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Given two classes of data sampled from x and y, we 

are trying to find a linear decision plane wT z + b=0, 
which can correctly discriminate x from y.

wT z + b< 0, z is classified as y;

wT z + b >0, z is classified as x.
wT z + b=0 : decision 

hyperplane

y

x

Background - Linear Binary Classifier
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Background - Global Learning (I)

n Global learning

• Basic idea: Focusing on summarizing 
data usually by estimating a distribution

• Example

n 1) Assume Gaussinity for the data 

n 2) Learn the parameters via MLE or other 
criteria

n 3) Exploit Bayes theory to find the optimal 
thresholding for classification

Traditional Bayes Optimal Classifier
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n Problems
Usually have to assume specific models on data, which 
may NOT always coincide with data

“all models are wrong but some are useful…”—by George Box

Estimating distributions may be wasteful and imprecise

Finding the ideal generator of the data, i.e., the distribution, is 
only an intermediate goal in many settings, e.g., in 
classification or regression. Optimizing an intermediate 
objective may be inefficient or wasteful.

Background - Global Learning (II)
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Background- Local Learning (I)

n Local learning
• Basic idea: Focus on exploiting part of 

information, which is directly related to the 
objective, e.g., the classification accuracy 
instead of describing data in a holistic way

• Example

In classification, we need to accurately 
model the data around the (possible) 
separating plane, while inaccurate modeling 
of other parts is certainly acceptable (as is 
done in SVM).
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n Support Vector Machine (SVM)

---The current state-of-the-art classifier
Decision Plane

Support Vectors

Margin

Background - Local Learning (II)
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n Problems

The fact that the objective is exclusively 

determined by local information may 
lose the overall view of data

Background - Local Learning (III)
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y

x

Along the dashed axis, the y data is 

obviously more likely to scatter than the x
data. Therefore, a more reasonable 

hyerplane may lie closer to the x data 
rather than locating itself in the middle of 

two classes as in SVM.
SVM

Learning Locally and Globally

An illustrative example

A more reasonable 

hyperplane

Background- Local Learning (IV)
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Learning Locally and Globally

n Basic idea: Focus on using both local 
information and certain robust global 

information

• Do not try to estimate the distribution as in 
global learning, which may be inaccurate and 
indirect

• Consider robust global information for 
providing a roadmap for local learning
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Summary of Background

Assume specific models

Optimizing an intermediate objective

Problem

Problem

Problem Focusing on local info may lose the roadmap of data

Can we directly optimize the objective??

Without specific model assumption?

Can we learn both globally and locally??

Distribution-free Bayes optimal classifier ---
Minimum Error Minimax Probability Machine (MEMPM)

Maxi-Min Margin Machine (M4)

Local Learning, e.g., SVM
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Contributions

n Mininum Error Minimax Probability Machine
(Accepted by JMLR 04)

• A worst-case distribution-free Bayes Optimal Classifier
• Containing Minimax Probability Machine (MPM) and 

Biased Minimax Probability Machine
(BMPM)(AMAI04,CVPR04) as special cases

n Maxi-Min Margin Machine (M4) (ICML 04+Submitted)

• A unified framework that learns locally and globally
n Support Vector Machine (SVM)

n Minimax Probability Machine (MPM)

n Fisher Discriminant Analysis (FDA)
n Can be linked with MEMPM

• Can be extended into regression: Local Support Vector 
Regression (LSVR) (submitted)
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Hierarchy Graph of Related Models
Classification models
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Minimum Error Minimax  Probability 

Machine (MEMPM)
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MEMPM: Model Comparison
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MEMPM: Advantages

n A distribution-free Bayes optimal Classifier 
in the worst-case scenario

n Containing an explicit accuracy bound, 
namely, 

n Subsuming a special case Biased Minimax 
Probability Machine for biased classification

bqqa )1( -+
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MEMPM: Biased MPM

Biased Classification:
Diagnosis of epidemical disease: Classifying a patient who is infected 

with a disease into an opposite class results in more serious consequence 

than the other way around.
The classification accuracy should be biased towards the class with 

disease.

An ideal model for biased 

classification.

A typical setting:  We should 

maximize the accuracy for the 
important class as long as the accuracy 

for the less important class is 
acceptable (greater than an 

acceptable level g).

BMPM
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n Objective     

n Equivalently     

MEMPM: Biased MPM (I)
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n Objective  

n Equivalently, 

n Equivalently,

MEMPM: Biased MPM (II)
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N: number of data points n: Dimension
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n Objective

n Equivalently 

MEMPM: Optimization (I)

1)(

)()(1

s.t.,)1(max
,,

=-

S+S=

-+
¹

yx

yx

0

T

TT

!

