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Background - Linear Binary Classifier

Given two classes of data sampled from x and y, we
are trying to find a linear decision plane wT z + b=0,
which can correctly discriminate x from vy.

wT z + b< 0, zis classified as y;

wT z + b=0 : decision
hyperplane

wT z + b >0, zis classified as Xx.

;?%] Dept. of C.S.E., C.U.H.K.



Background - Global Learning (1)

= Global learning

e Basic idea: Focusing on summarizing
data usually by estimating a distribution

e Example
= 1) Assume Gaussinity for the data

s— 2) Learn the parameters via MLE or other
criteria

‘s 3) Exploit Bayes theory to find the optimal
thresholding for classification

>| Traditional Bayes Optimal Classifier




Background - Global Learning (Il)

s Problems

Usually have to assume specific models on data, which
may NOT always coincide with data

‘all models are wrong but some are useful...—by George Box

Il Estimating distributions may be wasteful and imprecise

Finding the ideal generator of the data, i.e., the distribution, is
only an intermediate goal in many settings, e.g., in
classification or regression. Optimizing an intermediate
objective may be inefficient or wasterul.

'irtfj] Dept. of C.S.E., C.U.H.K. 8



Background- Local Learning (1)

s Local learning

e Basic idea: Focus on exploiting part of
iInformation, which is directly related to the
objective, e.g., the classification accuracy
Instead of describing data in a holistic way

e Example

In classification, we need to accurately
model the data around the (possible)
separating plane, while inaccurate modeling
of other parts is certainly acceptable (as is
done in SVM).

f] Dept. of C.S.E., C.U.H.K.



Background - Local Learning (Il)

s Support Vector Machine (SVM)
---The current state-of-the-art classifier

ﬂf] Dept. of C.S.E., C.U.H.K.



Background - Local Learning (ll1)

s Problems

Il The fact that the objective is exclusively

determined by local information may
lose the overall view of data

i ?] Dept. of C.S.E., C.U.H.K.



Background- Local Learning (I\V)

An illustrative example

Along the dashed axis, the y data is
obviously more likely to scatter than the x

data. Therefore, a more reasonable A more reasonable
hyerplane may lie closer to the x data
rather than locating itself in the middle of
two classes as in SVM.

Lirg,fj] Dept. of C.S.E., C.U.H.K.
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Learning Locally and Globally.

= Basic idea: Focus on using both local
Information and certain robust global
Information

e Do not try to estimate the distribution as in
global learning, which may be inaccurate and
indirect

e Consider robust global information for
providing a roadmap for local learning

s

18 fj] Dept. of C.S.E., C.U.H.K. 10



Summary of Background

([ Problem | Optimizing an intermediate objective
g — Can we directly optimize the objective??
5
|: — Local Learning, e.qg., SVM
o
Q
3 < Problem | Assume specific models
é.
Without specific model assumption?
Distribution-free Bayes optimal classifier ---
\ Minimum Error Minimax Probability Machine (MEMPM)
o
o (Problem |ji Focusing on local info may lose the roadmap of data
E J Can we learn both globally and locally??
Q
S L, | Maxi-Min Margin Machine (M%)
g@]\ Dept. of C.S.E., C.U.H.K. 11
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Contributions

= Mininum Error Minimax Probability Machine
(Accepted by JMLR 04.)

o A worst-case distribution-free Bayes Optimal Classifier

e Containing Minimax Probability Machine (MPM) and
Biased Minimax Probability Machine
(BMPM)(AMAIO4,CVPRO4) as special cases

s Maxi-Min Margin Machine (M%) ucmL 04+submitted)
e A unified framework that learns locally and globally
= Support Vector Machine (SVM)
= Minimax Probability Machine (MPM)
= Fisher Discriminant Analysis (FDA)
= Can be linked with MEMPM

e Can be extended into regression: Local Support Vector
Regression (LSVR) (submitted)

