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Face Annotation Using Transductive
Kernel Fisher Discriminant

Jianke Zhu, Steven C.H. Hoi, and Michael R. Lyu

Abstract—Face annotation in images and videos enjoys many
potential applications in multimedia information retrieval. Face
annotation usually requires many training data labeled by hand in
order to build effective classifiers. This is particularly challenging
when annotating faces on large-scale collections of media data, in
which huge labeling efforts would be very expensive. As a result,
traditional supervised face annotation methods often suffer from
insufficient training data. To attack this challenge, in this paper,
we propose a novel Transductive Kernel Fisher Discriminant
(TKFD) scheme for face annotation, which outperforms tradi-
tional supervised annotation methods with few training data. The
main idea of our approach is to solve the Fisher’s discriminant
using deformed Kkernels incorporating the information of both
labeled and unlabeled data. To evaluate the effectiveness of our
method, we have conducted extensive experiments on three types
of multimedia testbeds: the FRGC benchmark face dataset, the
Yahoo! web image collection, and the TRECVID video data collec-
tion. The experimental results show that our TKFD algorithm is
more effective than traditional supervised approaches, especially
when there are very few training data.

Index Terms—Face annotation, image annotation, kernel
Fisher discriminant, multimedia information retrieval, supervised
learning, transductive kernel Fisher discriminant, transductive
learning.

I. INTRODUCTION

MAGE annotation enables traditional text based search en-

gines to index and retrieve large collections of media data
effectively which has received a rapid growth of research at-
tention in recent years [1]-[6]. Although numerous research ef-
forts have been devoted to content-based image annotation and
retrieval [7], the general image annotation problem is still a
very challenging research issue due to the semantic gap between
low-level visual features and high-level semantic concepts [8],
[9]. We are still a long way from achieving a practical solution
of general image annotation for web-scale applications.

In general, image annotation can be considered a typical ob-
ject detection and recognition problem, in which a variety of
concept detectors can be developed and applied. Among var-
ious concept detectors, face annotation, may be one of the most
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important and so far the most effective components for image
annotation tasks. Face annotation is a task to label the facial im-
ages, which has recently received a surge of research attention in
the multimedia retrieval community due to its numerous poten-
tial applications [10]-[13]. One such application is to support
the manual insertion of name labels into photo albums, which
can facilitate photo management and search tasks [14]. Another
significant application is the annotation of faces on web images
or photos, such as web news images [11]. This would enable
current text based search engines to retrieve the content of fa-
cial images effectively by text based indexing and searching
ways, which can facilitate traditional content-based image re-
trieval [15], [7], [16]. Face annotation also has some important
applications in the video domain. For example, detecting impor-
tant persons in video data, such as news videos, can help con-
tent-based video retrieval tasks significantly [17], [18]. These
potential applications are often very large-scale, making the face
annotation tasks very challenging in practice.

Face annotation is often regarded as a supervised classifi-
cation problem, in which traditional face recognition methods
are directly applied to solve the problem. Traditional face
recognition methods are usually based on supervised learning
techniques, which typically require a large number of training
faces in order to achieve satisfactory performance. In large-scale
applications, it is excessively costly to manually label large
amount of training data. Therefore, it is critically important
to develop an effective annotation method which is able to
annotate faces effectively with small numbers of training ex-
amples. Since there are usually large amounts of unlabeled data
available in a given face annotation task, taking advantage of
these unlabeled data would offer a worthwhile advantage. This
motivates us to explore transductive learning or semi-super-
vised learning techniques for face annotation tasks [19], [20].

Although transductive learning and semi-supervised learning
techniques have already been actively studied in machine
learning communities [20], the problem of choosing an ap-
propriate classification method for face annotation remains
unsolved. The choice of classification method is of great im-
portance for achieving satisfactory annotation performance. In
traditional face recognition problems, Fisher’s linear discrim-
inant analysis [21] and its kernel variants [22] are generally
regarded as the state-of-the-art methods in face recognition
tasks. Considering that face annotation is closely related to face
recognition, developing transductive techniques of Fisher’s
linear discriminant analysis is likely to be a promising solution
for face annotation. To this end, we propose a novel Trans-
ductive Kernel Fisher Discriminant (TKFD) scheme, which
takes advantages of both labeled and unlabeled data for face
annotation tasks. The main idea of our solution is to convert
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the traditional Kernel Fisher Discriminant (KFD) into a trans-
ductive technique, which still has no straightforward solution
available in the literature. As we know, for Kernel Fisher Dis-
criminant (KFD), the kernel function has an essential impact
on the classification performance. Therefore, in our TKFD
solution, we propose to first induce a new transductive kernel
by employing kernel deformation techniques to incorporate
information from unlabeled data into the original kernel, and
then apply the new kernel to classification tasks based on the
Kernel Fisher Discriminant. Compared with traditional KFD
methods, our TKFD approach is more effective particularly
when there are only a small number of labeled data. We have
conducted extensive experiments to evaluate the performance
of our algorithm on three kinds of testbeds, namely the Face
Recognition Grand Challenge (FRGC) benchmark dataset [23],
the Yahoo! news images from WWW [11], and the TRECVID
2005 video dataset [24].