!!!!

!

bkak

bqqa
ba

1)(

)()(1

s.t.,
1)(

1

1)(
min

22),(),(

=-

S+S=

+

-
+

+¹

yx

yx

0

T

TT

!

!!!!

!

bkak

bk

q

ak

q

bkak



Dept. of C.S.E., C.U.H.K. 21

n Objective

n Line search + BMPM method 

MEMPM: Optimization (II)
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MEMPM: Problems

n As a global learning approach, the 
decision plane is exclusively dependent on 
global information, i.e., up to second-
order moments. 

n These moments may NOT be accurately
estimated! –We may need local 
information to neutralize the negative 
effect caused.

Learning Locally and Globally
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Learning Locally and Globally:

Maxi-Min Margin Machine (M4)

y

x

SVM

A more reasonable 

hyperplane

Model Definition
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M4: Geometric Interpretation
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M4: Solving Method (I)

Divide and Conquer:

If we fix  ρ to a specific ρn , the problem changes to check whether 

this ρn satisfies the following constraints:

If yes, we increase ρn; otherwise, we decrease it.

Second Order Cone Programming 
Problem!!!
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M4: Solving Method (II)

Iterate the following two Divide and Conquer steps:

Sequential Second Order Cone Programming Problem!!!
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can it satisfy the constraints?

YesNo

M4: Solving Method (III)

The worst-case iteration number is log(L/e)

L: ρmax -ρmin (search range)

e :  The required precision

Each iteration is a Second Order Cone Programming problem 
yielding O(n3)

Cost of forming the constraint matrix O(N n3)

Total time complexity= O(log(L/e) n3+ N n3) »O(N n3)

N: number of data points n: Dimension
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M4: Links with MPM (I)

+

Span all the data 

points and add them 

together

Exactly MPM 

Optimization 

Problem!!!
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M4: Links with MPM (II)

MPM

M4

Remarks:

The procedure is not 

reversible: MPM is a 
special case of M4

MPM focuses on building 

decision boundary 
GLOBALLY, i.e., it 

exclusively depends on 

the means and 

covariances. 

However, means and 

covariances may not be 

accurately estimated.
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If one assumes ∑=I

M4: Links with SVM (I)

1

2

3

4

Support Vector Machines

SVM is the special case of M4

The magnitude of w 
can scale up without 

influencing the 

optimization. Assume 

ρ(wT ∑w)0.5=1
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M4: Links with SVM (II)

These two assumptions of SVM are inappropriate

If one assumes ∑=I

Assumption 1

Assumption 2
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M4: Links with FDA (I)

If one assumes 

∑x=∑y=(∑*y+∑*x)/2

Perform a procedure similar to 
MPM…

FDA



Dept. of C.S.E., C.U.H.K. 33

M4: Links with FDA (II)

Assumption

Still inappropriate
?

If one assumes 

∑x=∑y=(∑*y+∑*x)/2



Dept. of C.S.E., C.U.H.K. 34

M4: Links with MEMPM

M4  (a globalized version) MEMPM

T and s Κ(α) and Κ(β) : 

The margin from the mean to the decision plane

The globalized M4 maximizes the weighted margin, while MEMPM
Maximizes the weighted worst-case accuracy.
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M4 :Nonseparable Case

Introducing slack variables

How to solve?? Line Search+Second Order Cone Programming
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M4 : Extended into Regression---

Local Support Vector Regression (LSVR)

LSVR Model Definition SVR Model Definition

Regression: Find a function                                   to 
approximate the data
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Local Support Vector Regression (LSVR)

n When supposing ∑i=I for each 
observation, LSVR is equivalent with l1-
SVR under a mild assumption.
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SVR vs. LSVR 
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Short Summary

M4

MPM
FDA

assume

∑x=∑y=I

SVM

Gloablized and 

assume
∑x=∑y=(∑*x+∑*y)/2

Globalized MEMPM

Globalized

LSVR
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Non-linear Classifier : Kernelization (I)

n Previous discussions of MEMPM, 
BMPM, M4 , and LSVR are conducted 

in the scope of linear classification.

n How about non-linear classification 
problems?

