

are not helpful. As the first study to distinguish urgent questions

from non-urgent ones, some limitations exist in [90]. First, it uses

some regular expressions to find potentially urgent questions, which

may lead to bias in their training data. Second, the information from

asker profiles, which may provide extra help for analyzing ques-

tions’ time-sensitivity, is not considered.

Li et al. [73] employed a SVM classifier to conduct binary clas-

sification using question and answer text features, such as character

tri-grams, word uni-, bi-, and tri-grams. Due to the lack of train-

ing data and poorly-stated questions, the best accuracy is achieved

at 0.74. To further improve the performance, they proposed a co-

training [13] approach that exploits the association between ques-

tions and answers [72]. The intuition behind the co-training algo-

rithm is that each question can be viewed in two aspects: question

text and answer text. Based on the two views (two different feature

sets), two separate classifiers were trained respectively. By automat-

ically classifying the unlabeled examples, these two classifiers iter-

atively “teach” each other by giving their partners a newly “labeled”

data, for which it can predict with high confidence. Experimental

results show that the co-training approach improved the classifica-

tion performance significantly. However, these two approaches only

employ text features and ignored other helpful information, such as

question categories and user profiles.

Harper et al. [46] addressed the above shortcomings. They ana-

lyzed the differences between conversational (objective) and infor-

mational (subjective) questions using human coding, statistical anal-

ysis, and machine learning algorithms. They first extracted ques-

tions from three CQA portals and asked annotators to label ques-

tions’ subjectivity, writing quality, and archival value. They found

that:

1. Humans could reliably distinguish between conversational and
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informational questions in most cases.

2. The proportion of conversational questions differed at different

portals.

3. On average, conversational questions received lower scores on

both writing quality and archival value.

Based on these observations, they applied the sequential minimal

optimization algorithm [117] to predict question subjectivity using

category features, text features, and social network features. Em-

pirical results indicate that category features lead to the best perfor-

mance while text features perform worst. Using social network fea-

tures yield slightly worse results than using category features. Their

ensemble classifier achieves 89.7% classification accuracy across

the three CQA portals, approaching human performance (91.4%).

However, one drawback of this approach is that it requires manual

labeling, which is time consuming when the data size is large.

To avoid manual labeling, Zhou et al. [166] recently investigated

social signal features to automatically construct training data and

predict question subjectivity in CQA services. Several heuristic fea-

tures for question subjectivity identification, such as vote and source,

were proposed. By utilizing these heuristic features, they automati-

cally extracted training data with labels, and reported that the predic-

tion results achieved 11.23% improvement over text features under

the same experimental setting. However, their social signal features

are available only when the questions have been posted for a while

and have obtained answers, votes, likes, etc. As such, this approach

cannot be utilized to handle newly asked questions.

2.5 Question Routing

In recent years, the efficiency of CQA services is been challenged

by a sharp increase of questions in the communities. The increas-

ing amount of questions have thus influenced access of answerers to
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their appropriate questions, with the process of question answering

being hindered [41]. To facilitate answerers access to proper ques-

tions, Question Routing (QR) has been initiated and developed in

CQA services [29, 31].

The concept of QR refers to routing newly posted questions to ap-

propriate users. From question aspect, QR looks for potential users

who will provide good answers in time. From user aspect, QR rec-

ommends new and interesting questions to them. In CQA services,

different approaches have been proposed for QR. To summarize, al-

most all of these methods involves three phases: user profiling, ques-

tion profiling, and matching.

• User profiling refers to building up user profiles in terms of

answering history of users.

• Question profiling means representing the information need of

questions in appropriate forms.

• Matching represents computing the matching score between an

user profile and a question profile.

After matching, answerers (or questions) are ranked according to the

matching score. In the following, we review different approaches of

QR in turn, and show how they handle these issues.

2.5.1 Topic Model-based QR

Guo et al. [41] proposed a QR approach which combined both term-

level features and topic-level features. In their approach,

• User profiling integrates texts in questions and answers as user

profiles. In addition, topic-level descriptions of user profiles

are also exploited.

• Question profiling represents questions in both term-level and

topic-level from question texts.
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• Matching computes the similarity score from linear combina-

tion of term-level similarity (BM25) and topic-level similarity.

Qu et al. [122] utilized the probabilistic latent semantic analysis

(PLSA) [50] for QR. In user profiling, a user-word aspect model was

employed to model the joint probability of a user u and a word w:

P (u, w) =
∑

z

P (u|z)P (w|z)P (z), (2.22)

where z ∈ {z1, ...zk} represents a topic. To estimate each proba-

bility, Expectation Maximization (EM) is employed to find the local

optimal of the log likelihood of question collection. There is no

question profiling in [122]. In the matching phrase, the joint proba-

bility of u and the new question q is estimated as the matching score:

P (u, q) =
∏

i

P (u, wi), (2.23)

where wi is the ith word in q.

The above approaches have some limitations. First, answer qual-

ity is not considered in user profiling, and the impact of user avail-

ability is ignored in matching. Second, since these models do not

employ external information, they cannot handle the cold start prob-

lem for new answerers.

2.5.2 Language Model-based QR

In language model-based QR [84, 167, 80], user profiling is con-

ducted through estimating the probability of generating each word

from answered questions, with maximum likelihood estimation (MLE)

been used. Question profiling is omitted, and matching is based on

QLLM described in Section 2.3.1.

Liu et al. [84] conceptualized expertise estimation as modeling

text similarities between those of routed questions and those of an-

swered questions in user profiles. As such, they utilized Query Like-

lihood Language Model (QLLM [102]), Relevance Language Model
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(RLM [67]), and Cluster-based Language Model (CBLM [83]) in

ranking answerer expertise, with QLLM performing the best. Liu et

al. [84] proved feasibility of using language models for expertise es-

timation. However, all answerers’ priors are treated equally in these

language models, so the priors of each answerer to answer the routed

question are identical. In real world, answerers who answered more

questions should be assigned with higher priors.

Following this work, Zhou et al. [167] proposed three language

models for matching.

1. Profile-based. The matching score is computed from QLLM,

with all threads (QA pairs) in which the user provides answers

as the document.

2. Thread-based. For each QA pair, the matching score is com-

puted using QLLM, with both question and answer as the doc-

ument. The final matching score is derived from the weighted

summation of all matching scores for each thread.

3. Cluster-based. Threads with similar content are first clustered,

and each cluster represents one topic that the user contributes

to. Then, the matching score of each cluster is estimated from

QLLM. Finally, the holistic matching score is the weighted

summation of all clusters’ matching scores.

After generating the rankings for new questions using the above

language models, users are re-ranked based on their authority. A

PageRank-based algorithm on the post-reply graph is employed to

compute each user’s authority.

One shortcoming of QLLM is that it suffers from the vocabulary

mismatch problem. To address this concern, Liu et al. [80] com-

bined LDA [10] with QLLM in matching. Besides, they utilized

user authority and user availability as the user prior of QLLM. User

authority is measured from the number of answers provided, and

user availability is estimated based on the user’s recent activity.
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2.5.3 Classification-based QR

Zhou et al. [165] casted QR as a classification task, and employed a

set of local and global features for user profiling and question pro-

filing, which capture different aspects of users and questions. It

is worth noting that some features are adopted to describe the se-

mantic similarity between the question’s language model and the

user’s language model (e.g., the KL-divergence between the current

question’s title/detail and all questions’ title/detail the user has an-

swered). From data analysis, they reported that question-user rela-

tionship features play a key role in identifying appropriate answer-

ers. With these features and a set of training data, a one-class SVM

classifier was constructed to predict whether a user would answer a

question, and the prediction results were utilized in matching.

Dror et al. [29] proposed a multi-channel approach for assess-

ing the match between a user and a question. In question profiling, a

question is represented by three families of features: textual features,

category features, and User IDs features. In user profiling, a user is

profiled with seven channels of features: asker, best answerer, an-

swerers, question voters, answer voters, best answer selectors, and

question tracers. These seven channels are exactly those that are

used for the social attribute annotating a question. Apart from that,

they also allocated one more channel for explicit user attributes (e.g.,

a user can explicitly specify which keywords or topics he is inter-

ested in or which other users he prefers to follow). With question

features and user features described above, they generated the inter-

action features. Several classifiers are utilized to predict whether a

question matches a user in matching. Experimental results indicate

that content features are more important than direct social relation

features, and the gradient boosted decision tree (GBDT) algorithm

obtains the best performance.
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2.5.4 Diversity and Freshness (DF model)

Szpektor et al. [139] found that only matching questions’ informa-

tion need with user profiles failed to capture user interests in a real

system. In other words, “showing users just the main topics they had

previously expressed interest in is simply too dull” [139]. However,

adding a few topics slightly outside the core of their past activities

may improve user engagement. With this intuition, they proposed a

diversity- and freshness-aided QR approach.

In this approach, a question profile is represented by a LDA topic

vector, a lexical vector, and a category vector. A user profile is rep-

resented as a probability tree, in which each node consists of a prob-

ability distribution that stands over various elements of the question

model. A probability tree has three levels: top-category-distribution

level, model-distribution level, and feature-distribution level. In the

matching phase, both user profiles (probability trees) and questions

profiles (feature vectors) are flattened to single vectors, and dot-

product is employed for calculating the similarity score. To further

improve the diversity and freshness of routed questions, they pro-

posed a proactive diversification method.

2.5.5 Model Comparison

Table 2.3 compares different QR approaches from the following six

aspects.

• User profiling. In topic model-based QR, different topic mod-

els are utilized to profile user expertise over topics. For lan-

guage model-based QR, MLE is used to estimate word genera-

tion probability from user answered questions. Classification-

based models extract various features from different aspects.

The DF model builds a three-level probability tree for each

user, representing user expertise over topics, words, and cat-

egories.
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• Question profiling. The UQA model profiles questions together

with users, while the PLSA model does not model questions.

Language models employ MLE to estimate word generation

probability from questions. Classification-based models ex-

tract various features from texts and contexts. The DF model

builds three vectors for each question from topics models, texts,

and question categories.

• Matching. The UQA model matches a question and a user

from both term-level and topic-level similarities, and the PLSA

model uses joint user-question probability over topics to cal-

culate the matching score. Matching for language models is

usually based on QLLM. In some models [80], user author-

ity and availability are incorporated to improve matching. As

for classification-based models, they train classifiers to predict

whether the user would match the newly posted question. How-

ever, the DF model takes a ranking-based approach with proac-

tive diversification.

• Model updates. When a new answer is submitted, topic mod-

els require re-profiling for all users since the topic distribution

may be changed. Therefore, they are not suitable in online situ-

ation. Language models (except LDALM), classification-based

models, and the DF model, however, only require updates for

corresponding user. Among these models, most language mod-

els and the DF model are more suitable for online updates. As

classification-based models may need re-training for the clas-

sifier, model updates would be time-consuming.

• New user problem. All approaches cannot deal with the cold

start problem of new users due to lack of information. Some so-

lutions in recommender system [2, 18, 131] may bring insight

to address this issue, such as utilizing content data [127, 66],

social tags [162, 33], social networks [97, 93, 94], etc.
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• Super user problem. All approaches except the DF model face

the super user problem. Through incorporating diversity and

freshness, the DF model avoids routing too many similar ques-

tions to a super answerer. For other models, the more relevant

questions a user has answered, the higher expertise the user

would get, and the user thus obtains higher probability to re-

ceive routed questions. In future studies, load balancing tech-

niques in networking [22] could be borrowed to address the

problem.

2.6 Answer Quality Evaluation

Since CQA allows every user to answer any question, it is no excep-

tion that CQA services are filled with mixed-quality content. Some

users could provide high quality answers which are relevant, con-

cise, clear, helpful, and easy to understand. Meanwhile, others may

type in their answers informally with error grammars and vocabu-

lary. Some users even make fun of others by answering with non-

sense or taking the opportunity for advertisement.

Therefore, evaluating answer quality becomes an essential issue

in CQA services. Although the asker can examine answer quality

himself and pick the best answer, it is usually time-consuming, es-

pecially when the number of answers becomes large. Automatically

answer evaluation (AAE) addresses the problem. A good AAE sys-

tem assists askers to choose the best answer and helps the service

to distinguish high quality content from low ones. By utilizing vari-

ous features that relate to answer quality, AAE directly predicts an-

swer quality or conducts quality-based answer ranking. In the fol-

lowing, we first summarize the features investigated for AAE (Sec-

tion 2.6.1), and then present different AAE algorithms (Section 2.6.2).
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2.6.1 Features

Jeon et al. [57] observed that non-textual features could be utilized to

estimate the quality of the document, and investigated 13 non-textual

features for AAE. They report that, among these features, answer

length and answerer expertise (e.g., category specialty, activity level,

acceptance ratio, etc.) are the most salient features.

Following this work, Eugene et al. [3] investigated more features

which may relate to answer quality. In their work, answer features,

question features, user-user relationship features, question-answer

relationship features and usage features are analyzed.

Shah and Pomerantz [129] further focused on two classes of fea-

tures: quality criteria features [171] and QA features. All 13 quality

criteria features2 were first labeled by Mechanical Turk3 workers,

and these assessments were then matched with the actual asker’s rat-

ing of a given answer. Empirical results show that the quality criteria

they employed faithfully matches with asker’s perception of a qual-

ity answer. Among quality criteria features, ‘novel’, ‘original’, and

‘readable’ have a significant impact on predicting the best answer.

However, these features are usually subjective, and difficult to quan-

tify. Therefore, they explored QA features which can be extracted

from questions and answers automatically. It is reported that fea-

tures extracted from questions exclusively do not help in AAE, while

features extracted from answers exclusively achieve quite good per-

formance. Different from the results of [57] and [3], they found

‘the reciprocal rank of that answer’ is the most distinguished fea-

ture. Moreover, they suggested that contextual information such as

user profile was critical in evaluating and predicting answer quality.

2i.e., ‘informative’, ‘polite’, ‘complete’, ‘readable’, ‘relevant’, ‘brief’, ‘conniving’, ‘detailed’,

‘original’, ‘objective’, ‘novel’, ‘helpful’, and ‘expert’.
3https://www.mturk.com/mturk/
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2.6.2 Models

Approaches for automatically evaluating (or predicting) answer qual-

ity fall into two categories: classification-based and ranking-based.

The first one treats this problem as a classification problem, extracts

features to train classifiers, and predicts the class labels (e.g., good

vs. bad) of new answers. The second category casts the problem

as an information retrieval problem, in which answers are ranked

according to their quality.

Classification-based models. Jeon et al. [57] built a maximum

entropy based classifier with non-textual features to predict answer

quality. First, non-textual features are extracted from questions, an-

swers and answerer profiles. Second, since the maximum entropy

model requires monotonic features (higher feature value represents

stronger evidence), non-monotonic features are converted to proba-

bilistic features using kernel density estimation (KDE) [55]. Finally,

the probability of being a good answer or bad answer is:

p(y|x) =
1

Z(x)
exp

[

m
∑

i=1

λixfi

]

, (2.24)

where x represents question-answer pairs, y is the class label, m

is the number of features, xfi denotes the ith feature of x, kde(·)
means the KDE function, and Z(x) is a normalization factor. λ are

parameters of the maximum entropy model, which can be estimated

from [95]. In addition,

fi(x, y) =

{

kde(xfi), if fi is non-monotonic;

xfi, otherwise.
(2.25)

Eugene et al. [3] extended this work and extracted more fea-

tures (e.g., text and relation) to predict answer quality. Similar to [57],

answer quality is divided into two classes. Several classification

algorithms such as support vector machines and log-linear classi-

fiers are tested in experiments, among which the stochastic gradi-

ent boosted trees [37] algorithm obtains the best performance with
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AUC4 0.878. The relationship between question quality and answer

quality is also investigated. It is observed that good answers are

“much more likely to be written in response to good questions”,

while bad questions usually attract more bad answers. In addition

to above models, Shah and Pomerantz [129] employed the logistic

regression model to evaluate answer quality.

Ranking-based models. One problem of classification-based

approaches is that questions and answers are modeled independently

and their implicit semantic relationships are not incorporated. To

better utilize QA relationships, ranking-based models are proposed.

Suryanto et al. [138] observed that authoritative users (experts)

tend to provide high quality content. Based on this, an answerer

expertise and answer relevance based approach is proposed to select

good answers from a CQA system. The key idea is that the quality of

an answer depends on the relevance degree to the question it answers

as well as the answerer’s expertise. Given a new question q, the

overall score of an answer a is:

score(a) = rscore(q, a) · qsocre〈model〉(q, a), (2.26)

where rscore(q, a) measures the relevance between q and a, which

can be obtained through the query likelihood retrieval model. In

addition, qsocre(q, a) represents the quality of a, which is derived

from the asking expertise (e ask) and answering expertise (e ans)
of its answerer ui:

qsocre〈model〉(q, a) = σ · e ask(ui, q)

+ (1− σ) · e ans(ui, q), (2.27)

where σ ∈ [0, 1] is a weighting parameter. With different models we

can get different quality scores. In [138], four models are proposed

to calculate an answer’s quality score.

Wang et al. [146] proposed an analogical reasoning-based ap-

proach to rank answers based on their quality. This approach as-

sumes that answers are connected to their questions with various

4Area Under the ROC Curve.
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types of latent links. For instance, positive links indicate high-quality

answers, while negative links represent low-quality ones. Therefore,

the quality of new answers can be estimated from conducting ana-

logical reasoning between new question-answer linkages and previ-

ous relevant positive linkages. Through analogy, high quality an-

swers will obtain higher similarities, while low quality ones will get

lower scores.

This approach consists of two stages: an offline stage and an on-

line stage. In the offline stage, a Bayesian logistic regression model

is learned with both positive and negative QA pairs. This model

estimates how likely a QA pair contains a good answer. In the on-

line stage, a supporting set of positive QA pairs is retrieved from the

CQA portals using the new question as a query, and this supporting

set will be used to rank new QA pairs.

Ranking-based approaches obtain two advantages. First, they

avoid feature extraction. Second, they naturally combine questions

and corresponding answers as a whole. However, rankings of an-

swers cannot directly distinguish high-quality answers from low-

quality ones. Manual checking is required to determine the cut-off

point of a ranking list.

2.7 Answer Summarization

The prominent characteristic of CQA service is that it allows ev-

ery user to answer every question. Usually a question will receive

multiple answers. For each question, although one answer will be

selected or voted as the best answer, it does not mean that other

answers are bad or useless for future questions. First, the best an-

swer may be an “incomplete answer” [24], which means the best

answer only solves a partial information need. Second, since “ev-

eryone knows something” [1], different answers may contribute to

different aspects of information, and using a single best answer will

miss other user-generated knowledge. For example, a question ask-
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ing for hotel recommendations may obtain many replies, and the

best answer may only cover a few of good hotels. According to the

report of [89], no more than 48% of CQA best answers5 are indeed

the unique best answers.