Fcﬁ] Dept. of C.S.E., C.U.H.K. >
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Minimum Error Minimax Probability
Machine (MEMPM)

Model Definition:

Ocx + (1 —6 , S.t. y
g, ar(-0)p T um
i(I_lg ) Pr{W x =5} = , X
inf PriW 'y < b} = . wixzb

y—(¥.Zy)

e O: prior probability of class x; a(B): represents the worst-
case accuracy for class x (y)

The class of distributions that have prescribed

mean fdand covariance
X o

likewise

iFTc’*fﬂ Dept. of C.S.E., C.U.H.K. 14



MEMPM: Model Comparison

MEMPM (JMLRO4) MPM (Lanckriet et al. IMLR 2002)

agl.ai%b Ooa+(1-60)3, s.t. S.t.

Priffx=b}2a, inf Pr{w'x>b}>a
Pry<h >p i Priw'y<b}>a

opbmal dacision plane dacision plana whan a=§




MEMPM: Advantages

= A distribution-free Bayes optimal Classifier
In the worst-case scenario

s Containing an explicit accuracy bound,

namely,

s Subsuming a special case Biased Minimax
Probability Machine for biased classification

i ?] Dept. of C.S.E., C.U.H.K. iz



MEMPM: Biased MPM

Biased Classification:
Diagnosis of epidemical disease: Classifying a patient who is infected
with a disease into an opposite class results in more serious consequence

than the other way around.
The classification accuracy should be biased towards the class with

disease.
BMPM An ideal model for biased
max . st classification.
e ical setting: We should
: A typical se :
> >
Xi‘,},ﬁx) Pri@x2b;2a, maximize the accuracy for the
inf  Pragy<h'>g, important class as long as the accuracy
y~(¥.2y) for the less important class is
pzy acceptable (greater than an

acceptable level y).

P ;ﬂ Dept. of C.S.E., C.U.H.K. 17



MEMPM: Biased MPM (1)

- ObJECtlve Jmax @ st inf Prgfx>b>a
inf Prgfy<b>p

y~(¥.Zy)

B=zy

= Equivalently

max «(a) st 1= K(a) W+ K(ﬂ) A

o, 0.0
W x-y)=I
k(B)zx(y)
(@)= k(B =5
74 Dept. of C.S.E., C.U.H.K. 18




MEMPM: Biased MPM (I1)

s Objective
max k(a) s.t. 1=K‘(0[)Z’+K‘(ﬂ)zy'

o, @#0.b

W E-y=1
| K(f) 2 K()
s Equivalently,

1-x(5)

x(5)0

9
max ————— st WE-y)=1 «(B)=2x()
\/i

= Equivalently,

1—K(V) DA

)1 Conave-Convex Fractional
st. W(E-Y)= Programming problem

- N: number of data points n: Dimension
iﬁfﬂ Dept. of C.S.E., C.U.H.K. 19



MEMPM: Optimization (1)

s Objective

O +(1-0 1.
R L (1-0)B, s

1= k() =+ K(,B) A

W (Ex-y) =1

. 6 1-6
min > + > , S.t.
k(@x (/W0 () +1 x(f) +1

1 Dept. of C.S.E., C.U.H.K.
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MEMPM: Optimization (1)

s Objective
O ()’

max +(1-60)5, s.t.
M, H1-0p

W E-y)=1

1—K(,3) DR
DA

where k(o) = ——F——

s Line search + BMPM method

4P ;} Dept. of C.S.E., C.U.H.K.
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MEMPM: Problems

s As a global learning approach, the
decision plane is exclusively dependent on

global information, i.e., up to second-
order moments.

s [hese moments may NOT be accurately
estimated! —We may need local

information to neutralize the negative
effect caused.