The rest of this paper is organized as follows. Section II re-
views the existing work on face annotation. Section III presents
the main methodology of our face annotation solution. We first
introduce the Kernel Fisher Discriminant, which is considered
the state-of-the-art approach for traditional face recognition. We
then discuss how to induce a transductive kernel using the kernel
deformation principle for incorporating information from unla-
beled data into an input kernel. Finally, we give the algorithm
of the Transductive Kernel Fisher Discriminant for face annota-
tion. Section IV presents the experimental evaluations of TKFD
on the three kinds of testbeds. Section V discusses the limitation
of our solution and some future directions. Section VI sets out
our conclusion.

II. RELATED WORK

Considerable research effort has been devoted to face annota-
tion problems in the multimedia community recently [10]—-[13],
[25], [26]. Most previous studies usually assume textual infor-
mation is available and there exist correspondences between
visual image content and texts, such as between web images
and surrounding texts [11], or video frames and closed-captions
[10], [12], [13]. Consequently, face annotation has previously
been regarded as a problem of finding the correlations between
the texts and the image contents. Satoh et al. [10] proposed the
first approach to associate names with faces in news videos by
measuring the frequency of faces and names occurring at the
same time. However, without a prior face-name association set,
this method may suffer significantly from noise, especially for
low-quality images.

Berg et al. [11], [26] collected a large number of face images
from Yahoo! News channel and labeled them using some lan-
guage models and clustering methods. Their approach tried to
find the correspondences between faces and names in news pic-
ture-caption pairs during the clustering procedure. Encouraging
results were reported on their dataset with a variety of poses,
illuminations, expressions and environmental conditions. One
disadvantage of their clustering approaches is that a single iden-
tity may become associated with different names in the clusters
due to text noise, limiting the retrieval performance.

There is no doubt that textual information can be beneficial
for face annotation tasks when it is available. However, in some

situations, textual information may not always be available and
may be quite noisy in real-world situations. Hence, it is impor-
tant to study effective ways of exploring the visual information
for face annotation tasks. To date, the research community has
developed few solutions using only visual information.

In general, face annotation can be regarded as an extended
face detection and recognition problem if one is considering
only the visual information. Face detection and recognition has
already been studied extensively in the past decade [27]. A re-
cent survey can be found in [28].

Recently, several research studies have been proposed to ex-
plore visual information for face annotation by applying face
recognition techniques. These approaches are often regarded
as supervised learning problems. For example, authors in [26]
suggested Fisher’s linear discriminant analysis for face annota-
tion. In [12], Support Vector Machines (SVM) were employed
to train and predict the probabilities of names in the transcript
matching faces in the videos. However, due to the high cost of
manually labeling the data, supervised learning methods usu-
ally suffer from a shortage of labeled data. Recently Yang et al.
[13] proposed a multiple instance learning approach to alleviate
the problem of limited labeled data. In this paper, we suggest
addressing this issue by exploring transductive kernel learning
techniques.

The key of our proposed transductive learning solution is to
incorporate the information of unlabeled data into the annota-
tion tasks. More specifically, in contrast to the linear discrim-
inant in [26], we suggest the Kernel Fisher Discriminant tech-
nique that solves the Fisher’s linear discriminant in a deformed
kernel feature space. Since our algorithm includes information
from both labeled and unlabeled data, it is more reliable for
building effective classifiers with limited amounts of labeled
data than traditional supervised learning techniques. In addition,
we develop an effective face detection and alignment scheme to
detect the facial regions and extract effective features for face
representation from the robust Gabor wavelets features. All of
these make our scheme effective in exploring the available vi-
sual information for large-scale face annotation.