Answer summarization aims to summarizes all received answers

to a complete, structured, succinct, and quality answer. On the one

hand, it provides the asker a comprehensive reply and saves the time

to look through all answers. On the other hand, the summarized

answer is more reusable than a single best answer for future relevant

questions. Approaches for answer summarization in CQA services

fall into three categories:

1. Constraint-based: Answer summarization is converted to an

optimization problem with some constraints, such as coverage

and quality.

2. Question type-based: Different summarization techniques are

applied based on different types of questions.

3. Graph-based: Sentences of answers are constructed to a graph,

on which some classification algorithms are employed to deter-

mine whether to select a sentence to the summarized answer.

2.7.1 Constraint-based Summarization

Tomasoni and Huang [141] casted the answer summarization prob-

lem to a query-biased multi-document summarization task, and pro-

posed a metadata-aware algorithm. The idea is to maximize the con-

cept score in final summarization, in which concepts are represented

as bag-of-BEs6. Four factors are applied on the concept scoring:

quality, coverage, relevance, and novelty. Let c denote a concept,

S(ci) be the concept score of concept ci (which is estimated from

5This conclusion is derived from 400 randomly selected questions in four top categories of

Yahoo! Answers.
6A BE is “a head|modifier|relation triple representation of a document developed at ISI” [164].
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quality, coverage, relevance, and novelty), sj represent a sentence,

length(j) denote the length of sj, and M be the set of selected sen-

tences for answer summarization, the summarization is then con-

verted to a linear programming problem with constraints:

maximize
∑

i

S(ci) · xi

subject to
∑

j

length(j) · sj ≤ L;

∑

j

yj · occij ≥ xi, ∀i;

occij , xi, yi ∈ {0, 1}, ∀i, j;

occij = 1 if ci ∈ sj , ∀i, j;

xi = 1 if ci ∈ M, ∀i;

yj = 1 if sj ∈ M, ∀j.

The integer indicators xi and yj represent whether ci and sj are in-

cluded in M . L is the length constraint which is a function of the

lengths of all answers weighted by a corresponding quality score.

Through solving the program, selected sentences compose the final

summarization.

Liu et al. [85] took a similar approach with different concept scor-

ing approaches. In [85], S(ci) is obtained by two random walk mod-

els. In the first content-based model,

S(ci) = (1− d) ·
∑

ck∈C

sim(ci, ck)
∑

cj∈C
sim(ci, cj)

· p(ck|q)

+ d ·
rel(ci|q)

∑

cj∈C

rel(cj|q)
(2.28)

where d ∈ [0, 1] is a damping factor, C denotes all concepts, p(ck|q)
means the proportion of ck in q, rel(ci|q) represents the maximum

similarity between ci and all concepts in q, and sim(ci, ck) denotes
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the similarity between two concepts ci and ck [101]. In the second

model, user authority is incorporated:

S(ci) = (1− d) ·
∑

ck∈C

sim(ci, ck|ui, uk)
∑

cj∈C
sim(ci, cj|ui, uj)

· p(ck|q)

+ d ·
rel(ci|q)

∑

cj∈C

rel(cj|q)
, (2.29)

where

sim(ci, cj|ui, uj) = sim(ci, cj|ui) + sim(ci, cj|uj)

= sim(ci, cj) · auth(ui)

+ sim(ci, cj) · auth(uj). (2.30)

In the above equation, auth(ui) measures the authority score of ui.

The Hyperlink-Induced Topic Search (HITS) algorithm [64] is em-

ployed to calculate authority scores from a user-user graph based on

QA activities.

In addition, an integer programming problem is constructed to se-

lect sentences for summarized answers. However, similar concepts

may be chosen if they have high weights. To solve this problem,

they further proposed a concept group-based objective function to

eliminate redundant concepts and sentences.

2.7.2 Question Type-based Summarization

There is little literature on question-type based answer summariza-

tion. Liu et al. [89] focused on summarizing open and opinion

questions as “they occupy more than half of the CQA questions”.

For open questions, a common multi-document summarization al-

gorithm [52, 76] is employed, using a process of answer clustering,

topic identification, fusion, and summary generation. For opinion

questions, two subcategories are defined: sentiment-oriented and

list-oriented:
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1. For sentiment-oriented questions, answer sentences are first

classified into Support, Against, or Neutral categories. The

summarization is composed of two parts. In the first part, the

sentences under each category are listed. In the second part,

the count of sentences at each category is presented to show

the ratio of different opinions.

2. For list-oriented questions, the summarization simply counts

the number of different answers, and presents each answer to-

gether with its frequency.

2.7.3 Graph-based Summarization

Chan et al. [24] proposed a general Conditional Random Field (CRF)

based method with group L1 regularization for answer summariza-

tion. This method converts the answer summarization problem to a

sequential labeling problem, which can be solved by the probabilis-

tic graphical model. Let x denote the sentence sequence from all

answers to a question, y be the corresponding labels, if yi = 1, xi

will be incorporated in the summarized answer. According to CRF,

the conditional probability of y given x is:

p(y|x) =
1

Z(x)
exp(

∑

v∈V,l

µlgl(v,y|v,x)

+
∑

e∈E,k

λkfk(e,y|e,x)), (2.31)

where V and E represent the node set and the edge set, respectively.

In addition, 1
Z(x) is the normalization factor, gl is the feature function

of the node l (sentence l), fk is the function of edge k (modeling the

interactions between sentences), µ and λ are weights, and y|v (y|e)

denotes the component of y related to node v (edge e). In [24],

seven text features and six non-text features are utilized in modeling

gl, and four contextual factors are considered for modeling fk. With
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the assumption that some features are more important than others,

group L1 regularization is introduced to select salient features.

Given training data D = {(x1, y1), ..., (xN, yN)}, the parameters

θ = (µl, λk) of the CRF model are estimated from the following

optimization problem:

maximize

N
∑

i=1

log(pθ(y
i|xi))− C

G
∑

g=1

αg

subject to αg ≥‖ ~θg ‖2, ∀g.

In the above optimization problem, G denotes the number of feature

groups, ~θg represents the parameters corresponding to the particular

group g, and C controls the penalty magnitude of the parameters.

During the inference, the labeling sequence is obtained by maximiz-

ing the probability of y given x:

y∗ = argmax
y

pθ(y|x). (2.32)

Pande et al. [113] extended the above work, and employed a

structured determinant point process (SDPP) to generate answer sum-

marization. Using the similar graph in [24], SDPP finds “a path con-

taining nodes that are individually coherent and together cover the

most important information from the graph” [113].

2.7.4 Summary

Table 2.4 compares the above three approaches in terms of com-

pleteness, concision, summation, readability, and quality. Constraint-

based summarization usually provides a complete and quality sum-

marization. However, concision of summarized answer depends on

constraint settings. For instance, the approach in [141] may face a

redundancy problem if two similar concepts both get high scores.

Liu et al. [85] alleviate the problem through adding a concept group

constraint. Constraint-based summarization selects sentences as the
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Table 2.4: Comparison among different answer summarization approaches.

Approach Completeness Concision Summation Readability Quality

Constraint-
Good

Constrain Sentence Not
Good

based dependent level considered

Question type-
Good

Type Answer and
Good

Not

based dependent sentence level considered

Graph-
Good

Not Sentence Not
Good

based considered level considered

final answer, rather than summarize them. As such, the sequences

of sentences are accordant to their original answers, which may be

unstructured and incoherent, and reduces the readability of summa-

rized answer.

Question type-based summarization is question-dependent, and

takes different approaches for different questions. For instance, it

takes answer-level summarization for open questions, while sentence-

level summarization for sentiment-oriented questions. Therefore,

the summarizations are usually well-structured and easy to read.

However, this approach depends on question classification, and re-

quires new summarization strategy when new question type appears.

In addition, answer quality is not considered in summarization.

Graph-based summarization considers sentence importance and

an inter-sentence relationship, which leads to good quality and com-

plete summarization. The disadvantages of this approach are two-

fold. First, it focuses on selecting sentences without considering

sentence structure. Second, it may suffer from the redundancy prob-

lem since the relationships among selected sentences are not incor-

porated.

2 End of chapter.



Chapter 3

Question Popularity Analysis and

Prediction

3.1 Motivation and Problem

The prosperity of CQA is accompanied by a huge amount of ques-

tions and answers. A series of studies is conducted to investigate

answers in CQA so as to screen for better answers, such as quality

analysis [62, 91], prediction [12, 47, 155], and ranking [7, 8]. But

as for questions, fewer studies have so far been documented. In fact,

questions in CQA vary in attracting answerer attention, answering

attempts, and best answers. Taking questions from Yahoo! Answers

as an example, some questions acquire thousands of tag-of-interests

and answering attempts while some questions fail to get any answer-

ing attempts, indicating varied degrees of popularity.

The significance of investigating question popularity (QP) in CQA

is three-fold:

1. Low-popularity questions hinder CQA services. Low-popularity

questions, such as commercial advertisements, reduce user ex-

perience greatly.

2. High-popularity questions promote the development of the com-

munity. Since high-popularity questions induce more users

to contribute their knowledge, they not only improve the effi-

44
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Figure 3.1: Construct of question popularity in CQA.

ciency of solving questions, but also enrich the knowledge base

of the community.

3. QP facilitates question retrieval and question recommendation.

We will improve question retrieval and question recommenda-

tion in CQA services if taking QP into account.

QP involves three dimensions (see Figure 3.1): (1) user atten-

tion; (2) answering attempt; and (3) best answer. In other words,

high-popularity questions are supposed to attract significant user

attention, induce more answer attempts, and receive best answers

within a short period. Otherwise, questions failing to achieve the

three criteria are labeled as low-popularity questions since the ques-

tions neither meet user needs nor contribute to the knowledge base

of the community. It is worth noting that question utility and ques-

tion difficulty are different from our QP here. The former aims to

investigate the usefulness of questions [137], and the latter focuses

on selecting the more difficult question from a question pair [79].

This chapter has five sections. In Section 3.2, we present the ex-

perimental data and the ground truth. Next, two studies are reported

in Sections 3.3 and 3.4, respectively. The first study applies sta-

tistical analyses to find factors affecting QP. Based on the findings

of Study 1, Study 2 proposes a novel graph-based semi-supervised

learning (SSL) algorithm and applies the algorithm to predict QP. A
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Table 3.1: Summary of questions and askers in Entertainment & Music category

and its subcategories.

Subcategory Number of questions Number of askers

Celebrities 11,817 7,087

Comics & Animation 11,327 6,801

Horoscopes 7,235 2,203

Jokes & Riddles 3,685 2,569

Magazines 548 462

Movies 15,121 10,996

Music 32,948 18,589

Other - Entertainment 2,244 2,003

Polls & Surveys 138,507 18,685

Radio 640 272

Television 14,477 10,146

All 238,549 62,853

summary is given in Section 3.5.

3.2 Data Description

In this section, we first describe our data set. Then we detail how to

set the ground truth for QP, providing the baseline for the following

studies and analyses.

3.2.1 Data Set

We collect 238,549 resolved questions from July 7, 2010 to Septem-

ber 6, 2010 under the Entertainment & Music category of Yahoo! An-

swers. For each question, we extract both question information

(question subject and content, post time, best answer post time, num-

ber of answers, and number of tag-of-interests by other users) and

asker information (total points, number of answers, number of best
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answers, number of questions asked, number of questions resolved,

and number of stars received). There are altogether 11 subcategories

under Entertainment & Music, and Table 3.1 gives the statistics of

the data set.

3.2.2 Ground Truth Setting

We set the ground truth using the construct of QP in CQA (see Fig-

ure 3.1). To quantify the three variables, we employ the number

of tag-of-interests (NT, reflecting the attractiveness of a question),

the number of answers (NA), and the reciprocal of the minutes for

getting the best answer (RM).

We first attempt to cluster these questions but the clustering re-

sults are not congruent with different seeds. In spite of this, the size

of each cluster varies sharply from less than 10 to more than 50,000.

Having consulted domain experts, we resort to expert-based reason-

ing. We calculate the Pearson correlation coefficient between each

of the two variables, and find that NT and NA are correlated (0.500).

But either NT or NA show little correlation with RM (-0.011 and

0.213, respectively). Therefore, we first normalize and average the

values of NT and NA before converting them into an integer in a

scale from 1 to 4 (NTA hereafter, with 4 being the highest popular-

ity) using three equidistant cutting points of 0.75 (top 25%), 0.50

and 0.25 to assign each band with roughly the same amount of ques-

tions1. At the same time, RM is also transformed into 1 to 4 scale

data using such approach. After that, two scale data are reasoned

based on the rule base (see Table 3.2), which comes from consensus

among the authors and domain experts. In the end, all questions are

labeled as from level 1 to level 4, with level 4 featuring the highest

popularity questions. Table 3.3 summarizes questions with levels,

which are taken as the ground truth.

1As [152] and [120] suggested, we construct a balanced data set for predicting QP in the second

study.
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Table 3.2: Rule base for ground truth setting.

P
P
P
P
P
P
P
P
P

RM

NTA
4 3 2 1

4 4 4 3 2

3 4 3 3 2

2 3 3 2 1

1 2 2 1 1

Table 3.3: Summary of questions in four levels.

Level 1 2 3 4

Count 53,806 62,192 69,836 52,715

3.3 Factors Affecting QP

In CQA portals, askers post questions on different topics. Therefore,

askers and topics are probably the main sources of varied QP. How-

ever, we know little about the contribution of askers and topics to QP.

Here, we are concerned with which factor has the most significant

impact on QP, and we use the subcategories under Entertainment &

Music as various topics. We do not select different categories as top-

ics. First, we observe that the majority of users only ask questions in

very few categories, thus choosing subcategories as topics are more

representative. Second, different subcategories also reflect various

topics, for instance, music and movies are two distinctive aspects of

entertainment.

Study 1 is designed as follows. We first select the two most popu-

lar subcategories2 (namely, Music and Movies, see Table 3.1) as two

representative topics in Study 1 before checking their distributions

of QP. Next, we track askers with at least five questions in both these

2The subcategory Polls & Surveys is not chosen since this subcategory is used to elicit public

opinion. We observe questions in this subcategory usually receive much more answers than others.
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Figure 3.2: Distributions of QP in two topics. Left: Music; Right: Movies.

two subcategories and test QP of these questions.

Figure 3.2 presents the histograms of QP in Music and Movies.

We can find that the distributions of QP in Music and Movies are

close: the number of questions increases as QP decreases from level

4 to level 1, and the proportions of each level’s questions remain sim-

ilar. The difference lies in that the proportion of questions in level

2 of Movies is larger. This observation tells us topics alone cannot

distinguish high-popularity questions from low-popularity ones.

To investigate the influence of askers, we select a total of 22

askers who have asked at least 5 questions in the two sub-categories.

Mean and standard deviation (SD) of QP are reported in Table 3.4.

Our observations are: (1) different askers own various QP on the

same topic. For instance, the QP of user 8 is much higher than that of

user 16; and (2) the QP of the same asker on various topics has sig-

nificant differences. For instance, user 14 asks many high-popularity

questions about Movies, but his QP in Music is poor. Therefore,

we observe that it is the interaction between asker and topics which

plays the most import role in distinguishing high-popularity ques-

tions from low-popularity ones.

To sum up, Study 1 examines the effects of askers and topics on

QP. We observe that topics themselves cannot determine QP, and

the interaction between askers and topics is the most important fac-



CHAPTER 3. QUESTION POPULARITY ANALYSIS AND PREDICTION 50

Table 3.4: Summary of QP for different askers.

User
Music Movies

User
Music Movies

Mean SD Mean SD Mean SD Mean SD

1 2.50 0.93 2.17 0.41 12 2.48 0.95 2.47 0.84

2 2.45 0.52 2.57 0.98 13 2.84 0.68 2.83 0.41

3 1.86 0.90 1.45 0.82 14 1.33 0.52 2.40 0.89

4 2.65 0.72 2.60 0.55 15 1.90 0.74 1.83 0.75

5 1.90 0.74 2.00 0.71 16 1.80 0.84 1.83 0.75

6 2.62 0.87 1.83 0.86 17 2.15 0.55 2.50 1.05

7 2.48 0.68 2.20 0.84 18 2.36 0.92 1.67 0.87

8 2.86 0.92 2.14 0.90 19 2.00 1.00 2.00 1.00

9 2.38 0.92 2.30 1.06 20 2.00 0.67 2.00 1.00

10 2.50 0.53 2.40 0.55 21 2.69 0.68 2.80 0.45

11 2.00 0.71 1.50 0.55 22 2.13 0.99 2.57 1.27

tor affecting QP. This observation motivates us to design a novel

algorithm to predict QP in the next study.

3.4 Prediction of QP

Study 1 has uncovered the main factors of QP, but it takes place

when questions are resolved. In Study 2, we face an even more

challenging prediction task: estimating QP right after a question is

posted but not yet answered by any answerer. Motivated by the result

of Study 1, we model the relationships among questions, topics, and

askers as a bipartite graph model. Figure 3.3 shows one example,

where u1, u2, and u3 ask five questions (q1, ..., q5) in three topics

(t1, t2, and t3). Each edge linking an asker and a question represents

the question asked by the asker, and each rectangle denotes a topic.

In the example, we know that u1 asks q1 and q3, and q2 is in topic t1.

Here topics are represented by subcategories or categories in CQA
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portals.

The ideas of our algorithm are as follows:

1. As for the same topics, questions with similar structures and

expressions will have similar QP3, and askers with same pro-

files will embrace approximate expertise.

2. As for different topics, askers’ ability to ask high-popularity

questions is not equivalent and such ability is constant within a

particular period.

3. Each question’s QP is estimated from the quality of similar

questions and the asker’s ability to ask high-popularity ques-

tions in that topic. Meanwhile, each asker’s ability of asking

high-popularity questions at one topic is estimated from his QP

and similar askers’ ability in that topic.

Based on the these, we propose a graph-based SSL algorithm

called “Mutual Reinforcement Label Propagation” (MRLP) to pre-

dict QP in CQA services. Before introducing MRLP, we first give

the formal definitions of QP and asker expertise.

Definition 1 (Question Popularity). Question qi’s popularity is rep-

resented by q̂i, which refers to its ability to attract user attention, get

answering attempts, and receive the best answer efficiently. It ranges

from 0 to 1. The higher the value is, the higher the popularity of the

question.

Definition 2 (Asker Expertise). User uj’s expertise in topic tk is

represented by ûjk, which reflects the user’s ability to ask high-

popularity questions within that topic. ûjk ranges from 0 to 1. It

is worth noting that ûjk models the effect of interaction between the

asker and the topic.

3In fact, this assumption is quite weak since it does not consider any semantics.
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Figure 3.3: A toy example. Left: askers; Right: questions in three topics.

3.4.1 Algorithm

Suppose there are m askers who ask n questions in t topics. Let

U 1, U 2, ..., U t denote the vectors of asker expertise in these topics,

and Q denote the vector of QP. We define an m×n matrix E, where

eij = 1(i ∈ [1, m], j ∈ [1, n]) means ui asks qj, otherwise eij = 0.