Learning Locally and Globally

22



Learning Locally and Globally:
Maxi-Min Margin Machine (M#)

A more reasonable
hyperplane

’0
*
.0
*

Model Definition

The formulation for M* can be written as:
max s.t.
p,w#0,b

oL
i +0b .
W Xith) s i=1,2,.. Ny,

vVwlY, w
—(wlv: +b
(w'y; + )>

_p’ ] ) y y)
WTEyw

1 =1,2 N

where Y and X, refer to the covariance matrices of
the x and the y data, respectively.

SPE Dept. of C.S.E., C.U.H.K. 23
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M#: Solving Method (1)

Divide and Conquer:

If we fix p to a specific p, , the problem changes to check whether
this p,, satisfies the following constraints:

(WTX.,; +b) > povV/WIE,w, i =1,..., Ny,

—(wly; +b) > poy/WIEyw, j=1,..., Ny .

If yes, we increase p,,; otherwise, we decrease it.

Second Order Cone Programming
Problem!!!

Dept. of C.S.E., C.U.H.K. 25



M#: Solving Method (I1)

Iterate the following two Divide and Conquer steps:

1. Divide: Set p, = (po + pm)/2, where pg is a
feasible p, p,, 1s an infeasible p, and pg < pp,.

2. Conquer: Call the Modified Second Order Cone

Programming (MSOCP) procedure elaborated in
the following to check whether p,, 1s a feasible p.
If yes, set pg = p,; otherwise, set p,, = pn;

Sequential Second Order Cone Programming Problem!!!

Dept. of C.S.E., C.U.H.K.
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M#: Solving Method (I11)

/
No Yes

can it satisfy the constraints?

>

P

The worst-case iteration number is log(L/¢)
L: Pmax -Pmin (search range)
¢+ The required precision

Each iteration is a Second Order Cone Programming problem
yielding O(n3)

Cost of forming the constraint matrix O(N n3)

Total time complexity= O(log(L/<) n3+ N n3) ~O(N n3)
N: number of data points n: Dimension
li?lﬁ] Dept. oT C.o.C., C.U.M.K. 7




Ny Ny
w’l in + Nyb > J’pr WTEXW , —(wT Zyj + Nyb) > Nypy/wTEyw |

i=1 j=1

& wWx+b>p/wlSew ‘ & —(WIy+0b) > py/wTS,w,

max
p,w#0,b




The formulation for M* can be written as:

Remarks:
- The procedure is not s PR
reversible: MPM is a (Wixitb)
special case of M4 VwTSw

f buildi —(w'y; +b)
decision boundary e
GLOBALLY, i_e_, it where ¥, and Xy refer to the covariance matrices of
- the x and the y data, respectively.
exclusively depends on
the means and
covariances.
e However, means and

covariances may not be
accurately estimated.

i Dept. of C.S.E., C.U.H.K.
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Support Vector Machines

SVM is the special case of M4

(wix; +b)>1,
—(wly;+b) > 1,

|I zyg where i =1,... , Ny and j=1,..., Ny. C.U.H.K. 30
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M= Links with SVM (II)

Assumption 1 If one assumes Xy = Xy = E‘

Assumption 2 If one assumes 3 =1

These two assumptions of SVM are inappropriate

31



If one assumes
2x=2,=(2%,+2")/2

FDA

max p s.t.
P, W#0.,b

T~
(W X; + b) Z 0, WT(E _y) > P W‘TZXW —’—W‘szw
VWIS w4+ wliX,w
—(w'y; +b)

Y =P,
VWY w + wliX,w

Perform a procedure similar to
MPM...

E., C.U.H.K. 32




If one assumes

Assumption 2X=2y=(2*y+32*x)/2

Still inappropriate

33
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M?: Links with MEMPM

M4 (a globalized version) MEMPM

max fa + (1 —0)3 s.t.
a.B3.a#£0b

- , inf Pr{a'x>b}>a,
max ot + (1 — 9,‘8 S.T. xRy ) { - } -

w#£0b
7 . ' 7. - /
T qa'y < > 3.

o+ {1 —-6)3 s.t.

—b+ a’x > k{a)y/aTS.a,

b—a'y > k(B)y/aTEya.