Using Kernelization techniques
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Non-linear Classifier : Kernelization (II)

n In the next slides, we mainly discuss the 
kernelization on M4,  while the proposed 
kernelization method is also applicable for 

MEMPM, BMPM, and LSVR.
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Nonlinear Classifier: Kernelization (III)

• Map data to higher dimensional feature space Rf

xiàj(xi)

yiàj(yi)

• Construct the linear decision plane f(γ ,b)=γT z + b in the feature space Rf, 
with γ Є Rf, b Є R

•In Rf, we need to solve

• However, we do not want to solve this in an explicit form of j. Instead, we 

want to solve it in a kernelization form 

K(z1,z2)= j(z1)Tj(z2)



Dept. of C.S.E., C.U.H.K. 43

Nonlinear Classifier: Kernelization (IV)
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Nonlinear Classifier: Kernelization (V)

Notation
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Experimental Results ---MEMPM (I)

Six benchmark data sets From UCI Repository

Evaluate both the linear and the Gaussian
kernel with the wide parameter for Gaussian 

chosen by cross validations.

Platform: Windows 2000
Developing tool: Matlab 6.5
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Experimental Results ---MEMPM(II)

At the Significance level 0.05 
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Experimental Results ---MEMPM (III)
vs. The test-set accuracy for x (TSAx)a
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Experimental Results ---MEMPM (IV)
vs. The test-set accuracy for y (TSAy)b
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Experimental Results ---MEMPM (V)

vs. The overall test-set accuracy (TSA)bqqa )1( -+
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Experimental Results ---M4 (I)

n Synthetic Toy Data (1)
Two types of data with the same data 
orientation but different data magnitude
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Experimental Results ---M4 (II)

n Synthetic Toy Data (2)
Two types of data with the same data 
magnitude but different data orientation
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Experimental Results ---M4 (III)

n Synthetic Toy Data (3)
Two types of data with the different data 
magnitude and different data orientation
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Experimental Results ---M4 (IV)

n Benchmark Data from UCI
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Future Work

n Speeding up M4  and MEMPM
• Contain support vectors—can we employ its sparsity as 

has been done in SVM?

• Can we reduce redundant points??

n How to impose constrains on the kernelization for 
keeping the topology of data?

n Generalization error bound?
• SVM and MPM have both error bounds.

n How to extend to multi-category classifications?
• One vs. One or One vs. All?

• Or seeking a principled way to construct multi-way 
boundary in a step??
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Conclusion

n We propose a general global learning model 
MEMPM
• A Worst-case distribution-free Bayes Optimal classifier
• Containing an explicit error bound for future data
• Subsuming BMPM which is idea for biased classification

n We propose a hybrid framework M4  by learning 
from data locally and globally
• This model subsumes three important models as special 

cases 
n SVM

n MPM
n FDA

• Extended into regression tasks
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Discussion (I)

n In linear cases, M4 outperforms SVM and 
MPM

n In Gaussian cases, M4 is slightly better or 
comparable than SVM

•(1) Sparsity in the feature space results in inaccurate estimation of 
covariance  matrices 

• (2) Kernelization may not keep data topology of the original data.—
Maximizing Margin in the feature space does not necessarily 
maximize margin in the original space
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Discussion (II)

An example to illustrate that 

maximizing the margin in the 
feature space does  not 

necessarily maximize the margin 
in the original space

From Simon Tong et al. Restricted Bayesian 
Optimal classifiers, AAAI, 2000.
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Setup

n Three concerns:

• Binary classification data sets

• For easy comparison. MPM (Lanckriet et al. JMLR 02 or 

nips02) also uses these data sets.

• Medium or smaller size Data sets
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Appendix A: MEMPM- BMPM (I)
1

2

3

4

5

Fractional Programming
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Appendix A: MEMPM- BMPM (II)

n Parametric Method
1. Find    by solving 

2. Update

n Equivalently 

n Least-squares approach
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Appendix B: Optimization of LSVR(I)

Hard to be solved…
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Appendix B: Optimization of LSVR(II)

Second-Order Cone Programming

Can be relaxed as the following:
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Appendix C: Convex Optimization



Dept. of C.S.E., C.U.H.K. 64

NLCP

Conic Programming 

(Second order cone programming)

Appendix C: Convex Optimization
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Appendix C: Convex Optimization -
SOCP
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• Sedumi (MATLAB)

• Loqo (C, MATLAB)

• MOSEK (C, MATLAB)

• SDPT3 (MATLAB+C or FORTRAN )

• The worst-case cost is O(n^3)

Appendix C: SOCP-Solver
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Time Complexity

Models Time 
Complexity

MEMPM O(Ln3+Nn2)

BMPM O(n3+Nn2)

M4 O(Nn3)

LS-SVM O(n3+Nn2)

LSVR O(Nn3)

LS-SVR O(n3+Nn2)
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Time Complexity

----“Applications of Second Order Cone Programming”, 
Lobo, Boyd et al. in Linear Algebra and Applications.