From E we get E ′:

E ′
ij =

eij
∑n

k=1 eik
. (3.1)

For the question part of the bipartite graph, we create edges be-

tween any two questions within same topics. The weight for the edge

linking qi and qj is represented by w(qi, qj), which is calculated us-

ing the cosine similarity between the features of two questions xi

and xj:

w(qi, qj) = exp(−
||xi − xj||

2

λ2
q

), (3.2)

where λq is a weighting parameter. w(qi, qj) is set to be 0 if qi and qj
belong to two different topics. In addition, we define w(qi, qi) = 0.
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Algorithm 1 MRLP

Input: asker expertise vector Uk
0 , QP vector Qk

0 , E, transition matrixes M and

N , weighting coefficients α and β, some manual labels of Uk
0 and/or Qk

0 .

Output: Uk and Qk.

1: Set c = 0.

2: while not convergence do

3: Propagate user expertise. Uk
c+1 = α ·M · Uk

c + (1− α) · E ′ ·Qk
c .

4: Propagate QP. Qk
c+1 = β · N · Qk

c + (1 − β) · ET · Uk
c+1, where ET is the

transpose of E.

5: Clamp the labeled data of Uk
c+1 and Qk

c+1.

6: Set c = c+ 1.

7: end while

Then, we define an n× n probabilistic transition matrix N :

Nij = P (qi → qj) =
w(qi, qj)

∑n
k=1w(qi, qk)

, (3.3)

where Nij is the probability of transition from qi to qj. Similarly,

we create edges between any two askers who have asked questions

in the same topic(s) for the asker part of the graph with λa as the

weighting parameter using Eq. (3.2). Furthermore, we define an

m×m probabilistic transition matrix M like N in Eq. (3.3).

For topic tk, given some known labels of Uk and/or Q, we de-

scribe the MRLP in Algorithm 1. The equation at line 3 estimates

each asker’s expertise from his neighbors’ expertise and his ques-

tions’ popularity. Correspondingly, the equation at line 4 calculates

each question’s popularity from their neighbors’ popularity and the

corresponding asker’s expertise. Repeating MRLP k times, question

popularity and asker expertise are estimated.

Now, we prove the convergence of the algorithm.

Proof. Suppose there are l labeled data and u unlabeled data of ques-

tion quality together with x labeled data and y unlabeled data of

asker expertise, i.e., Qk = [q̂k1 , ..., q̂
k
l , q̂

k
(l+1), ..., q̂

k
(l+u)]

T and Uk =

[uk
1, ..., u

k
x, u

k
(x+1), ..., u

k
(x+y)]

T . Thus, We can split E ′, ET ,M and N
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into four parts:

E ′ =

[

E ′
xl E ′

xu

E ′
yl E ′

yu

]

, ET =

[

ET
xl ET

yl

ET
xu ET

yu

]

,

M =

[

Mxx Mxy

Myx Myy

]

, N =

[

Nll Nlu

Nul Nuu

]

.

Thus, we get

[

Uk
x

Uk
y

]

c+1

= α

[

Mxx Mxy

Myx Myy

][

Uk
x

Uk
y

]

c

+ (1− α)

[

E ′
xl E ′

xu

E ′
yl E ′

yu

][

Qk
l

Qk
u

]

c

,

and
[

Qk
l

Qk
u

]

c+1

= β

[

Nll Nlu

Nul Nuu

][

Qk
l

Qk
u

]

c

+ (1− β)

[

ET
xl ET

yl

ET
xu ET

yu

][

Uk
x

Uk
y

]

c

.

Since Uk
x and Qk

l are clamped to manual labels in each iteration, we

now only consider Uk
y and Qk

u. From the above two equations we

get:

[

Uk
y

Qk
u

]

c+1

=

[

αMyy (1− α)E ′
yu

(1− β)ET
yu βNuu

][

Uk
y

Qk
u

]

c

+

[

αMyxU
k
x + (1− α)E ′

ylQ
k
l

βNulQ
k
l + (1− β)ET

xuU
k
x

]

.

Let

A =

[

αMyy (1− α)E ′
yu

(1− β)ET
yu βNuu

]

, b =

[

αMyxU
k
x + (1− α)E ′

ylQ
k
l

βNulQ
k
l + (1− β)ET

xuU
k
x

]

,

we get
[

Uk
y

Qk
u

]

n

= An

[

Uk
y

Qk
u

]

0

+ (
n

∑

i=1

Ai−1)b,
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where

[

Uk
y

Qk
u

]

0

are the initial values for unlabeled askers and ques-

tions. The following proof is similar to the one in the second chapter

of [168]. Since M , N , E ′ and ET are row normalized (each row of

ET only contains one “1”, others are “0”), Myy, Nuu, E ′
yu, and ET

yu

are sub-matrices of them,

∃γ < 1,

y+u
∑

j=1

Aij ≤ γ, ∀i = 1, ..., y + u.

So

∑

j

An
ij =

∑

j

∑

k

An−1
ik Akj,

=
∑

k

An−1
ik

∑

j

Akj,

≤
∑

k

An−1
ik γ,

≤ γn,

which means the sum of each row of A converges to zero. Therefore,

An

[

Uk
y

Qk
u

]

0

→ 0. Finally, we get

[

Uk
y

Qk
u

]

= (I − A)−1b,

which are fixed values.

When m and n are large values, it is inefficient to compute (I −

A)−1 directly. As
∑

j

An
ij ≤ γn, we can apply Algorithm 1 to calcu-

late Uk and Qk iteratively.
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Table 3.5: Summary of data in Study 2.

Item Music Movies

Number of questions 7,373 1,076

Number of high-popularity questions 3,670 331

Number of low-popularity questions 3,703 745

Number of askers 314 56

3.4.2 Experimental Setup

To verify the effectiveness of the MRLP in predicting QP, we ex-

periment with the data described in Section 3.2. For each topic of

Music and Movies, we choose questions of those askers who asked

at least 10 questions in that topic. Since our goal is to distinguish

high-popularity questions from low-popularity ones, we follow the

common binary classification setting in previous works [129, 88, 3].

Thus, we take questions of level 3 and level 4 as high-popularity

ones and the other questions as low-popularity ones. Table 3.5 sum-

marizes the data. To get prediction performance at different training

levels, we adjust the training rates from 10% to 90% in our experi-

ments.

Features. Referring to the works in [3] and [4], we adopt the

features listed in Table 3.6 to construct graphs and train classifiers.

They are divided into question-related and asker-related features.

Question-related features are extracted from question texts including

subject and content, and asker-related features come from asker pro-

files. For features such as POS entropy, we use the tool OpenNLP4

to conduct tokenization, detect sentences, and annotate the part-of-

speech tags. In addition, we utilize the Microsoft Office Word Pri-

mary Interop Reference5 to detect typographical errors.

We also report the information gain of each feature in Table 3.6.

4http://opennlp.sourceforge.net/
5http://msdn.microsoft.com/library/bb406008(v=office.11).aspx/
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Table 3.6: Summary of features extracted from questions and askers.

Name Description IG

Question-related features

Sub len Number of words in question subject (title) 0.0115

Con len Number of words in question content 0.0029

Wh-type Whether the question subject starts with Wh-word 0.0001

Sub punc den Number of question subject’s punctuation over length 0.0072

Sub typo den Number of question subject’s typos over length 0.0021

Sub space den Number of question subject’s spaces over length 0.0138

Con punc den Number of question content’s punctuation over length 0.0096

Con typo den Number of question content’s typos over length 0.0006

Con space den Number of question content’s spaces over length 0.0113

Avg word Number of words per sentence in question’s subject and content 0.0048

Cap error The fraction of sentences which are started with a small letter 0.0064

POS entropy The entropy of the part-of-speech tags of the question 0.0004

NF ratio The fraction of words that are not the top−10 frequent words 0.0009

Asker-related features

Total points Total points the asker earns 0.0339

Total answers Number of answers the asker provided 0.0436

Best answers Number of best answers the asker provided 0.0331

Total questions Number of questions the asker provided 0.0339

Resolved questions Number of resolved questions asked by the asker 0.0357

Star received Number of stars received for all questions 0.0367

It is found that all features’ information gains (IGs) are small, which

means these features are not so salient to QP. In addition, asker-

related features are more crucial than question-related features since

their information gains are higher. As for question-related features,

space density and subject length are the most important ones.

Methods for comparison. We compare our MRLP algorithm

with the following methods:

• Logistic Regression. Shah et al. [129] apply logistic regression

model to predict answer quality in Yahoo! Answers. Here we

adopt the same approach to predict QP with question-related

features alone (LR Q), and both question-related and asker-



CHAPTER 3. QUESTION POPULARITY ANALYSIS AND PREDICTION 58

related features (LR QA). These two methods are treated as

baselines.

• Stochastic Gradient Boosted Tree. Agichtein et al. [3] report

the stochastic gradient boosted trees [38] (SGBT) perform best

among several classification algorithms, including SVM and

log-linear classifiers, to classify content quality in CQA ser-

vice. For SGBT classifier, in each iteration a new decision tree

is built to fit a model for the residuals left by the classifier on the

previous iteration. In addition, a stochastic element is added to

each iteration to smooth the results and prevent overfitting. For

different features we have SGBT Q and SGBT QA.

• Harmonic Function. Zhu et al. [169] propose the harmonic

function algorithm for label propagation on a homogeneous

graph, where all nodes represent the same kind of object. To

estimate QP, we create a graph in which each node stands for

a question and each edge’s weight represents two questions’

similarity. Let W denote the weight matrix and D denote the

diagonal matrix with di =
∑

j wij, then we can construct the

stochastic matrix P = D−1W . Let f =

[

fl

fu

]

where fl are

the qualities of labeled questions and fu are what we want to

predict. We split the matrix W (also D and P ) into four parts:

W =

[

Wll Wlu

Wul Wuu

]

, (3.4)

where Wll means the similarities among labeled questions, and

Wlu means the similarities between labeled questions and un-

labeled questions. Similarly, Wul represents the similarities be-

tween unlabeled questions and labeled questions, and Wuu rep-

resents the similarities among unlabeled questions. The har-

monic solution is:

fu = (Duu −Wuu)
−1Wulfl = (I − Puu)

−1Pulfl. (3.5)
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Similarly, we construct HF Q and HF QA using different fea-

tures.

In our experiments we use the tool Weka [45] to build logistic re-

gression models and SGBT classifiers, with default settings adopted.

For graph-based algorithms such as HF Q, HF QA, and MRLP, we

build 10-NN graphs. In addition, for each training rate, we randomly

sample training data and testing data 10 times, and take the average

as final results.

Evaluation metrics. We adopt accuracy, sensitivity, and speci-

ficity as the evaluation metrics. Accuracy reflects the overall perfor-

mance of prediction, while sensitivity and specificity measure the

algorithm’s ability to classify high-popularity and low-popularity

questions into their correct classes, respectively.

3.4.3 Experimental Results

Table 3.7 reports the accuracy of these methods under various train-

ing rates across two topics. Figure 3.4 and Figure 3.5 present sen-

sitivity and specificity of each method in Music. Similar results are

obtained in Movies.

With the increase number of training data, all methods perform

better. Among these methods, MRLP performs much better than

baseline methods (LR Q and LR QA) in all settings. For instance,

when the training rate is 10% for Movies, the accuracy of MRLP is

20.04% and 19.54% higher than that of LR Q and LR QA, respec-

tively. In addition, MRLP is more accurate in predicting QP than

other compared methods. These results demonstrate that MRLP is

more effective in predicting questions’ qualities through modeling

the interaction between askers and topics and capturing the mutual

reinforcement relationship between asker expertise and QP.

Meanwhile, neither the MRLP nor other methods perform very

well in classifying QP across the two topics. Even the training rate

is set to be 90%, there are still more than 35% of questions not cor-
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Table 3.7: Different methods’ performance with question-related features alone

versus both question-related and user-related features (Music: α = 0.2, β = 0.2;

Movies: α = 0.8, β = 0.1).

Method

Accuracy under training rate (%)

Music Movies

10 30 50 70 90 10 30 50 70 90

LR Q 0.550 0.558 0.560 0.568 0.583 0.479 0.512 0.516 0.518 0.519

LR QA 0.567 0.584 0.595 0.603 0.612 0.481 0.513 0.517 0.521 0.524

HF Q 0.535 0.545 0.567 0.579 0.596 0.415 0.472 0.493 0.506 0.514

HF QA 0.547 0.576 0.584 0.602 0.621 0.491 0.536 0.549 0.558 0.564

SGBT Q 0.560 0.576 0.581 0.584 0.596 0.538 0.541 0.551 0.569 0.582

SGBT QA 0.576 0.610 0.627 0.631 0.636 0.547 0.562 0.566 0.587 0.605

MRLP 0.608 0.625 0.633 0.656 0.664 0.575 0.589 0.604 0.615 0.623

rectly classified. The reason is that question text and asker profile

features are not salient features of QP, as shown in Table 3.6. Since

all features’ information gains are less than 0.05, it is very hard to

make satisfactory predictions using these features. This limitation

leads us to further explore the salient features of QP in our future

work.

Question-related features versus asker-related features. Com-

paring LR QA, HF QA, and SGBT QA with LR Q, HF Q, and SGBT Q

from Table 3.7, we find that with asker-related features the accuracy

of prediction is substantially higher than the same methods without

using asker-related features in both Music and Movies. This obser-

vation shows that incorporating asker-related features increases the

prediction performance. As explained in the first study, the interac-

tion between topics and askers is the most deterministic factor for

QP. Our feature analysis results are accordant to our observations.

Figures 3.4 and 3.5 report different algorithms’ sensitivity and

specificity at various training rates. Similarly, with the help of asker-

related features, the same algorithms usually achieve better predic-
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Figure 3.4: Sensitivity versus training rate across various methods in Music.

tions. For instance, when 50% of data are used as training data in

Music, SGBT QA’s sensitivity is 10.67% higher than that of SGBT Q,

and 2.43% higher on specificity. Other algorithms obtain similar re-

sults at each training rate.

Mixture versus separation of user-related features. Compar-

ing LR QA, HF QA, and SGBT QA with MRLP, we observe that

MRLP performs the best on accuracy. When looking at the sensi-

tivity in Figure 3.4 and the specificity in Figure 3.5, MRLP is more

balanced in sensitivity and specificity than other algorithms. For in-

stance, SGBT QA obtains the highest sensitivity for Music in most

cases but relatively low specificity, meaning it predicts most ques-

tions as high-popularity ones. HF QA obtains the high specificity

for Music but very low sensitivity, and it almost predicts most ques-

tions as low-popularity ones. MRLP gives the most balanced per-

formance since it integrates the question-related features with asker-

related features naturally other than a simple combination. In partic-
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Figure 3.5: Specificity versus training rate across various methods in Music.

ular, it improves the accuracy of the second best method (SGBT QA)

by 3.5% in Music and 4.9% in Movies. MRLP naturally separates

question-related features and user-related features in graph construc-

tion, and the above results demonstrate that this approach is better

than simply combining these features. Therefore, MRLP is more ef-

fective in discriminating high-popularity questions from low-popularity

ones.

3.5 Summary

In this chapter, we conduct two studies to investigate QP in CQA

services. In Study 1, we analyze the factors influencing QP and find

that the interaction of users and topics leads to the differences in

QP. Based on the findings of Study 1, Study 2 proposes a mutual

reinforcement-based label propagation algorithm to predict QP us-

ing the features of question texts and asker profiles.
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We experiment with real world data sets and the results demon-

strate that our algorithm is more effective in distinguishing high-

popularity questions from low-popularity ones than the logistic re-

gression model and other state-of-the-art algorithms. However, as

current features extracted from question texts and asker profiles are

not so salient, neither our algorithm nor other competitors achieves

satisfactory performance at present.

Current results lead us to further explore the salient features of

QP in the future work. In addition, semantics can be incorporated to

improve the proposed algorithm.

2 End of chapter.



Chapter 4

Question Routing

4.1 Problem and Motivation

Since CQA portals are so popular, one interesting and important

question is whether this service can solve questions effectively. To

investigate this problem, we randomly sample 3,000 questions in

both Yahoo! Answers and Baidu Zhidao to observe these questions’

statuses. Table 4.1 reports the result, from which we can find that

in Yahoo! Answers only 17.6% of questions receive satisfying an-

swers within 48 hours. For those unresolved questions, nearly 1/5

of them receive no response (211 questions’ statuses are missing

since they are deleted by the system). For Baidu Zhidao, 22.7% of

questions are well-resolved, which is higher than that of Yahoo! An-

swers. However, 42.8% of unresolved questions receive no response

at all, and the rate is much higher than that of Yahoo! Answers.

From the above observations we find that the efficiency of above

two popular CQA portals is not good enough since a great number

of questions are not resolved promptly.

To promote the efficiency of question answering, in this chapter

we propose a framework of Question Routing (QR). This frame-

work routes a newly posted question to answerers who are most

likely to give answers in a short period. The concept of QR con-

tains two meanings. First, it aims to find appropriate answerers who

can provide high quality answers, i.e., these answerers must have

64
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Table 4.1: Statuses of tracked questions two days after being posted.

CQA portal

Number of Number of Number of

resolved unresolved but unanswered

questions answered questions questions

Yahoo! Answers 527 1,820 442

Baidu Zhidao 682 1,325 993

expertise on the routed question. Second, answerers who receive the

routed question must be able to provide quick responses, i.e., they

are available to answer the question in time. Under the framework,

we further propose several models to estimate answerer expertise

and answerer availability.

This chapter proceeds as follows. Section 4.2 details the frame-

work of QR and approaches to estimate answerer expertise and an-

swerer availability. In Section 4.3 and Section 4.4, we describe the

experimental setup and the analyses of results. Section 4.5 gives a

summary of this chapter.

4.2 Question Routing Framework

The whole process of QR is illustrated in Figure 4.1. The opera-

tion includes two stages: answerer profiling (off-line) and routing

(on-line). The first stage relates to building up answerer profiles

in terms of the answering history of each answerer. At the stage of

routing, expertise estimation detects the expertise of all answerers to

new questions (answerer expertise) based on their answerer profiles.

Answerer expertise is defined as follows:

Definition 3 (Answerer Expertise). Answerer u’s expertise on q,

which is represented by E(u, q), models the probability of the an-

swerer u gives a good answer to question q. It is a score between
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Figure 4.1: The framework of Question Routing.

0 and 1. A good answer should feature “responsiveness, accuracy,

and comprehensiveness” (see [9]).

Meanwhile, availability estimation calculates each candidate’s

availability to answer questions within time T from the answerer’s

answering performance profiles. Answerer availability is defined as

follows:

Definition 4 (Answerer Availability). Answerer u’s availability in

a time period T , which is represented by A(u, T ), models the proba-

bility of the answerer u is available to provide answers for any ques-

tions during T . For convenience we simply assume u is available in

T if he answers at least one question in this period.