III. TRANSDUCTIVE KERNEL FISHER DISCRIMINANT

A. Overview

In this section, we propose a Transductive Kernel Fisher Dis-
criminant algorithm for face annotation. We adopt the Kernel
Fisher Discriminant as the basis of our method, since it is the
state-of-the-art method for traditional face recognition tasks.
The main idea of our solution is to transform the supervised
KFD approach into a Transductive KFD learning method via
kernel transformation techniques. To induce an effective trans-
ductive kernel, we propose to employ the kernel deformation
principle, which is able to effectively incorporate information
from unlabeled data into a new kernel. In the subsequent parts
of this paper, we first give our formulation of Kernel Fisher
Discriminant and then introduce the kernel deformation prin-
ciple, which has a solid theoretical basis for learning nonpara-
metric data-dependent kernels. Based on the kernel deformation
principle, we finally present our propose TKFD algorithm for
solving face annotation tasks.
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B. Kernel Fisher Discriminant

Fisher’s linear discriminant analysis [21] and its variants [22]
are generally regarded as a state-of-the-art method to deal with
high-dimensional facial image data [28]. Kernel Fisher Discrim-
inant (KFD) [29]-[31] has been suggested to solve the problem
of Fisher’s linear discriminant in a kernel feature space, thereby
yielding a nonlinear discriminant in the input space. Comparing
with other supervised learning methods such as SVMs [32],
KFD enjoys the merits of outputs with natural probabilistic in-
terpretations and better solutions for multiclass classification
problems.

Let {x;|7 = 1,...,l} denote the labeled data in the input
space and assume the annotation task is an m-class classification
problem. Let K be an [ x [ kernel matrix whose elements are
defined as

[Kij = k(xi,x;) = ©(x;) - D(x;)]

where @ is a nonlinear mapping function to form the kernel
function k(-,-) in the Reproducing Kernel Hilbert Space
(RKHS).

Let X = [®(x1)P(x2)- - P(x;)] represent the data matrix
in the feature space; then the kernel matrix K can be calculated
as follows:

(K =XTX].
For a Kernel Fisher Discriminant problem, the total scatter ma-

trix S; and between-class scatter matrix Sy, in the feature space
are defined as follows:

S, = %XXT (1)
Sy = %XWXT )

where the weight matrix W is an [ X [ positive symmetric matrix,
whose elements are defined as follows:

C(xi) = C(xy)

otherwise

1
Wij = Wi = {6‘3("”" 3)

where C(x;) denotes the class of data instance x; and |C(x;)]
denotes the total number of data instances in the class of x;.

Remark: Our definition of the weight matrix W is more gen-
eral and flexible than conventional block diagonal representa-
tion. Moreover, the samples that belong to the same class are no
longer required to be kept in order.

Given the above definitions, instead of maximizing the typical
Fisher’s discriminant criterion J = tr(S'S;), where S,,, is the
within-class scatter matrix, we consider a variant [33] that can
deal with small sample size problems in high dimensional input
space as follows:

4
mgx ( )

where V is a projection matrix.
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There are several ways to solve the above optimization
problem. One approach is to solve the following equivalent
generalized eigen-decomposition problem:

ASY =85,V (&)

and then to form the projection matrix V by selecting the
eigenvectors with maximal eigenvalues ). From the theory
of reproducing kernels, the solution V lies in the span of
[®(21)P(x2) - - P(x;)] in feature space

l
V=> Bd(x;)=XB (6)
=1

where B = [By, Ba, ..., 3] T. Substituting (1), (2), (6) into (5),
we obtain

AXXTXB=XWXTXB.
Multiplying both sides by X ", we then have
MXTXXTXB=X"TXWXTXB.

Since K = X T X, we can turn (5) into the following equivalent
form:

AKKB=KWKB. @)

To ensure numerical stability of matrix inversion, we can add
a regularization term in (7). Consequently, the KFD problem
becomes one of solving the following equivalent eigen-decom-
position problem

AB = (KK +~I)"YKWK)B ®)

where y is the regularization parameter, and [ is an identity
matrix.

Since the purpose of the Kernel Fisher Discriminant is to
project input data into the optimal feature space, let x denote a
data example in the input space. We can then project the high-di-
mensional vector ®(x) into a lower dimensional space

l

u=V-0x) =Y Bi(d(x)- b(x;))

i=1
l
= Z BLk(XL X).
i=1

Let k, € R denote (k(xy,x)...k(x;,x))T; then, the pro-
jected feature vector u can be represented by the following
formula:

u=B"k,. &)

C. Kernel Deformation Principle

In face annotation, conventional supervised learning methods
usually require a large number of labeled data to train the model.
Previous approaches attempted to solve this problem by mul-
tiple instance learning. We tackle this problem by engaging
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transductive learning techniques, which can exploit the unla-
beled data effectively. The kernel deformation technique [20]
provides a framework for learning a data-dependent nonpara-
metric kernel from unlabeled data. It can effectively turn a
supervised learning algorithm into transductive or semi-super-
vised learning settings.