Tand ==p K(a) and

The margin from the mean to the decision plane

The globalized M4 maximizes the weighted margin, while MEMPM
Maximizes the weighted worst-case accuracy.

|!T(,;] Dept. of C.S.E., C.U.H.K. 34
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M? :Nonseparable Case

Introducing slack variables

Imax
P, W==0.,b, €

(wix; + b) = pWTZxW

—(wly,; +b) = P/ WHEywW — &, N, s

5[;20:

Line Search+Second Order Cone Programming

Step 1. Generate a new p,, from three previous p, pa, ps by using the Quadratic

Interpolation method.

Step 2

. Fix p = p,. perform the optimization based on SOCP algorithms.

Update pr, p2, p3.

|P 6
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M# : Extended into Regression---
Local Support \V/=Yeil0]} Regressmn (LSVR)

to

LSVR Model Definition SVR Model Definition
N
N )
v v ) 111 +C 5 i z* ,
L Z\ wow oy e, Loty IV 2 &+ eD
st.  yi—(wx;+0) < e+ &,

yi — (Wi +b) < e/ WIS,w + &,
(Wi +b) —y < e/ WISiw + €7, (wx; +0) —y; < e+ &,




Local Support Vector Regression (LSVR)

s When supposing > ;=1 for each
observation, LSVR is equivalent with [;-
SVR under a mild assumption.

Lemma The LSVR model with setting ¥; = I is equivalent to the ¢;-norm

SVR in the sense that: (1) Assuming a unique €] exists for making ¢;-norm
SVR optimal (i.e. setting € to e} will make the objective function minimal),
if for €} the £;-norm SVR achieves a solution {w*, b*} = SVR(e]), then the
LSVR can 1‘)1‘(;)(11,1('0 the same solution by setting the parameter € = ”‘:; RS

LSV F\( w ) = SVR(€]): (2) Assuming a unique €3 exists for making the special
case of Lb\- R optimal (i.e. setting € to €5 will make the objective function
minimal), if for €} the special case of LSVR achieves a solution {w3}, b3} =

LSVR(e}), then the ¢;-norm SVR can produce the same solution by setting
37

" Xﬂ the parameter € = e}||w3||, i.e., SVR(e5| w3|) = LSVR(€}).
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SVM
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Non-linear Classifier : Kernelization (1)

s Previous discussions of MEMPM,
BMPM, M%, and LSVR are conducted
In the scope of linear classification.

s How about non-linear classification
problems?

Using Kernelization techniques

i ?] Dept. of C.S.E., C.U.H.K. a5



Non-linear Classifier : Kernelization (I1)

s In the next slides, we mainly discuss the
kernelization on M% while the proposed
kernelization method is also applicable for
MEMPM, BMPM, and LSVR.

i ?] Dept. of C.S.E., C.U.H.K. -



Nonlinear Classifier: Kernelization (I11)

e Map data to higher dimensional feature space Rf
Xi2>¢(X;)
Yio(Yi)

e Construct the linear decision plane f(y ,b)=y" z + b in the feature space R,
withy€ERf, bER
max p s.t.

eIn Rf, we need to solve =0

e However, we do not want to solve this in an explicit form of ¢. Instead, we
want to solve it in a kernelization form

K(z1,22)= o(z1)"o(z2)

fg Dept. of C.S.E., C.U.H.K. 42




Nonlinear Classifier: Kernelization (1\V)

Corollary [f the estimates of means and covariance matrices are given in

M* as the following plug-in estimates:

then the optimal 4 in (4.37-4.39) lies in the space spanned by the training

points. Ny

.‘]\‘._\(
v =) mielx) + Y viely;)
=1

j=1




Nonlinear Classifier: Kernelization (V)