Finally, answerer ranking utilizes answerer expertise to rank the

answerers, with top-k answerers being chosen as eligible answerers

to new questions.

4.2.1 Answerer Profiling

In the phase of answerer profiling, we establish each answerer’s per-

formance profile from his answering history. For the answerer who

has answered at least one question in CQA services, we use all ques-

tions he once answered and the corresponding answers provided by
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the answerer to build his performance profile. Next, the performance

profile will be used to estimate the expertise and availability on the

new question qr.

4.2.2 Expertise Estimation

In this section, we will present three approaches to estimate each

answerer’s expertise on qr. The first one is the query likelihood lan-

guage model (QLLM) which estimates how likely qr can be gener-

ated from the questions each answerer has answered. The latter two

models utilize the quality of answers to refine QLLM. In the fol-

lowing, we use E(ui, qr) to denote answerer ui’s expertise on new

question qr, ranging from 0 to 1. The higher value E(ui, qr) is, the

higher expertise ui has for qr.

Expertise estimation without answer quality. Our QR concept

is similar to Liu et al.’s work on identifying “the group of ‘experts’

who are likely to provide answers to given questions” [84]. In [84],

several state-of-the-art language models are applied to ranking an-

swerers’ expertise for new questions. We adopt QLLM as our first

model, which performs well in their experiments.

Here we briefly describe how to apply QLLM to rank potential

answerers for given questions. Let qui
denote all previously an-

swered questions by answerer ui, for a new question qr, ui’s ex-

pertise on qr is defined as how likely qr can be generated from qui
:

E(ui, qr) = P (qr|qui
), (4.1)

P (qr|qui
) =

∏

ω∈qr

P (ω|qui
). (4.2)

With Jelinek-Mercer smoothing [158],

P (ω|qui
) = (1− λ)Pml(ω|qui

) + λPml(ω|C), (4.3)

where C is the collection of all questions, and λ is a weighting

coefficient to adjust the weight of smoothing. We set λ = 0.8 in
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our experiments according to the empirical value presented in [158].

Pml(ω|qui
) is the maximum likelihood estimate of generating term

ω from ui’s previously answered questions qui
:

Pml(ω|qui
) =

tf(ω, qui
)

∑

ω′∈qui
tf(ω′, qui

)
, (4.4)

where tf(ω, qui
) means the term frequency of the term ω in qui

. Sim-

ilarly,

Pml(ω|C) =
tf(ω, C)

∑

ω′∈C tf(ω′, C)
, (4.5)

where tf(ω, C) is the term frequency of the term ω in C .

Expertise estimation with answer quality. The above model as-

sumes that the answerer has high expertise on a new question qr if he

has answered many similar questions before. However, it does not

consider the quality of previous answers. An answerer may answers

a great number of questions which are similar to qr, but we cannot

reach the conclusion that the answerer must be an expert for ques-

tion qr if most previous answers are of low quality. Even if we route

qr to this answerer, the asker may not get a satisfying answer. In

order to obtain a more accurate prediction, we utilize answer quality

in expertise estimation. Thus,

E(ui, qr) = α · P (qr|qui
) + (1− α) ·Q(ui, qr), (4.6)

where Q(ui, qr) reflects ui’s answer quality for question qr. In addi-

tion, α ∈ [0, 1] is a weighting coefficient.

We propose to utilize two models to estimate Q(ui, qr) from pre-

vious answers’ quality. The Basic Model is straightforward: it as-

sumes an answerer’s answer quality on the new question qr is the

weighted average answer quality of similar questions he answered
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previously. It is defined as:

QBM(ui, qr) =

∑

qj∼ui

Q(ui, qj) · sim(qj, qr)

∑

qj∼ui

sim(qj, qr)
, (4.7)

where qj ∼ ui denotes the questions ui has answered, and sim(qj, qr)

means the cosine similarity between question qj and qr.
We use the vector space model [125] to represent each question,

i.e., q = (wq1, wq2, ..., wqT )
T , where T is the number of terms (unique

words) in all questions. wqt is the tf-idf weight for the term t and it

is defined as:

wqt = tft,q × log
N

dft
, (4.8)

in which tft,q is the term frequency of term t in question q, N is

the number of all resolved questions in the archive, and dft is the

number of questions containing the term t. Thus, wqt is zero if term

t does not appear in question q.

The cosine similarity between question a and question b is calcu-

lated as follows:

sim(a, b) =

∑T
i=1wai · wbi

√

∑T
i=1w

2
ai

√

∑T
i=1w

2
bi

. (4.9)

However, this model may suffer from the data sparsity problem.

Table 4.2 shows a toy example. Each row in Table 4.2 represents

an answerer and each column represents a question. Each value in

cell (i, j) is ui’s answer quality on question qj, which is already

calculated. Since most answerers only answered one question, the

answerer-question matrix is very sparse. For instance, now we use

Eq. (4.7) to estimate u1’s answer quality for the new question qr.

Since u1 only answered q2 before,

QBM(u1, qr) =
Q(u1, q2) · sim(q2, qr)

sim(q2, qr)
= Q(u1, q2). (4.10)
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Table 4.2: Estimating answerers’ answer quality using the Basic Model. Here only

u1’s answer quality on q2 (number in blue cell) is used to estimate u1’s answer

quality on qr.

`
`
`
`
`
`
`
`
`
`
`
`
`
`̀

Answerer

Question
q1 q2 q3 q4 qr

u1 0.7 ?

u2 0.5

u3 0.9 0.8

u4 0.6

So in this case u1’s answer quality on q2 is used to estimate u1’s

answer quality on qr, no matter how similar it is between qr and q2.

In order to better utilize the known information, we borrow the

idea of similarity fusion in collaborative filtering [143], which lever-

ages other similar answerers’ answer quality on similar questions

to smooth the Basic Model. Let U denote the answerer set and

sim(ui, uj) be the cosine similarity between ui and uj, then in the

Smoothed Model,

QSM(ui, qr) = β

∑

qj∼ui

Q(ui, qj) · sim(qj, qr)

∑

qj∼ui

sim(qj, qr)
+

(1− β)

∑

uj∈U/ui

∑

qk∼uj

Q(uj, qk) · sim(Q(uj, qk), Q(ui, qr))

∑

uj∈U/ui

∑

qk∼uj

sim(Q(uj, qk), Q(ui, qr))
, (4.11)

and

sim(Q(uj, qk), Q(ui, qr)) =
1

√

1
sim(ui,uj)2

+ 1
sim(qk,qr)2

. (4.12)
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Table 4.3: Estimating answerers’ answer quality using the Smoothed Model. Here,

not only u1’s answer quality on q2 (number in blue cell), but similar answerers’

answer quality on similar questions (numbers in yellow cells) are also used to

estimate u1’s answer quality on qr.

`
`
`
`
`
`
`
`
`
`
`
`
`
`̀

Answerer

Question
q1 q2 q3 q4 qr

u1 0.7 ?

u2 0.5

u3 0.9 0.8

u4 0.6

Compared with the Basic Model, the Smoothed Model utilizes

the answer quality of similar answerers on similar questions as extra

sources to smooth the former estimation. As shown in Table 4.3, this

model uses more answerers’ answer quality on similar questions in

smoothing.

We choose the features listed as follows to calculate the cosine

similarity between two answerers:

• Number of total points the user owns;

• Number of answers the user has provided;

• Number of best answers the user has provided;

• Number of questions the user has asked;

• Number of stars the user received.

The next problem is how to determine the answerer’s answer

quality in previously answered questions. Given an answer a(ui, qj)

which is posted by ui for question qj, we use aij to denote the fea-

ture vector of a(ui, qj). By letting the probability of a(ui, qj) being

a good answer be P (aij), we use logistic regression to model the
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log-odds of this probability, which is shown as follows:

log(
P (aij)

1− P (aij)
) = σTaij , (4.13)

where σ is the coefficient vector of the regression model.

The following features are extracted in model training:

• Answer length;

• Question-Answer length ratio;

• Number of answers for this question;

• Number of times the answer is rated up other users;

• Number of times the answer is rated down by other users;

• The answerer’s total points;

• The answerer’s best answer ratio.

Following the work in [57], we apply feature conversion on the

non-monotonic features using Kernel Density Estimation (KDE) [55].

In addition, we scale all feature values into the range of [0,1] using

min-max normalization.

4.2.3 Availability Estimation

The motivation of availability estimation comes from the experience

in daily life. Sometimes you want to ask one of your friends for help

but unfortunately he is too busy to answer at that moment. Although

this friend is able to solve your problem well, he cannot provide you

with any help.

We assume one answerer is available to provide answers for the

routed questions when he log on Yahoo! Answers, however, it is

impossible to get users’ login information for us. Thus, our objective

is changed to estimating whether the answerer logs on in several
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days after the routed question is posted. We model this problem

as a typical trend analysis problem in time-series data mining and

use an autoregressive model to make the forecasting. Formally, we

use A(ui, t) to denote the probability that ui is available at time t to

answer routed questions (usually t represents one specific day). In

practice, we set A(ui, t) = 1 when ui posted at least one answer on

the day t, otherwise A(ui, t) = 0.

The autoregressive model is presented as follows:

A(ui, t) = λ1A(ui, t− 1) + ...+ λpA(ui, t− p) + ε, (4.14)

where p is a time parameter, ε is the source of randomness, and λs

are parameters of the model. The latent assumption of the autore-

gressive model is that the probability that ui is available at day t is a

linear combination of the availability in earlier p days. Given a group

of training data {A(ui, t), A(ui, t−1), ..., A(ui, t−p)} (i = 1, ..., m)

where m is the number of answerers, we can estimate the value of

λ1, λ2, ..., λp. Then we can apply the above model to predict the

value of A(ui, t) when given A(ui, t− 1), ..., A(ui, t− p).
Therefore, each answerer’s availability for a period of time T =

{t1, ..., ts} is calculated as:

A(ui, T ) = 1−

s
∏

j=1

(1− A(ui, tj)). (4.15)

4.2.4 Answerer Ranking

We treat answerer expertise on qr and answerer availability in a

range of time T as independent, and use their linear combination

as the final QR score for each answerer:

QR(ui, qr, T ) = γ ·E(ui, qr) + (1− γ) · A(ui, T ), (4.16)

where γ ∈ [0, 1] is a weighting parameter. We rank all answerers

according to their QR scores and put top-k candidates into the final

QR list.
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To sum up, we present the whole procedure of QR in Algo-

rithm 2.

Algorithm 2 Routing questions to appropriate answerers in CQA

Input: Resolved questions, answers, answerers, new question qr, time period T ,

K, α, β, and γ.

Output: QR list L for qr.
1: For each answerer in the archive, build his performance profile from his an-

swering history.

2: Estimate each answerer’s expertise on qr using Eq. (4.1) or Eq. (4.6).

3: Calculate each answerer’s availability within T after qr is posted using

Eq. (4.15).

4: Ranking all answerers according to their QR scores which are calculated from

Eq. (4.16) and put top-k candidates into the QR list L.

4.3 Experimental Setup

We conduct a series of experiments using Yahoo! Answers data, and

apply the proposed QR framework to resolved questions (testing

data) to explore whether the answerers in the QR list actually an-

swer those questions. We aim to investigate the answers to those

research questions through experiments:

1. Is it reasonable to route new questions to those answerers who

have answered similar questions? (i.e., do answerers prefer to

answer the question that some similar questions they have an-

swered?)

2. What’s the influence of answer quality to the performance of

QR?

3. Does the Smoothed Model give better answer quality estimation

and QR performance improvement?

4. Is it useful to estimate answerer availability in QR or does

availability estimation improve the performance by much?
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In the following, we first present our data set. Next, we describe

all compared approaches in our experiments. Then we describe the

evaluation metrics which are used to evaluate the performance of

each method in QR.

4.3.1 Data Collection

Our data set is a snapshot of resolved questions from April 6, 2010

to May 14, 2010 under the Computers & Internet category of Ya-

hoo! Answers. For each question, we crawled information for ques-

tions (subjects), answers (content, number of rate-ups, number of

rate-downs) and answerers (total points, number of answers, num-

ber of best answers, number of questions asked, and number of stars

received). For each answerer, we also crawled his answer history log

during this time if it is public. The stopwords in question subjects

and answer content are removed. In our experiments, the questions

posted after May 6, 2010 are treated as new questions to be routed

(Set A, testing data) and the ones remaining are treated as archive

data (Set B). The ground truth for each question in Set A are the

answerers who actually answer it.

Data set. Table 4.4 presents the information of the data set. Af-

ter splitting as stated above, Set A includes 2,564 questions, 7,059

answers, and 3,952 answerers. Set B includes 17,182 questions,

48,663 answers, and 16,298 answerers.

Automatic labeling. Recall that we use a logistic regression

model to estimate each answerer’s expertise on the questions which

the answerer has answered (i.e., each previous answer’s quality). We

adopt the community’s and the askers’ choices to avoid manual la-

beling. Answers are labeled as “good” and “bad” as follows. For

each question in Set B, the answer is labeled as a “good” answer

(the probability for the answer being good is high) only the follow-

ing two conditions are met:

1. It is selected as the best answer;
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Table 4.4: Description of our data set.

Item Value

number of questions 19,746

average question length in words 10.54

average number of answers for one question 2.82

maximum number of answers for one question 31

number of answers 55,722

average answer length in words 55.35

number of askers 16,036

number of answerers 19,280

number of both askers and answerers 1,780

number of answerers only 17,500

number of askers only 14,256

2. It obtains more than 50% of rate-ups for all answers of the

question.

Meanwhile, one answer is labeled as a “bad” answer if it receives

more than 50% of rate-downs for all answers of the question. As

such, 2,153 “good” instances and 2,593 “bad” instances served as

training data to estimate the parameters of the logistic regression

model.

T and p in availability estimation. In order to determine the

value of T in availability estimation, we analyze the duration from

the question being posted to the last answer being provided for ques-

tions in Set B. It shows that the maximum duration time for a ques-

tion to receive an answer is 2.16 days, the minimum value is 14

seconds, and the mean duration is 2.21 hours. Based on these ob-

servations, we set T = 3 in our experiments in order to receive all

possible answers. Moreover, we set p = 3 which means the first

three days’ answering records are used to estimate the answerer’s

availability in the fourth day.
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4.3.2 Methods for Comparison

The main differences between above stated models for expertise es-

timation lie in two aspects:

1. Quality of answers. QLLM does not consider the quality of an-

swers and it only estimates the similarities between the routed

question qr and each answerer’s profile. Different from QLLM,

The Basic Model and the Smoothed Model utilize the quality of

answers in expertise estimation.

2. The way to estimate answer quality. The Basic Model esti-

mates answer quality from the answerer’s own profile, while

the Smoothed Model leverages similar answerers’ profiles to

refine the estimation.

In total, we compare the QR performance of the following meth-

ods in our experiments:

• QLLM: For each question qr in Set A, we use the QLLM to

calculate the expertise on qr for each answerer in Set B, and

rank them according to their expertise. Thus, ui’s QR score (it

is equal to expertise score here) for qr is derived from:

QR(ui, qr, T ) = P (qr|qui
). (4.17)

• Basic Q: For each question qr in Set A, we use the Basic Model

to calculate the answer quality, and apply Eq. (4.6) to estimate

each answerer’s expertise in Set B. We then rank them accord-

ing to their expertise. Thus, ui’s QR score (it is equal to exper-

tise score here) for qr is derived from:

QR(ui, qr, T ) = α ·P (qr|qui
)+ (1−α) ·QBM(ui, qr). (4.18)

• Smoothed Q: For each question qr in Set A, we use the Smoothed

Model to calculate the answer quality, and apply Eq. (4.6) to es-

timate each answerer’s expertise in Set B. We then rank them
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according to their expertise. Thus, ui’s QR score (it is equal to

expertise score here) for qr is derived from:

QR(ui, qr, T ) = α ·P (qr|qui
) + (1−α) ·QSM(ui, qr). (4.19)

• QLLM+AE: For each question qr in Set A, we use the QLLM

to calculate the expertise on qr for each answerer in Set B, and

estimate each answerer’s availability within T = 3 days after

the publish time of qr. We then rank them according to their

QR scores. Thus, ui’s QR score for qr is derived from:

QR(ui, qr, T ) = γ · P (qr|qui
) + (1− γ) ·A(ui, T ). (4.20)

• Basic Q+AE: For each question qr in Set A, we first use the Ba-

sic Model to calculate the answer quality and apply Eq. (4.6) to

estimate each answerer’s expertise in Set B, and then estimate

each one’s availability within T = 3 days after the publish

time of qr. Finally answerers are ranked according to their QR

scores. Thus, ui’s QR score for qr is derived from:

QR(ui, qr, T ) = γ · [α · P (qr|qui
) + (1− α) ·QBM(ui, qr)]

+ (1− γ) ·A(ui, T ). (4.21)

• Smoothed Q+AE: For each question qr in Set A, we use the

Smoothed Model to calculate the answer quality, and then ap-

ply Eq. (4.6) to estimate each answerer’s expertise in Set B.

After that, we estimate each one’s availability within T = 3
days after the publish time of qr. Finally answerers are ranked

according to their QR scores. Thus, ui’s QR score for qr is

derived from:

QR(ui, qr, T ) = γ · [α · P (qr|qui
) + (1− α) ·QSM(ui, qr)]

+ (1− γ) · A(ui, T ). (4.22)
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4.3.3 Evaluation Metrics

The following evaluation metrics are adopted to evaluate the quality

of generated QR List.

• Precision at K (Prec@K). For a set of new questions Qr,

Prec@K reports the fraction of successful QR when top-k an-

swerers of the ranking list are returned. The criteria of a suc-

cessful QR is defined as at least one answerer in the top-k of

the ranking list actually answering the routed question. In this

metric, positions of these answerers are not considered. The

only key factor is whether there is at least one answerer in these

K candidates who answered the routed question. Prec@K is

calculated as:

Prec@K =

∑

qr∈Qr

S(qr, K)

|Qr|
, (4.23)

S(qr, K) =

{

1, if QR for qr is successful;

0, otherwise.
(4.24)

• Mean Reciprocal Rank (MRR). The reciprocal rank for an indi-

vidual question qr is the reciprocal of the rank at which the first

answerer in QR list who actually answered qr, or 0 if none of

the answerers in QR list answered qr. Here, the QR list is com-

posed by all answerers. The MRR value for a set of questions

Qr is the mean value of each question’s reciprocal rank. It is

defined as:

MRR =
1

|Qr|

∑

qr∈Qr

1

Rank(qr)
, (4.25)

where Rank(qr) is the rank of the first answerer who actually

answered qr in the QR list of qr.
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4.4 Experimental Results

In this section, we first show the result of QLLM, and discuss the

rationality of routing new questions to those answerers who have an-

swered similar questions previously. Then we present each method’s

performance in QR, and analyze the effects of parameter setting for

expertise estimation and the impact of availability estimation for QR

quality.