The main idea of the kernel deformation principle is to esti-
mate the geometry of the underlying marginal distribution from
unlabeled data, then incorporate them into the kernel deforma-
tion procedure. Thus, the resulting new kernel can take advan-
tage of information from unlabeled data. When an input kernel is
deformed according to the data distribution, the resulting kernel
method may be able to achieve better performance than the orig-
inal input kernel.

Basically, the kernel deformation technique aims to deform
the original RKHS H into a new RKHS H that can estimate the
underlying marginal distribution of both labeled and unlabeled
data. Working with H, the new kernel % is computed explicitly in
terms of unlabeled data, and a supervised kernel method can be
employed for semi-supervised inference. Given an input kernel
k, the new kernel k in H can be explicitly computed by

k(x,y) = k(x,y) + n,;,rc(x)

where &, = (k(x1,¥)...k(xn,y))" and the coefficients
c(x) = (c1(x)...c,(x))" depend on x. Both Ky and c are
n-dimensional vectors, where n is the total number of data,
both labeled and unlabeled. Let G € R™*™ be a symmetric
positive semi-definite matrix, as discussed in the next section.
Now, c¢(x) can be computed as follows:

c(x) = —(I + GK)"'Gky,

where IC € R"*™ is the kernel matrix with both labeled data and
unlabeled data, and &y is defined as (k(x1,x) ... k(x,,x))".
Consequently, the explicit form of the new kernel k can be for-
mulated as follows:

k(x.y) = k(x,y) — kg (I + GK) ™' Gry. (10)

D. Transductive Kernel Fisher Discriminant

The idea of our Transductive Kernel Fisher Discriminant ap-
proach is to solve the Fisher’s discriminant on the new RKHS,
which is constructed by warping the structure in exploiting
the underlying distribution of the data. To estimate the new
RKHS, we consider the kernel deformation method described
in Section III-C. By using the deformed kernels, we are able
to transform the supervised Kernel Fisher Discriminant into
transductive or semi-supervised learning forms.

It can be observed that our KFD formulation separates the
kernel matrix K from the label information through the def-
inition of the matrix W in (8). Therefore, only kernel k£ on
labeled data is required to solve the Kernel Fisher Discrimi-
nant optimization problem, which is only a portion of the de-
formed kernel . Moreover, it can be found from (10) that the
deformed kernel k£ works with both labeled and unlabeled data
in the new RKHS. Thus, we replace K with the corresponding
part in the deformed kernel K, which conveys the information

of the unlabeled data. Therefore, by applying similar method-
ology to that used in the supervised Kernel Fisher Discriminant,
we can solve the problem more effectively than supervised ap-
proaches by taking advantage of the unlabeled data. Note that
(10) can be used to compute either the semi-supervised kernel
or the transductive kernel. For the proposed Transductive Kernel
Fisher Discriminant approach, the new deformed kernel matrix
K € R™" can be derived as

K=K - K(I+GK)™'GK. (11)
It can be simplified through the Kailath Variant
K =(I+KG)™'K.
Moreover, the above equation is equal to
K=K(I+GK)™ (12)

It is interesting to note that the representation in (12) is more
concise and computationally more efficient than the original one
in (11).

There are several choices for the symmetric positive semi-
definite matrix G. As suggested in [20], the graph Laplacian
method is used in this work. G is defined by L?, where L is the
Laplacian matrix of a graph and p is a degree parameter. The
graph Laplacian is defined as L = D — @), where

Qij=Qji = { e~ H 12021“ , x; and x; are adjacent
, otherwise

and D is a diagonal matrix where D;; = Qg

Then, we employ the deformed kernel to find the optimal pro-
jection in the new RKHS H.Let K, o € R™! denote the matrix
part of the “training-data block™ in the deformed kernel matrix
K ; substituting it into (8)

/\B = (Ktrktr + ’}/I)_I(Kter(tr)B.

Therefore, the feature vector projected from the new RKHS is
derived as

a=D8"k, (13)
where k, = (k(x1,x) ... k(x;,x))T. The complete TKFD al-
gorithm is summarized in Fig. 1.