Kernelization Theorem of M*  The optimal decision hyperplane for N

involves solving the following optimization problem:

max P S.t.
p, 1]/ 0.b

(n"K; + b)
\',.-"’"\%,\nTKTKxn N
(7}TK_7| Ny T b) >
f'—'r)TKTK n

V3

NOtation z? = (/15 -« s AN > Ul - - .‘ ,

Kx, ky € RNVNx+Ny




Experimental Results ---MEMPM (1)

Six benchmark data sets From UCI Repository

Dataset || Attributes # Instances#
Twonorm | 20 7400
Breast 9 699

|

| 34 351
Pima | = iGX

|

|

Ionosphere

Heart-disease 13 270
Vote 16 435

Platform: Windows 2000
Developing tool: Matlab 6.5

Evaluate both the linear and the Gaussian
kernel with the wide parameter for Gaussian
chosen by cross validations.
] f;j] Beptrof-E:5-Em-Eriit 45
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Experimental Results ---MEMPM(II)

Dataset MEMPM MPM
o i) fa+(1—t)3 Accuracy Q Accuracy

Twonorm(%) 803+02% 79.9+01%  801+01% 07.9+0.1% 80.1 +£0.1% | 97.9+0.1%
ﬁreast(%) TT8E08% 914 +£05% 86.7 + 0.5% 96.9 + 0.3% 84.4 £ 05% | 97.0 £0.2%
lonosphere( ') 059+ 1.2%  36.5 £ 2.6% 74.5 £ 0.8% 886+ 1.0% [\ 634 +1.1% SIS+0.8%
Pima('%) 09+0.0% 629 +1.1% 41.3 £ 0.8% T0.8 + 0.67% 1\ 7320 £08%  76.1 % 0.6%
Heart-disease() 43.6 4+ 25% 66.5+ 1.5% 56.3 + 1.4% 84.2+ 0.7% |\ 7549 +1.4% 832+ 08%
Vote(74) S2.6F 1.9% 84.6L0.T% 83.9 £ 0.9% . 0.4% 838 £ 09%  UdSs+E04%

Table 2: Lower bound a. 3, and test accuracy compared to MPM in the linear setting,

Dataset MENPM

o 3 Oa+ (1 —8)3 :
Twonorm(%) 01.7+02% 917+ 0.2% 01.7 £ 0.2% , 01.7+0.2% 197.9 4+ 0.1%
Breast(% ) 884+ 06% 90.7+04% 809+ 04%  96.9 £+ 0.2% 80.9 +£04% [96.9 +0.3%
lIonosphere(') 042+ 08% 809+3.0% 894+08% [U3.8+04%[\80.0+08% 922+ 04%
Pima('%) 26+ 01%  623+1.6% 414+ 11% . ]\ 321 £1.0% 76.2+ 0.6%
Heart-disease(%) 47.1+22% 66.6 +14% 58.0 £ 1.5 574 +£1.67% 831+ 1.0%
Vote('7) 851+ 1.3% 843+07% 847+ 08% . Ryt 844 +£08% 946+ 04%

Dept. of C.S.E., C.U.H.K.
At the Significance level 0.05




Percentage

Experimental Results ---MEMPM (111

VS.

o's and TS/-\(‘s in the linear kemel

s and TSA“S in the Gaussian kemel

Percertage

o
— TSA,

0
Twonom

R
_TS/\‘

1 0
Heart-disease Vote Twonom

Dept. of C.S.E., C.U.H.K.
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Heart-disease

Vote




VS.

['sand TSl\f‘s in the linear kernel ['sand TSI\,'s in the Gaussian kemel

Percentage

0 0
Twonorm Heart-disease i Heart-disease

Dept. of C.S.E., C.U.H.K. 48




VS.