4.4.1 The Rationality of QR

Table 4.5 reports the number of successful QR as well as Prec@K
using QLLM after testing 2,564 questions in Set A. We first note

that even though we set K = ALL, i.e., we route the question qr
to all answerers in Set B, only 2/3 of questions will be answered.

The reason is that the answerers for the remaining 851 questions

do not have any record in Set B. Secondly, when K = 1000, more

than half of the questions (with at least one answerer belonging to

Set B) will be successfully routed to the answerers who actually an-

swer this question. That means if we route the question to the top

6% (1000/16, 298) answerers who are familiar with the question,

more than half of the questions will receive at least one answer. This

observation demonstrates that it is reasonable and effective to route

questions to those answerers who have answered similar questions

previously. In our following experiments, we remove the 851 ques-

tions from Set A whose answerers do not appear in Set B, and use

the remaining 1,713 ones as test questions.

Table 4.6 reports each method’s performance measured by MRR.

The value of α is 0.6 for those methods which consider answer qual-

ity. The value of β for Smoothed Q and Smoothed Q+AE is 0.8.

Furthermore, we set γ = 0.9 for QLLM+AE, Basic Q+AE, and

Smoothed Q+AE.
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Table 4.5: Number of successful QR and Prec@K versus K for QLLM.

K 5 10 20 40 60 80 100 1000
ALL

(16,298)

Number of
80 121 175 253 312 350 386 876 1,713

Successful QR

Prec@K(%) 3.12 4.72 6.83 9.87 12.17 13.65 15.05 34.17 66.81

Table 4.6: Different methods’ MRR in QR.

QLL Basic Q Smoothed Q QLL+AE Basic Q+AE Smoothed Q+AE

0.0389 0.0494 0.052 0.0405 0.0511 0.0541

4.4.2 Impact of Answer Quality

From Table 4.6 we observe that utilizing answer quality can im-

prove the performance of QR significantly. The MRR values of Ba-

sic Q and Smoothed Q are 26.99% and 33.68% higher than that of

QLLM, respectively. Similarly, the MRR values of Basic Q+AE

and Smoothed Q+AE are 26.17% and 33.58% higher than that of

QLLM+AE, respectively. These results demonstrate that utilizing

answer quality can improve the accuracy in estimating answerer ex-

pertise on new question greatly. In order to explore the impact of

α’s value for QR performance, we fixed β = 0.8 and tested different

settings of α. The results are reported in Figure 4.2.

First we observe that when α = 0.6, both Basic Q and Smoothed Q

attain the highest MRR. Furthermore, when α > 0.3, the perfor-

mance is always better than QLLM. With these findings, we believe

that answer quality indeed provide great help for finding experts to

the routed question.
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Figure 4.2: The MRR value of Basic Q and Smoothed Q versus various α.

4.4.3 Basic Q versus Smoothed Q

Smoothed Q outperforms Basic Q since the MRR of the former one

is about 5% higher than that of the latter. We think this is due to the

help of utilizing similar answerers’ expertise on similar questions to

smooth answer quality, especially for the answerers who answered

few questions. Figure 4.3 gives the performance of Smoothed Q

with different settings of β (α = 0.6), from which we find that the

value of β affects the QR quality of this method significantly. When

α = 0, which means we merely rely on similar answerers’ expertise

on similar questions for expertise estimation on routed question, the

MRR is much lower than if there is no smoothing (i.e., α = 1). The

best performance of MRR is observed when β = 0.8.
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Figure 4.3: The MRR value of Smoothed Q versus various β.

4.4.4 Impact of Answerer Availability

Figure 4.4 presents each method’s performance when considering

answerer availability. First, routing questions based on answerer

availability alone is very inaccurate: only about 1 out of 1,000 QRs

will be successful when γ = 0. Second, QLLM+AE, Basic Q+AE,

and Smoothed Q+AE perform the best when γ is around 0.9. When

γ = 0.9, the MRR of these methods are 4.11%, 3.44%, and 4.04%

higher than corresponding methods without availability estimation,

respectively. Since answerers’ answering history in our data set is

incomplete, and the autoregressive model is imperfect (right now

it can only deal with the prediction on each day), we believe the

performance of QR can further be improved. Since availability esti-

mation is helpful to improve QR performance, it is better to consider

whether the answerer is available to provide answers in QR.

To sum up, our experiments demonstrate that it is reasonable and

effective to route new questions to those answerers who have pre-
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Figure 4.4: MRR versus γ across different methods.

viously answered similar questions. Utilizing answer quality in ex-

pertise estimation can improve the performance of QR significantly

and using similar answerers’ answer quality on similar questions is

helpful in calculating answer quality for new questions. In addition,

availability estimation further boosts the performance of QR.

The best MRR value in our methods is 0.0541, which means on

average each tested question will get at least one answer if we route

it to the top 19 ranked answerers after answerer ranking. Consid-

ering there is a total of 16,298 answerers for ranking, the result is

promising.

4.5 Summary

In this chapter, we propose a framework for Question Routing in

CQA services. QR is a process that routes newly posted questions

to a set of answerers who are most likely to give answers in a short
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period of time. The proposed QR framework considers both an-

swerer expertise and answerer availability for providing answers in a

range of time. We conduct experiments on a collection of data from

Yahoo! Answers. The results show that it is effective to route ques-

tions to answerers who have answered similar questions previously.

It also demonstrates that leveraging answer quality can greatly im-

prove the performance of QR. In addition, utilizing similar answer-

ers’ answer quality on similar questions provides more accurate ex-

pertise estimation, and thus obtains better QR performance. Fur-

thermore, availability estimation improves the performance of QR.

Based on the experimental results so far, we believe that our QR

framework has the ability to route new questions to those answerers

who will provide answers in a short period of time.

In the future, further study is needed to investigate the perfor-

mance of our approach across different CQA portals, as well as dif-

ferent question domains (instead of the Computer & Internet cate-

gory). In addition, we plan to explore more advanced availability

estimation models.

2 End of chapter.



Chapter 5

Category-sensitive Question Routing

5.1 Problem and Motivation

In the last chapter, we propose the question routing (QR) frame-

work which aims to route newly posted questions to potential an-

swerers. The appropriateness of potential answerers is evaluated

based on archives of their previously answered questions. In the

framework, answerer expertise and answerer availability are utilized

to rank potential answerers, with top-k being chosen as eligible ones.

Therefore, expertise estimation plays a key role in QR. Volumes of

studies have been conducted regarding expertise estimation, includ-

ing Query Likelihood Language Model (QLLM) [84], Cluster-based

Language Model (CBLM) [167], mixture of Latent Dirichlet Allo-

cation (LDA) and QLLM [80]. However, for all answerers, the ex-

pertise has been estimated for QR, even to answerers without any

experience of routed questions. For an answerer, a complete set of

questions the answerer has answered is utilized in the models, al-

though a certain amount of answered questions might be irrelevant

to the questions to be routed.

To address these two problems, in this chapter we focus on uti-

lizing category information in QR. As shown in Figure 5.1, each

question is assigned with a particular category in CQA services. In

the example, the question belongs to the leaf category Monitors and

the top category Computers & Internet. The category information

86
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Figure 5.1: An example of question category in CQA services (captured from

Yahoo! Answers on January 20, 2011).

of new questions would allow much latitude in filtering irrelevant

answerers among all answerers, together with screening irrelevant

questions of an answerer to enhance the efficiency of expertise esti-

mation. Based on this idea, we construct category-answerer indexes

for filtering irrelevant answerers, and develop category-sensitive LMs

for estimating answerer expertise. Figure 5.2 shows the incorpora-

tion of category information for expertise estimation.

This chapter is organized as follows. Category-answerer indexes

and category-sensitive LMs are developed in Section 5.3. Experi-

mental setup as well as results are then reported and discussed in

Section 5.4 and Section 5.5. A summary is given in Section 5.6.

5.2 Question Category for Routing Questions

5.2.1 Category-Answerer Indexes

In the area of expert finding [6, 60], irrelevant document authors are

sifted out to find the most appropriate experts for the topic. Simi-

larly, filtering irrelevant answerers is beneficial in finding the most

relevant answerers for answering questions regarding certain topics.

Therefore, we construct category-answerer indexes to filter irrele-
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Figure 5.2: Question category for expertise estimation in QR.

vant answerers for expertise estimation. In our study, we establish

two indexes:

1. Severe index: Only those answerers who have answered at least

one question in the routed question’s leaf category are kept,

with the remaining answerers being sifted out.

2. Lenient index: Answerers who have answered at least one ques-

tion in the routed question’s top category are indexed.

The application of the category-answerer indexes filters out a great

number of irrelevant answerers, with only relevant answerers being

kept, thus reducing the number of answerers for expertise estima-

tion. Subsequently, we apply the two category-sensitive LMs pre-

sented in the following to estimate potential answerers’ expertise

for routed questions.

5.2.2 Category-sensitive Language Models

Language models (LMs) are originally used in the community of

speech recognition [151], before being introduced to information re-
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trieval (IR) [48, 118]. The idea of LMs in IR is to estimate the likeli-

hood of generating a query from the document. As and basic LM in

IR is QLLM [118] (details about QLLM are presented in Chapter 4),

our category-sensitive LMs extend it through incorporating category

information.

QLLM assumes that an answerer will be of expertise in answer-

ing the new question qr if the probability of generating qr from his

profile is high. In addition, it utilizes a complete profile including all

previously answered questions for estimation. However, the whole

answerer profile, as discussed, might include a certain amount of

answered questions under a wide range of categories, with little rel-

evance to qr. The content of irrelevant questions will thus jeopardize

the quality of expertise estimation. Consider an example:

Alex, a senior Java programmer, is an active answerer

in Yahoo! Answers. He has answered more than 1,000

questions in terms of Java programming as well as 100

questions about Java coffee.

Bob, a cafe manager, is also a frequent user of Ya-

hoo! Answers. He answered around 300 questions about

Java coffee, but he knows little about Java programming.

Carl, a college student, now asks a question “I met a

problem in making Java, any ideas” in “Food & Drink”

category.

For the above example, the QLLM would predict Alex to be a

better expert than Bob, as Alex’s profile includes more “Java” lin-

guistic texts (1,100 questions in total) than those of Bob (300 ques-

tions), although Bob might be more appropriate to answer Carl’s

question. To address the above problem, we propose two novel LMs

by incorporating question category in QLLM (that’s why we call

them “category-sensitive” LMs). In the following, we present these

two algorithms in turn.

BCS-LM. In CQA portals, questions are equipped with hier-

archical and systematic categories. When an asker posts a ques-
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tion, he is required to choose a (leaf) category that the question be-

longs to (see Figure 5.1). Formally, let qui
denote all previously

answered questions by answerer ui (i.e., ui’s profile), and C =
{c1, c2, c3, ..., cn} represents all leaf categories, then for a new ques-

tion qr in cj, ui’s expertise on qr, which is represented byE(ui, qr, cj)
is defined as follows:

E(ui, qr, cj) ≡ Pbcs(ui|qr, cj), (5.1)

Pbcs(ui|qr, cj) ∝ Pbcs(qr, cj|ui)P (ui), (5.2)

Pbcs(qr, cj|ui) = Pbcs(qr|cj , ui)P (cj|ui), (5.3)

Pbcs(qr|cj, ui) = Pbcs(qr|cj , qui
) =

∏

ω∈qr

P (ω|quij
), (5.4)

and

P (ω|quij
) = (1− λ)Pml(ω|quij

) + λPml(ω|Coll), (5.5)

where cj is qr’s category, P (cj|ui) denotes the probability of answer-

ing questions in cj for ui, and quij
represents the question texts of all

previously answered questions in cj for ui. We call this model as the

basic category-sensitive LM (BCS-LM).

Turn to the aforementioned example, the estimation of Alex and

Bob’s expertise to Carl’s question will be adjusted accordingly, us-

ing the category-sensitive QLLM.

TCS-LM. It is also noted that BCS-LM is based on the same-

leaf-category assumption, with potential answerers under similar

leaf categories being omitted. CQA portals like Yahoo! Answers

usually provide category hierarchies to organize questions. Under

one main category, there exist similar leaf categories, e.g., the leaf

categories of Programming & Design and Software. Answerers with

expertise in Programming & Design may also be experts on ques-

tions asked in Software. Based on this idea, we propose the trans-
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ferred category-sensitive QLLM (TCS-LM) as follows:

Ptcs(qr, cj|ui) =

βPbcs(qr, cj|ui) +
∑

ck∈Tran(cj)

T (ck → cj)Pbcs(qr, ck|ui)

β +
∑

ck∈Tran(cj)

T (ck → cj)
,

(5.6)

where β adjusts the weight between the original leaf category and

other similar leaf categories. Lower β value provides more weight

to similar categories, and vice versa. Tran(cj) denotes the set of cat-

egories which are transferable from (similar to) cj , and T (ck → cj)

represents the probability of transfer from category ck to cj . Further-

more, we define

ck ∈ Tran(cj) if T (ck → cj) ≥ δ, (5.7)

where δ is a threshold between 0 and 1.

To estimate the transferring probability between two categories,

we attempt two approaches: answerer-based approach and content-

based approach.

Answerer-based method assumes that if there are many same

answerers posting answers in two categories, these two categories

should be similar with each other. It constructs a category-answerer

matrix E from resolved questions (see Figure 5.3), with each row

of E representing one answerer and each column representing one

(leaf) category. The value of eij denotes the number of answers ui

provided in category cj. Let ej and ek represent two column vectors

of cj and ck, the transferring probability (Tans(·)) between cj and ck
is estimated from their cosine similarity:

Tans(cj → ck) = Tans(ck → cj) =
ej · ek
|ej||ek|

. (5.8)

Similarly, the content-based method assumes that if there are many

identical terms appearing in two categories’ questions, these two cat-

egories should be similar to each other. It constructs a category-term
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Figure 5.3: An example of Matrix E.

Figure 5.4: Question distribution across different leaf categories (The first 20 are

leaf categories under Computers & Internet, the left are leaf categories under En-

tertainment & Music).

matrix from resolved questions and also utilizes the cosine similarity

as the transferring probability between two categories.

5.3 Experimental Setup

To examine the QR efficiency of applying question category, we

conduct experiments on category-answerer indexes and category-

sensitive LMs. In this section, we first present the data collection

procedures, and then describe the compared methods with our category-

sensitive LMs. In the following, evaluation metrics are presented. At

last, we detail the model training for some algorithms.
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Table 5.1: Description of our data set (after stop words removing and stemming).

Item Value

Number of questions 433,072

Number of answers 1,510,531

Average number of answers for one question 3.49

Maximum number of answers for one question 50

Mean first reply duration (in minutes) 197.32

Average question length in words 43.87

Average answer length in words 30.08

Number of askers 240,277

Number of answerers 270,043

Number of both askers and answerers 68,551

Number of askers 171,726

Number of answerers 201,492

5.3.1 Data Collection

The data consist of over 400 thousands resolved questions, which

are crawled from June 2010 to October 2010 under Computers &

Internet and Entertainment & Music categories of Yahoo! Answers

through Yahoo! Answers API1. Under the two categories, there are

20 and 25 leaf categories, respectively2. Figure 5.4 presents the dis-

tribution of questions over leaf categories, and Table 5.1 reports the

statistics of our data set.

It is worth noting that our experiments mainly employ question

texts for answerer profiling3. Answer texts are intentionally ex-

1http://developer.yahoo.com/answers/
2We manually remove questions in Polls & Surveys because questions in this leaf category are

seeking for a large group of user opinions or suggestions while not require a few number of expert

answers as questions in other categories. Therefore, our data set includes 44 leaf categories.
3For the comparison purpose, the chapter also attempts the Cluster-based LM (CBLM) [167]

to estimate answerer expertise. CBLM resorts to answer texts for estimating the contribution

of an answerer to that particular question and the respective cluster. See more discussions in

Section 5.3.2.
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cluded from an answerer profile based on two considerations. First,

using question texts alone in answerer profile is found to perform

more consistently across various data sets and achieve more satisfac-

tory empirical results, comparing with those involving both question

and answer texts (see Liu et al. [84]). In this connection, only ques-

tion texts are selected to most algorithms in the experiment. Second,

including answer texts is not efficient in terms of two aspects. On

the one hand, similarities between texts of question A and those of

question B could not ensure that texts of answers to question A are

also similar to texts of question B. Specifically, consider the follow-

ing example:

Question A: What are your favorite movies?

Question B: What are your top ten favorite movies of

all time?

An Answer to Question A: Avatar and The Blind Side.

In the above example, no text similarities are observed between

texts of the answer to question A and texts of question B. On the

other hand, answer texts usually contain redundant or irrelevant texts,

which might hinder the efficiency of LMs.

Therefore, as for the crawled resolved questions, the information

of each question comprises:

1. Affiliated category chosen by the original asker;

2. Texts of question (subject and content), with stop words being

excluded and words being stemmed;

3. Answerers’ IDs of each question.

Furthermore, all questions are classified into two sets:

• Set A (Test data): questions posted after 6 May, 2010 used as

questions to be routed;

• Set B (Archive data): the remaining questions.
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As such, Set A is made up of 382,695 questions, 1,335,892 answers

and 243,167 answerers. Set B is composed of 50,377 questions,

174,639 answers and 49,466 answerers. In addition, we set two

ground truths:

1. GT-A: Answerers who answered questions in Set A;

2. GT-BA: Answerers who give the best answers for questions in

Set A.

GT-BA is more rigorous since this standard only allows one “rele-

vant” answerer (the one who gives the best answer) for each question

while GT-A treats all answerers as “relevant” ones.

5.3.2 Methods for Comparison

For answerer filtering, we compare the effect of using the severe

index and the lenient index to no index used. For expertise estima-

tion, we choose the cluster-based language model (CBLM) and the

mixture of LDA and QLLM (LDALM) to compare with category-

sensitive LMs based on the following two considerations:

1. In CBLM [167], similar questions under the same topic are

clustered, and answerer expertise is estimated through calcu-

lating the answerer’s contribution to each cluster as well as

the similarity between the routed question and each cluster. In

CQA portals, each leaf category could be treated as a cluster,

and CBLM is thus employed. Therefore, we implement CBLM

to explore whether such “category-sensitive” setting is compa-

rable with our category-sensitive LMs.

2. Liu et al. [80] show that utilizing latent topics boosts the per-

formance of QLLM for expertise estimation. Therefore, we

intend to compare the effectiveness of latent topics to explicit

categories, as they both consider semantics in expertise estima-

tion.
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The two models of CBLM and LDALM are briefly introduced in

the following.