After feature vectors are extracted by this TKFD algorithm,
the next step is to measure the similarity for nearest neighbor
(NN) classification. The NN classifier is a nonparametric clas-
sification method, which works by finding the neighbor with the
minimum distance between the query instance u and all labeled
data instances. The query instance u will be classified into the
class of the closest labeled instance. Since the cosine similarity
Acos yields better results in the empirical evaluation, it is se-
lected as the distance measure for the NN classification schemes
using Kernel Fisher Discriminant, and is also used for the pro-
posed Transductive Kernel Fisher Discriminant

.
Acos = —— (14)

[[all - {lvll
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Algorithm 1 Transductive Kernel Fisher Discriminant
Input
e X: input data
e k: input kernel function
e ~: regularization parameter
Output
« K: transductive kernel matrix
. B projection matrix
Procedure
1: Calculate initial kernel matrix K: K;; = k(x;,x;)

2: Calculate transductive kernel matrix K:

K=K({+GK)™

1
W, ={ e
07

4: Find B by solving the following eigen-decomposition:

3: Calculate weight matrix W:
C(x:) = C(x5)

otherwise

)\B = (-f(tr-ktr + ’YI)_I(I‘V{trWRtT)B‘

5: Return (I~( s l§)

End

Fig. 1. Transductive kernel Fisher discriminant algorithm.

where u and v are the extracted feature vectors. Note that the
methodology discussed above can be applied to solve other gen-
eral multiclass classification problems. In this paper, however,
we restrict its application to face annotation tasks.

IV. EXPERIMENTAL RESULTS

A. Overview

In this section, we report empirical evaluations of the Trans-
ductive Kernel Fisher Discriminant algorithm with applications
to face annotation tasks. To make evaluations comprehensive,
we have collected three different kinds of datasets as our ex-
perimental testbeds. One is the Face Recognition Grand Chal-
lenge (FRGC) dataset [23], which was originally designed for
benchmark evaluation of face recognition. The second dataset is
the Yahoo! News facial images dataset, which was derived from
the web [11]. The third facial image dataset is selected from the
TRECVID 2005 dataset, which was originally used for bench-
marking video retrieval tasks.

For performance comparison, we also implement four ap-
proaches for face annotations, i.e., Linear Discriminant Anal-
ysis (LDA), Kernel Fisher Discriminant (KFD), Support Vector
Machine (SVM), and Transductive SVM. Both LDA and KFD
are two typical methods for face recognition tasks. For a perfor-
mance metric, average accuracy of annotation results is used for
the evaluations. Precision and recall curves are also provided for
comparisons. In the following text, we first show the details of
our testbeds. Then we discuss our preprocessing approaches for
face extraction and feature representation. Finally, we present
and discuss our experimental results.
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Fig. 2. FRGC image examples with controlled and uncontrolled environment.
The cropped faces are placed to the right side of each original image. Each
cropped image is interpolated to the size of 128 x 128.
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Fig. 3. Yahoo! News face images used in our experiments. The cropped faces
are placed to the right side of each original image. Each cropped image is inter-
polated to the size of 128 x 128.

B. Experimental Testbeds

1) FRGC Dataset: The FRGC dataset [23]! is the state-of-
the-art benchmark protocol for performance evaluation of face
recognition techniques. We adopt the FRGC version 1 data set
(Spring 2003) in evaluating our face annotation algorithms. This
dataset contains 5660 images of either 1704 x 2272 pixels or
1200 x 1600 pixels. Since we consider the face annotation task
rather than biometric identification, the standard FRGC exper-
imental protocol is not directly applied for performance evalu-
ation. The dataset used in our experiment consists of 1920 im-
ages, corresponding to 80 individuals selected from the original
collection. Each individual has 24 controlled or uncontrolled
color images. The faces are automatically detected and normal-
ized through a face detection and extraction method, which will
be detailed in Section I'V-C. Fig. 2 shows geometrically normal-
ized face images cropped from the original FRGC images, with
the cropped regions resized to the size of 128 x 128. Moreover,
some image processing operations are performed on these face
images, such as histogram equalization, lighting correction, etc.