Bounds and TSA's for MEMPM and MPM in the Gaussian kemel

Bounds and TSA's for MEMPM and MPM in the linear kernel

Percentage
3

Percentage

-—- Bou+(1-0)f == BuH(1-0)B
— TSA:MEMPM
S
— — TSA:MPM

Heart-disease

0 -
Twonom Heart-disease Twonom

Dept. of C.S.E., C.U.H.K. 49




Experimental Results ---M* (1)

s Synthetic Toy Data (1)

Two types of data with the same data
orientation but

50




Experimental Results ---M* (11)

s Synthetic Toy Data (2)

Two types of data with the same data

51




Experimental Results ---M* (111)

s Synthetic Toy Data (3)

Two types of data with the different data
magnitude and

|!T;} Dept. of C.S.E., C.U.H.K. 52
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Experimental Results ---M* (1V)

» Benchmark Data from UCI

Data sel Linear kernel (Gaussian kernel
M* SVM MPM M*# SVM MPM

Twonorm(%) 065 £0.6 051 £07 [97.6+05[] 96507 061 +0.1 [07.6+05

Breast(%) 06.6 £0.5 96.9+0.8 | [975+0.6 96.7+0.4 96.9 + 0.8
[onosphere( ) 86.9+£0.6 84.8+0.8 | [945£04 94.2+0.3 923 £0.6

Pima( %) 77.74+0.9 T7.6+08 |[78.0+05] 762+1.2

Sonar(% ) 776+124 762411 T75.5+1.1 849+1.2 865+1.1 |[87.31+0.8

Vote(%) 95.1+04 948+04 | [96.2+0.5 95.90+06 94.6+0.4

Heart-disease( ) 84.1+£0.7 83.2+08 | [862+08 83.8+05 R83.1+1.0

Table 2: Comparisons of classification accuracies among M*, SVM, and MPM.

P Dept. of C.S.E., C.U.H.K. o3
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Future Work

s Speeding up M* and MEMPM

e Contain support vectors—can we employ its sparsity as
has been done in SVM?

e Can we reduce redundant points??

= How to impose constrains on the kernelization for
keeping the topology of data?

s Generalization error bound?
e SVVM and MPM have both error bounds.

= How to extend to multi-category classifications?
e One vs. One or One vs. All?

e Or seeking a principled way to construct multi-way
boundary In a step??

|ircf] Dept. of C.S.E., C.U.H.K. 4



Conclusion

= We propose a general global learning model
MEMPM
o A Worst-case distribution-free Bayes Optimal classifier
e Containing an explicit error bound for future data
o Subsuming BMPM which is idea for biased classification

s We propose a hybrid framework M4 by learning
from data locally and globally

e This model subsumes three important models as special
cases
= SVM
= MPM
= FDA

e Extended into regression tasks

ﬂ%ﬂ Dept. of C.S.E., C.U.H.K. .



Discussion (1)

H In linear cases, M* outperforms SVM and
MPM

B In Gaussian cases, M* is slightly better or
comparable than SVM

(1) Sparsity in the feature space results in inaccurate estimation of
covariance matrices

* (2) Kernelization may not keep data topology of the original data.—
Maximizing Margin in the feature space does not necessarily
maximize margin in the original space

FE;] Dept. of C.S.E., C.U.H.K. =z



An example to illustrate that
maximizing the margin in the
feature space does not

in the original space

necessarily maximize the margin

i 9{}]

\,t.« '&

Dept. of C.S.E., C.U.H.K.
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(a)

(a) SVM using degree 4 polynomial kernel.

From Simon Tong et al. Restricted Bayesian
Optimal classifiers, AAAI, 2000.
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Setup

Three concerns:
Binary classification data sets

For easy comparison. MPM (Lanckriet et al. JMLR 02 or
nipso2) @lsO uses these data sets.

Medium or smaller size Data sets



Appendix A: MEMPM- BMPM (1)

Lemma Given w # 0 and b, such that wy < b and 8 € [0,1), the

condition

inf Pr{w’y <b} > 8,
yM¥,Zy) wys<bh=2p

holds if and only if b — w7y > k(B)/WTE,w with k(8) = /£~ .