1. CBLM. Each answerer’s expertise on the routed question qr is

estimated from his contribution to each cluster and the similar-

ity between each cluster and qr:

P (qr|ui) =
∑

Cluster

∏

ω∈qr

P (ω|θCluster)
n(ω,qr)con(Cluster, u),

(5.9)

In the above equation,

P (ω|θCluster) = (1− λ)P (ω|Cluster)

+ λP (ω|Coll), (5.10)

con(Cluster, ui) =
∑

qa

con(qa, ui), (5.11)

con(qa, ui) =

∏

ω∈q P (ω|θaui)
∑

(qa)
′

∏

ω∈q′ P (ω|θa′ui)
, (5.12)

P (ω|θau) = (1− λ)P (ω|au)

+ λP (ω|Coll), (5.13)

where ω represents a term, n(ω, qr) means the number of times

that ω appears in qr, θCluster denotes the language model of

the cluster, and P (ω|θCluster) denotes the maximum likelihood

estimation of ω in all question texts in that cluster. Similarly,

θaui represents the language model of ui’s answers (aui
). In

addition, con(qa, ui) means ui’s contribution to one question-

answer pair in which ui gives the answer a, λ ∈ [0, 1] is a

weighting parameter, and Coll denotes the whole collection.

Note that extra information (i.e., answer texts) is required to

calculate answerers’ contributions to each cluster. In our ex-

periments, we treat each leaf category as a cluster.

2. LDALM. Each answerer’s expertise on the routed question qr
is estimated from both QLLM and LDA. LDA captures an-

swerer expertise on latent topics together with the relationships
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between latent topics and qr, which bridges the lexical gap in

QLLM:

P (qr|ui) =
∏

ω∈qr

P (ω|θui
)n(ω,qr), (5.14)

P (ω|θui
) = δPLDA(ω|θ̂, φ̂, θui

)

+ (1− δ)PQLLM(ω|θui
), (5.15)

PLDA(ω|θ̂, φ̂, θui
) =

Z
∑

z=1

P (ω|z, φ̂)P (z|θ̂, θui
), (5.16)

where θui
denotes the language model of ui’s profile, δ is a

weighting parameter, Z is the number of latent topics, θ̂ and φ̂
are the posterior estimates of parameters in the generation pro-

cess of LDA. PQLLM(ω|θui
) can be estimated using Eq. (??).

We set Z = 100 and δ = 0.5 empirically according to [80].

In addition, the original QLLM is included in comparisons as the

baseline method. Together with the proposed two category-sensitive

LMs, we compare the performance of expertise estimation with five

methods altogether.

All of these methods include the user prior P (ui), which repre-

sents the probability of routing the new question to ui without know-

ing anything of ui. Liu et al. [84] assume P (ui) subject to a uniform

distribution. Suppose the number of answerers is N ,

PUniform(ui) =
1

N
. (5.17)

However, when we build each answerer’s profile, we already know

some information of ui, such as the ask-answer links among users

and the number of answers for each answerer. Zhou et al. [167]

model P (ui) as the authority of ui among all answerers and applies

PageRank [15] in calculation. However, PageRank is not appro-

priate in representing answerers’ authorities well because the whole

graph is not connected, and authorities in connected sub-graphs (rather
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than in the whole graph) are estimated. Bouguessa et at. [14] demon-

strate that in-degree (total number of answers) is more effective in

CQA services. Therefore, we normalize in-degree for each answerer

and model P (ui) as the number of answers ui provided (Nans(ui))

divided by the total number of answers, so

PIndegree(ui) =
Nans(ui)

M
, (5.18)

where M denotes the total number of previously answered answers.

5.3.3 Evaluation Metrics

We use the average number of potential answerers per routed ques-

tion and loss of recall to measure the effect of category-answerer

indexes for answerer filtering. The average number of potential an-

swerers per question measures the influence on filtering out irrele-

vant answerers, and the loss of recall measures the degree of relevant

answerers that are eliminated.

We adopt the Precision at K (Prec@K), the Mean Average Preci-

sion (MAP), the Mean Reciprocal Rank (MRR), and the Mean QR

Time (MQRT) as evaluation metrics for various LMs in expertise

estimation, as they are widely used in evaluating the quality of re-

trieval results [96]. We have presented the definitions of Prec@K

and MRR in the last chapter. In the following, we describe MAP

and MQRT one after another.

• Mean Average Precision: For a set of new questions Qr, MAP

measures the mean of the average precision for each question
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Table 5.2: Transferred probabilities between partial leaf categories (answerer-

based method).

P
P
P
P
P
P
P
P
P

From

To
Software Printers Comedy Lyrics

Programming
0.2975 0.0251 0.0026 0.0026

& Design

Scanners 0.1158 0.5604 0.0014 0.0008

Drama 0.0053 0.0006 0.2593 0.0137

Other - Music 0.0102 0.0019 0.0273 0.1683

qr in QR:

MAP =

∑

qr∈Qr

AvgP (qr)

|Qr|
, (5.19)

AvgP (qr) =

∑Nr

k=1(Pr(k) · IsAns(k))

NRAr
, (5.20)

Pr(k) =
NRAr(k)

k
, (5.21)

where Qr is a set of questions to be routed, Nr is the number

of potential answerers for qr generated from answerer filtering,

NRAr is the number of real answerers for qr, IsAns(k) is a

binary function denoting whether the kth answerer actually an-

swered qr, and NRAr(k) denotes the number of real answerers

in the top-k answerers for qr.

• Mean QR Time: It calculates the average time spent on rout-

ing (including answerer filtering, expertise estimation, and an-

swerer ranking) one question as the metric of time efficiency

for all methods.
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Table 5.3: Transferred probabilities between partial leaf categories (content-based

method).

P
P
P
P
P
P
P
P
P

From

To
Software Printers Comedy Lyrics

Programming
0.2250 0.0236 0.0116 0.0116

& Design

Scanners 0.1676 0.2671 0.0049 0.0034

Drama 0.0136 0.0020 0.5481 0.0376

Other - Music 0.0443 0.0070 0.0748 0.2922

5.3.4 Model Training and Parameter Setting

The transferred probability from one leaf category to another is cal-

culated in advance. Table 5.2 and Table 5.3 report partial results

using answerer-based and content-based methods respectively, from

which we find that the leaf categories under same high-level cate-

gory (e.g., Programming & Design → Software) are more transfer-

able than those under different ones (e.g., Programming & Design

→ Comedy). Comparing the results of answerer-based method and

those of content-based method, the latter generate higher similari-

ties between irrelevant categories, e.g., Programming & Design →
Comedy, Other - Music → Software, etc. The influence of these two

approaches on TCS-LM will be detailed in Section 5.4.2.

We employ the tool GibbsLDA++4 to estimate the posterior prob-

abilities of LDA (say, θ of each answerer and φ of each topic). The

default setting is adopted, and the number of latent topics is set

to 100. We set β = 3.5 for TCS-LM in the experiments empiri-

cally as this setting yields the best performance. Because it is time-

consuming to test all questions in Set A (Test set), we sample 440

questions randomly from Set A (10 questions from each leaf cate-

gory) as testing data. All algorithms are tested on a PC equipped

4http://gibbslda.sourceforge.net/
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Table 5.4: Effects of using category-answerer indexes on answerer filtering.

Type
Average number of potential answerers Loss of

Before filtering After filtering recall

Severe 243,167 19,235 (↓92.09%) 0.24

Lenient 243,167 137,171 (↓43.59%) 0.14

with two 2.4GHz CPUs and 3GB RAM.

5.4 Experimental Results

This section reports and discusses experimental results of using category-

answerer indexes to shorten the list of potential answerers and ap-

plying category-sensitive LMs to expertise estimation.

5.4.1 Category-Answerer Indexes

Table 5.4 reports the effect of answerer filtering using two different

indexes. The severe index reduces the average number of potential

answerers by 92%, while lenient index reduces 43% of candidates,

with a significant decrease of computing costs being identified. In

the recall, among all 50,377 test questions, there are 38,343 ques-

tions satisfying the condition that at least one answerer is indexed

by the severe index (recall of 76%). In addition, there are 43,235

questions whose answerers are indexed when lenient indexes are

applied (recall of 86%). Due to the limitation of sample size, the

improvement of recall may be obtained in a real world situation.

So far, experimental results have supported the inclusion of leverag-

ing question category as a filter to omit irrelevant answerers, which

makes QR more efficient with only a small loss of recall. Since the

severe index filters more irrelevant answerers with little decrease of

recall, we employ the severe index in the following experiments.
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Table 5.5: Different methods’ Prec@K in QR versus various Ks using GT-A (best

results are shown in bold).

K QLLM BCS-LM TCS-LM LDALM CBLM

1 0.0795 0.1114 (↑40.13%) 0.1227 (↑54.34%) 0.0989 (↑24.40%) 0.0000

3 0.1659 0.2364 (↑42.50%) 0.2340 (↑41.05%) 0.1950 (↑17.54%) 0.0000

5 0.2091 0.2727 (↑30.42%) 0.2705 (↑29.36%) 0.2455 (↑17.41%) 0.0000

10 0.2705 0.3386 (↑25.18%) 0.3455 (↑27.73%) 0.3102 (↑14.68%) 0.0000

20 0.3386 0.3909 (↑15.45%) 0.3932 (↑16.13%) 0.3710 (↑9.57%) 0.0091

40 0.4136 0.4523 (↑9.36%) 0.4591 (↑11.00%) 0.4392 (↑6.19%) 0.0273

60 0.4477 0.4818 (↑7.62%) 0.4795 (↑7.10%) 0.4649 (↑3.84%) 0.0545

80 0.4727 0.4955 (↑4.82%) 0.4909 (↑3.85%) 0.4867 (↑2.96%) 0.0727

100 0.4909 0.5159 (↑5.09%) 0.5114 (↑4.18%) 0.4979 (↑1.43%) 0.0795

5.4.2 Category-sensitive Language Models

Table 5.5 and Table 5.6 report Prec@K for all algorithms with dif-

ferent Ks from 1 to 100 under GT-A and GT-BA. Table 5.7 gives the

time-efficiency of each method in QR based on MQRT. Moreover,

Table 5.8 and Table 5.9 present the MRR and MAP of all meth-

ods5. It is worth noting that the ranking algorithm is not tuned in

our experiments, and all potential answerers are ranked for each test

question. Therefore, it is expected that the time for all methods will

be further reduced with advanced top-k algorithms.

Higher accuracies. From Table 5.5 we observe that, for various

of Ks, both BCS-LM and TCS-LM outperform QLLM significantly

on Prec@K . For instance, when routing questions to the top 1 an-

swerers, on average QLLM gives less than 8 successful routings per

100; BCS-LM and TCS-LM produce more than 11 and 12 success-

ful routings, which improve QLLM by 40.13% and 54.34%, respec-

tively. For other Ks, category-sensitive LMs also perform better

than QLLM.

The MRR of BCS-LM and TCS-LM increase that of QLLM by

5Under GT-BA, MRR is equals to MAP.
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Table 5.6: Different methods’ Prec@K in QR versus various Ks using GT-BA

(best results are shown in bold).

K QLLM BCS-LM TCS-LM LDALM CBLM

1 0.0568 0.0682 (↑20.07%) 0.0773 (↑36.09%) 0.0668 (↑17.61%) 0.0000

3 0.1091 0.1477 (↑35.38%) 0.1409 (↑29.15%) 0.1258 (↑15.31%) 0.0000

5 0.1363 0.1705 (↑25.09%) 0.1659 (↑21.72%) 0.1655 (↑21.42%) 0.0000

10 0.1705 0.2068 (↑21.29%) 0.2091 (↑22.58%) 0.1950 (↑14.40%) 0.0000

20 0.2205 0.2591 (↑17.51%) 0.2523 (↑14.42%) 0.2472 (↑12.11%) 0.0023

40 0.2750 0.3114 (↑13.24%) 0.3136 (↑14.04%) 0.2891 (↑5.13%) 0.0091

60 0.3023 0.3386 (↑12.01%) 0.3386 (↑12.01%) 0.3109 (↑2.84%) 0.0295

80 0.3182 0.3432 (↑7.86%) 0.3455 (↑8.58%) 0.3225 (↑1.35%) 0.0386

100 0.3364 0.3614 (↑7.43%) 0.3591 (↑6.75%) 0.3365 0.0386

29.66% and 34.59%. From the definition of MRR, each new ques-

tion will be answered by at least one answerer in the top 5 answerers

using BCS-LM or TCS-LM. However, with QLLM, on average we

have to route the question to top 7 answerers to get an answer. As

to MAP, BCS-LM and TCS-LM improve QLLM by 33.08% and

37.29%, respectively. Therefore, it shows that category-sensitive

LMs give more accurate rankings on the whole.

Table 5.6 reports similar results, although each method’s perfor-

mance is decreased. To sum up, the above results have assured the

effectiveness of utilizing category information in expertise estima-

tion.

Lower costs. Now let’s turn to the time costs of QLLM and

category-sensitive LMs. Table 5.7 gives the average time of rout-

ing a question for each model. We find that BCS-LM saves 47.16%

of time, and TCS-LM costs 13.80% less time than QLLM, which

demonstrates that category-sensitive LMs are more time-efficient

than QLLM in expertise estimation and thus make QR faster. The

lower costs of BCS-LM lie in that only relevant profiles are uti-

lized in expertise estimation, which reduces computational costs.



CHAPTER 5. CATEGORY-SENSITIVE QUESTION ROUTING 104

Table 5.7: Different methods’ MQRT in QR (in seconds).

QLLM BCS-LM TCS-LM LDALM CBLM

10.4271 5.5098 8.9884 16.7689 4.2488

The time complexity of QLLM is linear to the number of answer-

ers since all probabilities can be pre-computed. Let A denote the set

of answerers, and Aqc represent the set of answerers in the routed

question q’ leaf category, the time complexity of QLLM and BCS-

LM would be O(|A|) and O(|Aqc|), respectively. Because |Aqc| ≪

|A|, BCS-LM reduces computational costs significantly. TCS-LM

spends more time than BCS-LM because of employing profiles in

relevant categories for expertise estimation. Although TCS-LM is

more time-consuming than BCS-LM, it is possible to reduce the

time through parallel computing since the expertise estimation with

different categories’ profiles is independent from each other.

BCS-LM versus TCS-LM. Looking at Table 5.5, we find that

utilizing similar categories improve accuracies of expertise estima-

tion when K is small. In particular, the Prec@1 of TCS-LM is

10.14% higher than that of BCS-LM. In addition, the Prec@10 of

TCS-LM is 2.04% more accurate than that of BCS-LM. Although

when K becomes large (say, higher than 40), TCS-LM improves

less or even slightly worse than BCS-LM. The former one is still

a better choice as a QR system must route a question to minimum

number of potential answerers in practice. Table 5.8 indicates that

MRR and MAP of TCS-LM are also better than those of BCS-LM.

When GT-BA is applied, similar results are found (see Table 5.6

and Table 5.9). TCS-LM utilizes similar categories’ profiles and

assigns weights to these profiles according to the degree of similari-

ties. Therefore, they give more precise expertise estimation and thus

improve QR performance.

Impact of transferring probability. Noting that we use two
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Table 5.8: MRR and MAP of various models under GT-A (best results are shown

in bold).

Method MRR MAP

QLLM 0.1460 0.1070

BCS-QLLM 0.1893 (↑29.66%) 0.1424 (↑33.08%)

TCS-QLLM 0.1965 (↑34.59%) 0.1469 (↑37.29%)

LDALM 0.1695 (↑16.10%) 0.1281 (↑19.72%)

CBLM 0.0031 0.0024

approaches to calculate transferring probabilities: one is answerer-

based, and the other is content-based. Figure 5.5 presents the MRR

of TCS-LM with various δ using the answerer-based and the content-

based approaches when GT-A is used as the groundtruth. We also

plot the MRR of BCS-LM as a baseline. From Figure 5.5, we find

the answerer-based method performs better than the content-based

method. As noted in Section 5.3.4, the content-based method gives

higher similarities between irrelevant categories. We conjecture that

different categories still share some common words although stop-

words have been removed. However, the answerer-based method

avoids term-level computation, and leverages community informa-

tion which is more suitable for estimating categories’ similarities.

In real world, answerers prefer to answer questions in relevant-with-

each-other categories.

Category-sensitive LMs versus CBLM versus LDALM. Both

CBLM and LDALM are the extensions of the original QLLM. The

former one introduces clusters into QLLM, and groups questions ac-

cording to similar topics (in our experiments each leaf category was

treated as a cluster). The latter integrates QLLM with LDA, which

considers answerer expertise on latent topics together with the rela-

tionships between latent topics and routed questions. We compare

category-sensitive LMs with CBLM to explore how to better utilize
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Table 5.9: MRR and MAP of various models under GT-BA (best results are shown

in bold).

Method MRR MAP

QLLM 0.0976 0.0976

BCS-QLLM 0.1178 (↑20.70%) 0.1178 (↑20.70%)

TCS-QLLM 0.1219 (↑24.90%) 0.1219 (↑24.90%)

LDALM 0.1133 0.1133

CBLM 0.0015 (↑16.09%) 0.0015 (↑16.09%)

category information in QR, and with LDALM to investigate the ef-

fectiveness of category and latent topics.

Among these four methods, CBLM performs the worst. A possi-

ble reason is that a large amount of answerers only answered in one

cluster (leaf category), as such their contributions to this cluster are

one according to Eq. (5.9). Under this circumstance, these answer-

ers’ expertise is actually measured by those clusters’ “expertise”,

which will cause a great number of answerers to own the same ex-

pertise and thus render the ranking meaningless. LDALM increases

Prec@K of QLLM, which shows the impact of utilizing latent top-

ics, but the explicit question category provides more help than latent

topics because category-sensitive LMs outperform LDALM at var-

ious Ks. MRR and MAP of these four methods report the similar

results (detail will not be provided here).

When turning to MQRT, we find that CBLM works the best,

followed by BCS-LM and TCS-LM, while LDALM costs much

more time in inference. CBLM estimates answerer expertise by

combining an answerer’s contribution to each cluster (which is pre-

computed) with the probability of generating the routed question

from each cluster (which is efficient to calculate), thus it makes the

fastest estimation. However, the estimation made by CBLM is the

most inaccurate, as stated above. On the whole, category-sensitive
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Figure 5.5: MRR for TCS-LM using answerer-based and content-based ap-

proaches to estimate transferring probability under GT-A.

LMs are the most time-efficient among the four methods.

In summary, category-sensitive LMs give more accurate expertise

estimation than CBLM and LDALM and at the same time keep high

time-efficiency.

User prior. To explore different user priors’ influence on QR,

we apply each of them to all expertise estimation algorithms. The

Prec@K of LM and BCS-LM with different answerer priors are re-

ported in Figure 5.6 and Figure 5.7. We find that with more prior

information, the performance of QR is improved significantly: both

methods’ Prec@K values are steadily boosted from usingPUniform(u)
to using PIndegree(u) as answerer prior, regardless of whether GT-A

or GT-BA is used as the ground truth. Other methods report simi-

lar results. Thus, answerers are suggested to be treated differently

according to their answering history.
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Figure 5.6: Prec@K of LM with different answerer priors.

5.4.3 Discussion

Results of the experiments on category-answerer indexes and category-

sensitive LMs demonstrate that: (1) for each question to be routed,

category-answerer indexes successfully filter irrelevant answerers to

produce a shorter list of relevant answerers for expertise estima-

tion; and (2) for each of those filtered relevant answerers, category-

sensitive LMs obtain more accurate question routings, relative to

traditional QLLM and two state-of-the-arts models.

Results of the experiments can be interpreted in two following

aspects:

First, an answerer tends to answer questions in relevant categories

in CQA services. Likewise, the chance of an answerer to answer

questions in the irrelevant categories (i.e., without any relevance to

his answered questions) is slim. For this reason, category-answerer

indexes are constructed to filter irrelevant answerers. Significant

positive effects of category-answerer indexes on filtering irrelevant
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Figure 5.7: Prec@K of BCS-LM with different answerer priors.

answerers are found in the experiments, although only two category-

answerer indexes are adopted.

Second, the expertise of an answerer in answering questions of a

particular category probably works in answering questions of those

relevant categories. In this connection, relevant categories are un-

dertaken for expertise estimation, with TCS-LM being developed.

The superiority of category-sensitive LMs, as demonstrated in the

experiments, lies in more feasible computations and more accurate

expertise location.

As discussed in the above, the incorporation of question category

contributes to the efficiency of routing questions in CQA services.

An implication is thus noted for refining the question category of

CQA services. To give full play to question category, the structure of

question category in CQA portals can be further explored to reflect

relevance among various categories. In addition, askers might also

be requested to choose a category as well as some similar categories

for their questions.
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5.5 Summary

In this chapter, we utilize question category to construct category-

answerer indexes for filtering irrelevant answerers, and develop two

category-sensitive LMs for estimating answerer expertise. The two

attempts of category-answerer indexes and category-sensitive LMs

enrich the framework of QR in CQA services by conceptualizing

question category as an essential component.

Then, we conduct experiments on category-answerer indexes and

category-sensitive LMs. Results reveal that: (1) category-answerer

indexes produce a much shorter list of relevant answerers to be routed,

with computational costs being substantially reduced; and (2) our

category-sensitive LMs obtain more accuracies of expertise estima-

tion, relative to QLLM and state-of-the-art baselines. The results

of experiments prove that higher accuracies with lower costs are

achieved due to the inclusion of question category in routing ques-

tions, which therefore provide empirical evidence to validate the in-

corporation of question category in QR for CQA services.

Looking forward, we plan to take into account the similarities

among leaf categories and category hierarchies when constructing

category-answerer indexes. Another potential fruitful area for future

research might be to detect influence of question category on content

quality in CQA services.

2 End of chapter.



Chapter 6

Question Structuralization

6.1 Motivation and Problem

Through routing, new questions obtain answers more efficiently. By

accumulating more and more solved questions, CQA services retain

a huge amount of human knowledge and user experience. Therefore,

the organization and management of answered questions become a

vital issue. Good organization not only facilitates users in browsing

questions and acquiring knowledge, but also helps the system find

similar questions effectively.

At present, most CQA portals organize questions in a list struc-

ture with category hierarchies [20, 70, 156] (e.g., Yahoo! Answers)

or tags [43] (e.g., Quora). This “list-of-content” (list-based approach)

is simple and straightforward, but ineffective for browsing and knowl-

edge learning. Consider the following case: a user wants to spend

his vacation in Edinburgh. He visits a CQA portal to explore which

aspects are asked the most. In this scenario, he may browse some

relevant categories like “Travel:United Kingdom:Edinburgh” to get

useful information. He may also issue a query, such as “travel in

Edinburgh”, to search relevant questions. However, both browsing

and searching give the user a list of relevant contents (e.g., questions

shown in Table 6.1), not the direct knowledge. Thus, the user must

read these contents, understand them, classify them into various top-

ics, and obtain valuable knowledge himself. This is obviously inef-

111
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Table 6.1: Sample questions about Edinburgh.

1. Where can i buy a hamburger in Edinburgh?

2. Where can I get a shawarma in Edinburgh?

3. How long does it take to drive between Glasgow and Edinburgh?

4. Whats the difference between Glasgow and Edinburgh?

5. Good hotels in London and Edinburgh?

6. Looking for nice , clean cheap hotel in Edinburgh?

7. Does anyone know of a reasonably cheap hotel in Edinburgh

that is near to Niddry Street South ?

8. Who can recommend a affordable hotel in Edinburgh City Center?

fective and time-consuming.

The above problem calls for a new approach in structuralizing

questions in CQA services, one which will facilitate users in seek-

ing knowledge (e.g., travel information about Edinburgh) more ef-

fectively. Traditionally, we can utilize topic models [10] or social

tagging [43] to structuralize questions. However, for topic models,

it is not easy to control the granularity of topics [25], and it is dif-

ficult for users to interpret a topic based only on the multinomial

distribution [98]. For social tagging, it is not applicable in many

sites and has sparsity problem [132]. Thus, both topic models and

social tagging are not suitable for structuralizing questions in CQA

services.

In this chapter, we propose a novel hierarchical entity-based ap-

proach (i.e., “cluster entity tree” or CET) to structuralize questions

in CQA services by leveraging an existing large-scale entity repos-

itory. Figure 6.1 shows how CET structuralizes questions in Ta-

ble 6.1, where entities are shown in bold. In this CET, each node

contains one (named) entity and a set of question IDs. With “edin-

burgh” as the root entity, Layer 1 includes all entities that co-occur

with “edinburgh”. Similarly, entities on Layer 2 co-occur with their

parent entities on Layer 1 and the root entity “edinburgh”. For exam-
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Figure 6.1: An CET constructed from questions about Edinburgh.

ple, “city center” co-occurs with “hotel” and “edinburgh” in Ques-

tion 8. Deeper layers provide more specific topics about different

aspects of Edinburgh (e.g., Edinburgh’s hotels). As shown in Fig-

ure 6.1, the corresponding question IDs are also attached in each

node. In addition, entities which share the same parent are clustered

to different groups (see dashed rectangles in Figure 6.1)1. Through

this hierarchical structure, we can easily browse corresponding ques-

tions and answers, and more effectively learn knowledge about Ed-

inburgh, such as food and location. Moreover, since similar enti-

ties (and corresponding questions) are grouped on each layer, it also

helps the system manage similar contents.

By utilizing a large-scale entity repository, CET avoids the gran-

ularity, interpretation, and sparsity problems. Entity repositories like

Freebase2 provide a large number of named entities across various

pre-defined topics, which avoid the granularity and sparsity prob-

lems. In addition, they usually give descriptions of entities, which

prevent interpretation problems from arising. Therefore, CET is

more suitable for structuralizing questions in CQA services.

The work in [170], which automatically generates and updates

topic terms to organize user generated content (UGC), is mostly re-

lated to our work. In that paper, given a root topic, subtopics and

1Single-node clusters are not surrounded by rectangles, like “hotel{5}” on Layer 2.
2http://www.freebase.com/
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lower-level topics are extracted from UGC, which form a hierar-

chical structure in organizing corresponding UGC. However, more

external sources are utilized to identify subtopics in [170]. In ad-

dition, relationships among subtopics under the same parent are not

investigated. The metro maps proposed in [130] are also related

to our work. Different from [130], we employ a large-scale entity

repository to extract more meaningful and interpretable key terms

(entities), which make each subtopic much easier to understand.

This chapter proceeds as follows. We detail our framework to

construct CETs and show empirical results in Section 6.2. Section

6.3 and Section 6.4 evaluate the effectiveness of CET on knowledge

organization from user and system aspects, respectively. We sum-

marize the chapter in Section 6.5.

6.2 CET Construction

In this section, we formulate the framework to construct CET and

show our empirical results. Firstly, we provide the definitions of the

entity repository and CET.

Definition 5 (Entity Repository). Let ER = {R, g} be an entity

repository, where R is a set of named entities and g : R×R → [0, 1]
is a mapping function that defines the similarity of any two entities.

Note that we do not require a hierarchical structure in an ER (like

Freebase), and only a similarity function is needed.

Definition 6 (Cluster Entity Tree). Let D be a set of documents,

ER = {R, g} be an entity repository, e be an entity, a cluster entity

tree CETe = (ve, V, E, C) is defined as a tree structure, with the

root node ve, node set V , edge set E, and cluster set C . Each node

vs ∈ V on CETe includes an entity extracted from the set of docu-

ments De ∈ D containing e, and a list L(s) which stores the indexes

of documents containing entity s and its superior entities. If vs is
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vt’s parent node, entity t must co-occur with s and all of s’ superior

entities at least once in the same document. Each element of C (one

cluster) includes a set of nodes which share the same parent node,

and the entities within a cluster are more similar to each other than

the entities in other clusters.

In our example in Section 6.1, D represents eight questions, ve
means the entity “edinburgh” and corresponding question IDs, V

includes all nodes on the tree shown in Figure 6.1 except the root

node, E contains all edges, and C represents the collection of dashed

rectangles. In addition, L(e) stores the indexes of all eight questions.

6.2.1 Framework

This section shows our three-step framework for constructing CET,

which includes entity extraction, tree construction, and hierarchical

entity clustering.

Entity extraction. We adopt an entity repository-based approach

to extract entities, which addresses the “low-recall” problem for tra-

ditional methods (details will be given in Section 6.2.2). This ap-

proach involves two phases: candidate entity extraction and entropy-

based filtering.

Candidate entity extraction. We employ the Stanford Parser3

to parse each document to a parse tree. Then, we extract all noun

phrases, pre-process them (including stemming), and extract the noun

phrases which are included in our entity repository. In our experi-

ments, we adopt a large-scale enterprise entity repository (i.e., Needle-

Seek4).

Entropy-based filtering. The candidate entities generated from

the last step may contain many false examples, which are not rel-

evant to the main semantics of documents, like “we”, “how do I”,

etc. To filter them, we propose an entropy-based method. Given a

3http://nlp.stanford.edu/software/lex-parser.shtml
4http://needleseek.msra.cn/
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document with a category label (or tags, which are available in most

UGC sites), we get the distributions of each candidate entity over all

top categories. The entropy of a candidate entity ei is calculated as

follows:

Entropy(ei) = −

|C|
∑

c=1

Pc(ei) · log(Pc(ei)), (6.1)

where |C| is the number of top categories and Pc(ei) is the number

of ei in category c divided by all number of candidate entities in that

category.

Top-ranked entities are general terms among categories. We set

a threshold α and remove all candidate entities with entropy larger

than α. The setting of α is a tradeoff: higher values will introduce

more noise, while smaller values will lead to decreased recall. In our

experiments, we empirically set α to 1.5 since it provides the most

satisfying results in terms of both precision and recall.

Tree construction. Given an entity (e.g., “edinburgh”), we first

search documents containing this entity and make the entity together

with document IDs as the root node. Then, from searched docu-

ments we find all entities that co-occur with the root entity. These

entities and corresponding document IDs form Layer-1 nodes of the

entity tree (see the example in Figure 6.1). Afterwards, for each en-

tity in Layer-1 nodes, we search entities that co-occur with it and

its superiors, combine them with corresponding document IDs as

new nodes, and put these new nodes under current nodes, which

form Layer-2 nodes. Iteratively, we construct the entity tree with the

given entity as the root.

Hierarchical entity clustering. Under the same parent, some

entities5 may share similar topics. Therefore, the final step is to hi-

erarchically cluster entities with the same parents at different layers

of entity trees. This step not only facilitates knowledge learning but

also reduces the width of a tree. We follow the work in [54] and

5Here we use the entity to represent the node.
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employ an agglomerative clustering algorithm for the following two

reasons: (1) it is easy to implement as its time complexity is O(N2),

in which N is the number of entities; and (2) there is no need to set

the number of clusters. Any other advanced algorithms like spectral

clustering [107] can also be applied, but that is not the emphasis of

our approach.

For a set of entities with the same parent, we apply the agglomer-

ative clustering algorithm6 in Algorithm 3, in which three strategies

are employed at line 4:

• AC-MAX: the similarity between entity ei and entity ej in one

of the clusters (the first one) is larger than threshold θmax;

• AC-MIN: the similarity between entity ei and any entity ej in

one of the clusters is larger than threshold θmin;

• AC-AVG: the mean similarity between entity ei and any entity

ej in one of the clusters is larger than threshold θavg.

Algorithm 3 Agglomerative Clustering.

Input: A set of entities, and an entity repository which contains these entities.

Output: Clusters of input entities.

1: Select one entity and create a new cluster containing the entity;

2: while there are unclustered entities do

3: Select the next entity ei, create an empty candidate list, and then calculate

the similarity between the entity and all existing clusters;

4: if some condition is satisfied then

5: Put the cluster index and corresponding similarity in the candidate list;

6: end if

7: if the candidate list is not empty then

8: Put ei in the cluster with the highest similarity;

9: else

10: Create a new cluster with ei being the element.

11: end if

12: end while

6We modify the clustering algorithm in [54] slightly to assign a unique cluster for each entity.
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In our entity repository, the similarity between two entities is

computed using the approach in [133], which estimates the simi-

larity of two terms according to their first-order and second-order

co-occurrences. For example, “such as NP, NP” is a good pattern

for detecting similar entities using first-order co-occurrences. In ad-

dition, if two entities usually co-occur with a third entity (second-

order co-occurrence), these two entities are likely to be similar. To

construct similarity functions, pattern-based approaches [110, 159]

utilize first-order co-occurrences while distributional similarity ap-

proaches [114, 116] employ second-order co-occurrences. In the

following, we briefly introduce the pattern-based approach (PB) and

the distributional similarity approach (DS) in [133].

PB. Some well-designed patterns are leveraged to extract simi-

lar entities from a huge repository of webpages. The set of terms

extracted by applying a pattern once is called a raw semantic class

(RASC). Given two entities ta and tb, PB calculates their similarity

based on the number of RASCs containing both of them [159]:

sim(ta, tb) = log(1 +

rab
∑

i=1

Pabi)) ·
√

idf(ta) · idf(tb), (6.2)

where idf(ta) = log(1 + N
C(ta)

), Pabi is a pattern which can generate

RASC(s) containing both term ta and term tb, rab is the total number

of such patterns, N is the total number of RASCs, and C(ta) is the

number of RASCs containing ta. The above similarity is normalized

using the following function:

simPB(ta, tb) =
log(sim(ta, tb))

2 log(sim(ta, ta))
+

log(sim(ta, tb))

2 log(sim(tb, tb))
. (6.3)

DS. The DS approach assumes that terms appearing in similar

contexts tend to be similar. In this approach, a term is represented

by a feature vector, with each feature corresponding to a context in

which the term appears. The similarity between two terms is com-

puted as the similarity between their corresponding feature vectors.
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Table 6.2: Category mapping between Yahoo! Answers and FreeBase.

Yahoo! Answers FreeBase

Cars & Transportation Aviation, Transportation, Boats

Spaceflight, Automotive, Bicycles, Rail

Computers & Internet Computer, Internet

Soccer, Olympics, Sports, American football,

Sports Baseball, Basketball, Ice Hockey, Martial Arts,

Cricket, Tennis, Boxing, Skiing

Travel Travel, Location, Transportation

Jaccard similarity is employed to estimate the similarity between

two terms. Suppose the feature vector of ta and tb are x and y, re-

spectively, then we have:

simDS(ta, tb) =

∑

imin(xi, yi)
∑

i xi +
∑

i yi −
∑

imin(xi, yi)
. (6.4)

Shi et al. [133] found that PB performed better when dealing with

proper nouns, while DS was relatively good at estimating similarity

of other types of entities. The similarity function in our ER follows

the suggestion of [133]: if at least one entity is proper noun, PB is

employed; otherwise DS is used.

6.2.2 Experiments

Setup. We evaluate the performance of our framework by employ-

ing questions from Yahoo! Answers. We collect 54.7 million ques-

tions from all 26 top categories in Yahoo! Answers, which consist

of question titles and corresponding categories. From these ques-

tions, we construct the following two test sets for evaluating entity

extraction and entity clustering:

Set EE. This set is employed to evaluate the performance of entity

extraction. It contains 520 randomly sampled questions, 20 from
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Table 6.3: Number of questions and entities in Set EC.

Category Number of Questions Number of Entities

Cars & Transportation 1,220,427 3,267,596

Computers & Internet 2,912,280 7,324,655

Sports 2,363,758 6,230,868

Travel 1,347,801 3,728,286

each top category. We manually label entities for each question.

Set EC. This set is constructed to automatically evaluate hierar-

chical entity clustering and select the best clustering strategy. The

construction process is as follows. First, we map the four categories

of Yahoo! Answers with some categories of Freebase manually, as

shown in Table 6.2. Second, from questions at each top category of

Yahoo! Answers, we extract entities which appear exactly once in

the corresponding Freebase categories. For instance, if an entity is

extracted from questions in the category Computers & Internet, and

it appears two or more times in Computer and Internet categories in

Freebase, it will be filtered. Therefore, each entity is attached with

a unique Freebase category label (i.e., the ground truth for cluster-

ing). Questions containing at least two entities are selected for Set

EC. Table 6.3 reports the statistics. Intuitively, entities with a same

Freebase category label should be in one cluster.

Note that Set EC covers only a small set of real entities, and clus-

tering on Set EC is partial clustering. However, it leverages Free-

base labels and avoids manual labeling, which is time-consuming.

Furthermore, partial clustering results are enough for evaluating dif-

ferent strategies’ performance and choosing the best strategy.

Following the common practice, we evaluate entity extraction us-

ing precision, recall, and F1 scores. For evaluating entity clustering,

we adopt B-cubed metrics. As reported in [5], B-cubed metrics are

more suitable than traditional metrics, such as NMI and purity.
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Table 6.4: Entity extraction for various methods.

Method Precision Recall F1

Stanford NER 0.750 0.155 0.257

FIGER 0.763 0.154 0.256

Freebase 0.644 0.595 0.619

Ours 0.647 0.809 0.719

Results of entity extraction. Two ERs (i.e., ours and Free-

base) are employed in entity extraction for comparison. In addi-

tion, we compare our approach to Stanford named entity recog-

nizer (NER) [36] and the fine-grained entity recognition (FIGER) al-

gorithm proposed by Ling et al. [77]. Table 6.4 reports the results of

different methods. We can find that Stanford NER and FIGER get a

relatively high precision in extracting entities. However, their recalls

are very low, and only about 15% of entities are recognized. With

the help of entity repositories, recall is significantly improved with a

small decrease of precision. Therefore, the F1 scores of entity-based

approaches are much higher. This observation highlights the sig-

nificant advantage of utilizing entity repositories in entity extraction

and the effectiveness of our approach. As our ER performs better

than Freebase, we adopt it as our entity repository in the following

evaluations.

Results of hierarchical entity clustering. Table 6.5 and Ta-

ble 6.6 report the count of clusters, B-Cubed Precision, Recall, and

F1 for different layers of clustering across four categories using AC-

MAX. In our experiments, AC-MAX performed better than AC-

MIN and AC-AVG. Therefore, we only report the results of AC-

MAX here. For AC-MAX, we changed the settings of θ from 0.01

to 0.9, and the best performance was achieved when θmax was set

to around 0.1. We find that although AC-MAX’s accuracy varies

across categories (e.g., the F1 of Transportation is much higher than
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Table 6.5: Clustering results of Cars & Transportation and Computer & Internet

using AC-MAX (θmax=0.1).