1-8
IIlaX (8] Soto max o S.t-

a,w#0,b a,w#0

—b+ W' > K(a) VW Bxw 12 K{o) VWIS + k() /W Sy w
b—wTy > k(Bo)y/WTSyw , wi(x-y) =1
* e

Wiy 4+ K(Bo){/ WISy w < b < WX — k() /W E,w . I\{rl;%(

Fractional Programming

st. w (X—y)=1




Appendix A: MEMPM- BMPM (Il)

Solving Fractional Programming problem

Parametric Method
Find Wby solving

max I—K(y),iZy'—lwin' st. WE-y)=1

Updat
p FALE ;H_I—K(;/),iil).
e

Equivalently
min K(}/),iZy'+/lwin. st. WE-y) =1
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g Least-squares approach
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Appendix B: Optimization of LSVR(I)
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Hard to be solved...




Appendix B: Optimization of LSVR(II)

Can be relaxed as the following:

w,b,t; éiagz

s.t. Yi — (WTXi + b) < €t; + fz'a

| X N
min ﬁztz""CZ(fi'Ff:)a
i=1

=1

(WTXz' +b) —y; < et;+ &,

\/WTEz‘W <,

t; >0, >0, >0,i=1,...,N.
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Second-Order Cone Programming




Appendix C: Convex Optimization

Linear Program:

minclz st. Az <b LP SVM
Fo=g (Mangasarian, Bennett)
Quadratic Program:
minz? Pz +2¢ e +r st. Az <b SVM

Fe=g (Vapnik)
Quadratic Constrained Quadratic Program:

minzT Pox + 2¢Tx +ro st TP+ 20T + 11 < 0 Kernel Fisher Discriminant
i=1,...,L (convex ifP; > 0) (Mlka et al)

Second Order Cone Program:

Minimax Probability Machine

minc’ z  s.t. HAZ-a:—I—bZ-HgSeZTJ:—I—di _
i (Lanckriet et al.)

i=1,... .1
Semi-Definite Program:

mineTe st A(r) = Ao+ 3 widi 2 0 (A; = AT € RP¥P) Kernel matrix learning

$ Feeg (Lanckriet, Cristianini et al.)




Appendix C: Convex Optimization

Conic Programming

(Second order cone programming)

Model Generality

Less ¢ > More
General General

Lp ___/(Convex)___,|(Convex)
QP QcQp

Less < > More

Difficult o Difficult
Solution Difficulty



Appendix C: Convex Optimization -
SOCP

. AT
min X . .
/ Quadractic cone C sometimes also called

st. |Cx+d|<a/x+b,. i=1,.,N Lorentz cone (or ice cream cone)

/ Trivial Quadratic Cone:
Equivalent to conic program o A S
& 2 \/x“+y’

* Linear constraints: cone dimension k=1

Quadratic cone 2= srtly 2+Z)

xeR" foa,e R C.e RV d.eRY" bheNR ¥

« Cone constraints:  change of variables

(vector)y=Cx+d., z=a x+b,




Appendix C: SOCP-Solver

Sedumi (MATLAB)

Loqgo (C, MATLAB)

MOSEK (C, MATLAB)

SDPT3 (MATLAB+C or FORTRAN )

The worst-case cost is O(n"™3)




Time Complexity

Time
Complexity
MEMPM O(Ln>+NnZ?)
BMPM O(n>+NnZ2)

L

LS-SVM O(n>+NnZ2)

LSVR O(Nn?3)
LS-SVR O(n>+NnZ2)




Time Complexity

Thus we believe that for practical purposes the cost of solving an SOCT 1s roughly equal
to the cost of solving a modest number (5-50) of systems of the form (40). If no special
structure in the problem data is exploited. the cost of solving the svstem is O(n?). and the
cost of forming the system matrix is Q(n? Y00 7). In practice. special problem structure
(€.q.. sparsity) often allows forming the equations faster, or solving the systems (39) or (40)
more efficiently.

----“Applications of Second Order Cone Programming’,
Lobo, Boyd et al. in Linear Algebra and Applications.