Level
Cars & Transportation Computer & Internet

Count P R F1 Count P R F1

1 1,281 0.948 0.868 0.897 3,064 0.913 0.664 0.743

2 1,202 0.989 0.956 0.965 11,344 0.961 0.842 0.879

3 858 1.000 0.981 0.988 8,184 0.978 0.899 0.920

4 1,776 1.000 0.980 0.986 3,648 0.990 0.908 0.934

5 NA NA NA NA 2520 1.000 0.952 0.968

Total 5,117 0.984 0.946 0.959 28,760 0.968 0.857 0.891

that of Travel), it performs well overall. Thus, we adopt AC-MAX

with θ = 0.1 for hierarchical entity clustering.

6.3 User Study

In this section, we investigate the influence of CET on content brows-

ing and knowledge learning from a user study. In the study, we

design 24 tasks in four popular Yahoo! Answers categories (see Ta-

ble 6.7). For each category, we design three knowledge-learning

tasks and three question-search tasks. A knowledge-learning task

asks for some knowledge about a main entity from question texts.

For instance, “find the games running on macbook pro” requires

game names as the answer, where the main entity is “macbook pro”.

A question-search task, however, asks users to find similar questions

to the question in the task. For example, “questions about who will

win the MVP in the NBA this year” asks for finding similar ques-

tions, and filling their question IDs as the answer. For each task,

we give some suggested keywords (entities) to facilitate information

gathering.

To evaluate user experience, we ask participants to each fill out a
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Table 6.6: Clustering results of Sports and Travel using AC-MAX (θmax=0.1).

Level
Sports Travel

Count P R F1 Count P R F1

1 890 0.941 0.883 0.901 748 0.972 0.653 0.743

2 636 0.978 0.964 0.963 200 0.974 0.730 0.798

3 492 0.965 0.882 0.899 120 1.000 0.833 0.890

4 1,080 0.978 0.844 0.881 NA NA NA NA

5 NA NA NA NA NA NA NA NA

Total 3,098 0.965 0.886 0.907 1,068 0.976 0.688 0.770

questionnaire after each task. Following the work in [61], we collect

information based on five aspects: familiarity, easiness, satisfaction,

adequate time, and helpfulness. A 5-point Likert scale is designed

for each questionnaire. A “5” means the participant totally agrees

while a “1” means the participant totally disagrees.

6.3.1 Setup

Programs. We develop two programs in our user study. One is

CET-based (see Figure 6.2), and the other is traditional list-based.

The CET-based program works as follows. When the user types

an entity name and clicks the search button, the corresponding CET

with the searched entity as the root will be displayed. In each CET,

we label each entity cluster with the top three most frequent entities.

When the user clicks on one single-node cluster, the corresponding

questions which contain the entity and its superior entities will be

displayed to the right of CET. In every task, we allow participants

3 minutes to find information and fill in the answers in the answer

panel. When a participant collects all of the information she wants,

she may click the submission button to enter the questionnaire part.

If the participant fails to submit her answer within 3 minutes, the

software will store the current answer, disable the submission but-
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ton, and forcibly jump to the questionnaire part. After the participant

finishes the questionnaire, the program provides the next task. When

all tasks are finished, the program exits automatically. The list-based

program follows the same process.

The interface of list-based program is similar, but the CET dis-

play area is replaced by a flat-ranked list. In addition, the list-based

program searches questions by utilizing Apache Lucene7. The stan-

dard analyzer and the default search algorithm are adopted. For each

query, top 200 most relevant questions are retrieved.

Data. We extract 70,195 questions which contain at least one of

the 24 main entities (see Table 6.7) in the four categories. For each

question, we extract the entities with the help of our entity reposi-

tory. For each main entity, we build the corresponding CET from all

extracted questions.

Participants. Sixteen volunteers are invited to participate in the

user study. These participants are all well educated with either hav-

ing a Bachelor’s or Master’s degrees or currently studying in their

PhD programs. Moreover, their background covers a wide range of

disciplines from natural sciences to social sciences, as well as en-

gineering. All volunteers are first briefly informed of the research

design and taught how to use two programs. To familiarize the par-

ticipants with our programs promptly, we provide demonstrations

using sample entities. Each volunteer is asked to finish 12 tasks

(6 knowledge-learning tasks and 6 question-search tasks) using the

CET-based program and 12 other tasks using the list-based program

in random order. Thus, each task is finished by exactly 8 different

participants using each program.

7http://lucene.apache.org/core/
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Figure 6.2: The interface of CET-based program.

6.3.2 Results and Discussions

Table 6.8 reports the user study results, where we give the statistics

for users’ performance with the two programs. We evaluate from the

number of queries issued, number of answers found, the precision of

answers, and query time for each task. As our 24 tasks contain both

knowledge-learning tasks and question-search tasks, we report their

results separately. Z-tests are employed for significance tests.

From Table 6.8, we observe that more queries are issued in the

knowledge-learning tasks than in the question-search tasks using

both programs. However, the CET-based program reduces the num-

ber of queries substantially in both tasks. Because the CET-based

program provides a series of clustered entities, it helps users fur-

ther refine queries by clicking on entities rather than reconstructing

new queries. However, the list-based program only lists relevant

questions, and users must issue new queries according to returned

questions.

By using the CET-based program, volunteers find more answers
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Table 6.8: User study results.

Knowledge-learning Tasks Question-search Tasks

CET-based List-based CET-based List-based

# Queries 2.99 4.47 2.56 3.38

# Answers 8.32 6.06 10.60 10.92

Precision 0.38 0.19 0.40 0.44

Time 136.44 121.87 103.71 87.75

in knowledge-learning tasks (z = 1.69, p < 0.05). The reason is that

the CET-based program clusters similar results in the same group,

and if the user finds one answer, she can easily obtain more answers.

On the contrary, the list-based program returns a list of questions,

and users must find answers question-by-question. For question-

search tasks, users of the list-based program find more answers, but

the difference is not significant (z = 0.19). As the list-based pro-

gram returns similar questions as top-ranked results, users are able

to fill in answers easily. For CET-based program users, they have

to find corresponding key entities in the CETs first. Therefore, they

spend more time (the fourth row in Table 6.8) finding entities and

less time filling answers. It is worth noting that our GUI prototype

for CET is non-optimal, and users’ searching time on CET-based

program can be further reduced with a better user interface.

The precision of answers from CET-based program users is twice

of that from list-based program users (z = 4.15, p < 0.0001) in

knowledge-learning tasks, which demonstrates the advantage of CET

in helping knowledge-learning. For question-search tasks, CET-

based program users perform slightly worse than list-based program

users, but the difference is not significant (z = 0.48). Since users of

the CET-based program spend more time finding entities, they have

limited time to check the answers.

In both tasks, users spend more time on the CET-based program.
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Table 6.9: Questionnaire results.

Knowledge-learning Tasks Question-search Tasks

CET-based List-based CET-based List-based

Familiarity 3.18 3.22 3.07 3.28

Easiness 3.64 3.66 4.10 4.06

Satisfaction 3.70 2.94 3.86 3.44

Enough Time 3.87 3.83 4.44 4.54

Helpfulness 4.16 3.03 4.31 3.71

According to users’ post-user-study feedbacks, a few volunteers re-

ported that they sometimes spent a considerable amount of time on

finding entities from CETs. However, one positive observation is

that most users find “the entity-based interface” very interesting,

which stimulates them to spend more time on exploring answers.

The questionnaires reveal more about user experience on these

two programs (see Table 6.9). Users’ responses to task familiarity

and easiness are similar. However, users of entity-based interface

are more satisfied in both knowledge-learning tasks (z = 3.98, p <
0.0001) and question-search tasks (z = 1.38), and they feel that

entity-based interface is more helpful in finding answers for both

knowledge-learning tasks (z = 6.47, p < 0.0001) and question-

search tasks (z = 2.55, p < 0.01). These promising observations

show that CET helps knowledge learning greatly through structural-

izing content.

6.4 CET-based Question Re-ranking

In this section, we show that CET also helps systems to better re-

trieve information [135, 154, 136] through re-ranking. In the fol-

lowing, we continue to use Yahoo! Answers as a test case.

Intuitively, questions sharing similar topics should be ranked sim-
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ilarly. However, traditional question retrieval models [19] such as

the query likelihood language model (QLLM) and the vector space

model (VSM) do not capture key semantics nor give more weight

to entity terms. CET provides a feasible way to address this issue.

By utilizing CET, entities are given more weight while trivial words

are not. In addition, through clustering questions with similar top-

ics, those questions which are ranked lower will be elevated by their

top-ranked neighbors.

Algorithm 4 illustrates the re-ranking algorithm in detail. We

first extract entities from each question, and construct a entity co-

occurrence graph (Line 1). Then, we calculate the PageRank score

of each entity (Line 2). Line 3-5 check whether the query q contains

at least one entity. If the answer is no, we return to the original

ranking. Otherwise, we identify the key entity in q (Line 6) and

construct the CET cete whose root entity is e (Line 7). Line 8-16

iteratively put questions in corresponding clusters of cete. In Line

8, we first build an entity chain for question qi, in which entities of

qi are ranked according to their PageRank scores. Afterwards, the

first entity ê, which is not similar to e (the similarity is calculated in

Section 6.2.1, and the threshold of similarity is set to 0.1), is picked

up as the main aspect of e, and qi is grouped into the corresponding

cluster on cete (Lines 7-8). If ê does not exist, we put qi in a new

cluster (Lines 13-14). Then, we rank all clusters according to their

first elements’ original rankings (Line 18), and output the final re-

ranked list (Line 19).

We perform our re-ranking on 160 randomly selected questions

from Computers & Internet and Travel categories of our data set8.

Each category contains 80 questions. All other questions in these

two categories constitute the question collection Q. For each ques-

tion, we first employ VSM and QLLM, respectively, to retrieve the

top 15 results and then obtained manual judgments. Given a re-

trieved question by VSM or QLLM, two assessors are asked to label

8These 160 questions are not used for constructing the entity co-occurrence graph.
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Algorithm 4 CET-based search results re-ranking.

Input: Query q, question collection Q, a ranked list of k relevant questions Qq =
{q1, q2, ..., qk} to q, an entity repository ER, an empty list Θ.

Output: A new ranked list of questions.

1: Extract entities from each question of Q and construct an entity co-occurrence

graph;

2: Get the PageRank score of each entity;

3: if there is no entity e in q then

4: return Qq;

5: else

6: Identify the key entity e from q which has the highest PageRank score;

7: Construct the CET cete from Q based on ER;

8: for each question qi do

9: For all entities in qi, build an entity chain C in descending order of

PageRank scores;

10: From C extract the first entity ê that is not similar to e;

11: if ê exists then

12: Put qi in the corresponding cluster of nodes;

13: else

14: Put qi in Θ;

15: end if

16: end for

17: end if

18: Rank all clusters on cete according to their first elements’ original ranking;

19: Output the final ranking cluster by cluster and append the questions in Θ at

the last.

Table 6.10: Re-ranking results for VSM and QLLM (* means that p < 0.05 in

students’ t-test).

VSM Re-ranking QLLM Re-ranking

MRR 0.3838 0.4195* (9.30%) 0.3593 0.3889* (8.24%)

MAP 0.3376 0.3558* (5.39%) 0.3326 0.3479* (4.60%)

Prec@1 0.2500 0.3125* (25.00%) 0.2438 0.2688* (10.25%)
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Figure 6.3: Re-ranking results of Computer & Internet.

it “relevant” or “irrelevant”. If their annotations are contradictory,

the third assessor is involved to determine the final label.

We re-rank these questions using Algorithm 4. Table 6.10 shows

the results of MRR, MAP, and Prec@1. We can see that CET-based

re-ranking improves the performance of standard retrieval models

substantially. For VSM, our re-ranking boosts MRR and MAP by

9.3% and 5.4%, respectively. It is worth noting that our re-ranking

improves Prec@1 significantly: from 0.25 to 0.31. The reason is

that traditional methods may give relatively low weights to the key

terms (entities), while CET-based re-ranking addresses the problem.

QLLM and re-ranking report similar results.

Figure 6.3 and Figure 6.4 illustrate the performance of various

approaches across categories. We find that our re-ranking is neither

category-biased nor algorithm-biased, yet it performs better than

original models on both categories. The above results demonstrate

that, by utilizing the hierarchical entity-based approach, CET greatly
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Figure 6.4: Re-ranking results of Travel

improves the retrieval performance of these two standard models.

6.5 Summary

Traditional list-based organization of questions in CQA services is

not effective for content browsing and knowledge learning due to

large volume of documents. To address this problem, we propose a

novel hierarchical entity-based approach to structuralize questions.

By using a large-scale entity repository, we construct a three-step

framework to organize knowledge in “cluster entity trees”. Experi-

mental results show the effectiveness of the framework in construct-

ing CET. We further evaluate the performance of CET on knowl-

edge organization from both user and system aspects. Our user study

demonstrates that, with CET-based organization, users perform sig-

nificantly better in knowledge learning than by using the list-based

approach. In addition, CET boosts systems’ question search perfor-
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mance substantially through re-ranking.

To the best of our knowledge, this work is the first attempt to

utilize entities to structuralize questions in CQA services. How-

ever, there are some limitations to be improved in the future work.

First, we employ Yahoo! Answers as our test data, in which ques-

tions (documents) are usually short. We observe that nearly 92% of

all 54.7 million questions contains one to four entities, which means

the depths of CETs are usually not so deep. However, long questions

will lead to deep CETs and hinder users’ knowledge learning. Sec-

ond, our current entity extraction focuses on named entities instead

of canonical entities. In the future, we plan to employ document

summarization techniques to shorten the depths of CETs. We also

aim to incorporate semantic analysis and normalize named entities

to canonical entities.

2 End of chapter.



Chapter 7

Conclusion

7.1 Summary

In this thesis, we propose a computational framework to process

questions in community question answering (CQA) services. This

framework, which aims to help users obtain information and learn

knowledge more effectively, consists of three components: question

popularity analysis and prediction, question routing, and question

structuralization. The first component analyzes the factors affecting

question popularity (QP) and predicts QP when new questions are

asked. We then utilize question routing (QR), the second compo-

nent of the framework, to route questions to appropriate answerers

for efficient answering. The third component proposes a hierarchical

entity based approach to structuralize questions into cluster entity

trees (CETs) to help both users and the system access information

more effectively.

The first component involves two studies. In Study 1, we ana-

lyze the factors influencing QP and find that the interaction of users

and topics leads to the difference of QP. Based on the findings of

Study 1, Study 2 proposes a mutual reinforcement-based label prop-

agation algorithm to predict QP using features from question texts

and asker profiles. Empirical results demonstrate that our algorithm

is more effective in distinguishing high-popularity questions from

low-popularity ones than other state-of-the-art algorithms, such as

134
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the stochastic gradient boosted tree and the harmonic function.

The second component proposes a framework to route new ques-

tions to potential answerers in CQA services. The proposed QR

framework considers both answerer expertise on routed questions

and answerer availability for providing answers in a given range

of time. To estimate answerer expertise, we propose three mod-

els. The first one is derived from the query likelihood language

model, and the latter two models utilize answer quality to refine the

first model. To estimate answerer availability, we employ an au-

toregressive model. Experimental results show that it is effective to

route questions to answerers who have answered similar questions

previously. It also demonstrates that leveraging answer quality can

greatly improve the performance of QR. In addition, utilizing similar

answerers’ answer qualities on similar questions provides more ac-

curate expertise estimation and thus obtains better QR performance.

Moreover, answerer availability estimation further boosts the perfor-

mance of QR.

User expertise estimation is essential to QR. However, current

approaches employ full profiles to estimate all answerers’ expertise,

which is ineffective and time-consuming. To address this problem,

we utilize question categories to construct category-answerer in-

dexes for filtering irrelevant answerers and develop category-sensitive

language models for estimating user expertise. We conduct experi-

ments on large scale data sets and the results reveal that: (1) category-

answerer indexes produce a much shorter list of relevant answerers

to be routed, with computational costs substantially reduced; and

(2) category-sensitive language models obtain more accurate exper-

tise estimations, relative to query likelihood language model and

state-of-the-art algorithms, including CBLM and LDALM. The re-

sults of experiments prove that higher accuracies with lower costs

are achieved due to the inclusion of question categories in routing

questions.

In the third component, we propose a novel hierarchical entity-
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based approach to structuralize questions in CQA services. Tradi-

tional list-based organization of questions is not effective for content

browsing and knowledge learning due to the large volume of docu-

ments. To address this problem, we utilize a large-scale entity repos-

itory, and construct a three-step framework to structuralize questions

in CETs. Experimental results show the effectiveness of the frame-

work in constructing CET. We further evaluate the performance of

CET on knowledge organization from both user and system aspects.

From a user aspect, our user study demonstrates that, with CET-

based organization, users perform significantly better in knowledge

learning than by using the list-based approach. From a system as-

pect, CET substantially boosts the performance on question search

through re-ranking.

7.2 Future Work

Although a substantial number of promising achievements on tech-

niques and applications have been presented in this thesis, there

are several research directions we can follow to further improve the

question processing framework in the future.

Firstly, we aim to explore more salient features of QP as current

features are still not sufficient to achieve satisfying performance. In

addition, semantics can be incorporated to improve the proposed al-

gorithm for predicting QP. We also plan to utilize QP to improve

question search and dialog analysis in CQA services.

Secondly, further study is needed to investigate the performance

of our QR framework across different CQA portals like Baidu Zhi-

dao and Quora, and different question domains (instead of the Com-

puter & Internet category). In addition, more advanced availability

estimation model can be utilized to make the prediction more ac-

curate. Moreover, we plan to construct category-answerer indexes

taking account of similarities among leaf categories and category

hierarchies.
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Thirdly, we attempt to employ document summarization tech-

niques to handle long questions and shorten the depth of CET, and

normalize named entities to canonical entities. In addition, we plan

to utilize CET for better question summarization, question visualiza-

tion, and answer exploration. Meanwhile, we also aim to incorporate

semantic analysis in CET construction and link CET to large-scale

knowledge base (e.g., Google Knowledge Graph1) for practical use.

Fourthly, users in different communities (e.g., categories in CQA

services) may own different characteristics and behaviors, which

may have various influences to question processing. In the future,

we plan to apply our question processing framework to more com-

munities, and explore the results of QP prediction, question routing,

and question structuralization from different communities.

A trend toward incorporate social network in CQA services has

been raised during recent years, like Facebook Questions and Quora.

This interaction brings more research issues for question processing,

e.g., how to utilize social relationships in question retrieval and qual-

ity prediction. The influence of social network on question routing

is also worth further investigation.

2 End of chapter.

1http://www.google.com/insidesearch/features/search/knowledge.html
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