2) Yahoo! News Face Dataset: The Yahoo! News Face
dataset was constructed by Berg et al. [11] from about half a
million captioned news images collected from the Yahoo! News
web site. It consists of large number of photographs taken in
real life conditions, rather than in the controlled environments
widely used in face recognition evaluation. As a result, there are
a large variety of poses, illuminations, expressions and environ-
mental conditions. After applying a face detection algorithm
and processing the resulting faces, there is a total of 31586
large well detected faces available for clustering. Each image
in this set is associated with a set of names. Discarding face
clusters with a small number of elements, a subset of 1248 face

I Accessible from http://www.frvt.org/FRGC
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Fig. 4. TRECVID video dataset used in our experiments. The cropped faces are placed to right side of each original image.

clusters is obtained. In addition, there are several individuals
having more than one cluster each; we merged them so that
one individual corresponds to one cluster. 1940 images, corre-
sponding to the 97 largest face clusters, are selected to form our
experimental dataset, in which each individual has 20 images.
As with the FRGC dataset, faces are cropped from selected
images using the same face detection and extraction method in
Section IV-C. Only the relevant face image is retained when
there are multiple faces in one image. Fig. 3 presents examples
selected Yahoo! News images and the extracted faces. All these
faces are geometrically normalized.

3) TRECVID Video Data: The third dataset used in our
experimental testbeds is from the TREC Video Retrieval
(TRECVID) 2005 dataset [24]. The original dataset contains
277 broadcast news videos of 171 h from six channels in three
languages (English, Chinese, and Arabic). The original dataset
is designed for benchmarking video retrieval tasks. In our
experiment, we extract the facial regions from the key frames
in the original dataset. Among the detected faces, we select 31
individuals to form our face annotation dataset, which contains
867 face images in total. Fig. 4 shows examples of video frames
and the extracted faces.

C. Facial Image Detection and Extraction

The major task of facial image extraction is to locate and
crop the face region from the input image, then to normalize the
cropped image geometrically and photometrically. In order to
enable an automatic face annotation scheme, we cascade a state-
of-the-art face detector [34] with Active Appearance Models
(AAMs) [35], [36] to locate faces and facial features in the input
images. More specifically, we employ the face detector roughly
locate the facial region which is employed to initialize AAMs
fitting. The image is aligned to the predefined template using
the estimated centers of the eyes provided by the AAMs facial
feature locator. Finally, the facial region without hair is cropped
from the original image. If there are multiple faces in an image,
we iteratively extract each face from those images. Fig. 5 shows
two sample resulting images with two faces using the face ex-
tractor employed in this study. Note that any false detection by
the face detector can be inspected by thresholding the AAMs fit-
ting error. Figs. 2 and 3 depict some cropped sample faces using
our proposed facial image extractor. The performance in terms
of correct registration is greatly dependent on the image condi-
tions. In fact, the proposed method successfully crops 99% im-
ages on the FRGC dataset. Similarly, the correct registration rate
is around 80% for the Yahoo! News Face dataset, and around
85% for the TRECVID dataset.

oA
EemE e
ETER TR
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Fig. 6. Face image represented by 40 subimages of the magnitude part of the
Gabor wavelet transform.

D. Feature Representation

Once facial images are extracted, the next step is to extract
features and then represent them effectively in classification
tasks. The feature representation techniques have been exten-
sively studied for face detection and recognition in recent years.
Many effective feature extraction methods have been proposed
to address the task, such as Local Binary Pattern [37] and Gabor
Wavelets Transform. Among those methods, Gabor wavelets
representation of facial image has been widely accepted as a
successful approach [22]. From past studies in the area of signal
processing, Lades er al. [38] empirically surmised that good
performance can be achieved by extracting Gabor wavelet fea-
tures of five different scales and eight orientations. In our ex-
periments, we employ a similar approach by applying Gabor
wavelet transform on each image (scaled to 128 x 128) at five
scales and eight orientations. Fig. 6 shows an example of 40 re-
sulting subimages after Gabor wavelet transformation. Finally,
we normalize each subimage to form a feature vector x € R"
with the sample scale reduced to 64, which results in a 10 240-
dimensional feature vector for each facial image.

E. Experimental Settings and Implementation Details

In our experiments, three datasets are used for performance
evaluations. Table I summarizes the details of these testbeds. In
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TABLE 1
FACE IMAGE DATASETS USED IN THE EXPERIMENTS

Dataset # total images I # classes I # images per class
FRGC 1920 80 24

Yahoo! News 1940 97 20
TRECVID 2005 867 31 11~111

the experimental evaluations, each dataset is partitioned into a
labeled set and an unlabeled set. For each transductive learning
setting, the training set comprises / + u data examples for each
class, where [ is the number of labeled data and u is the number
of unlabeled data for the class. For each supervised learning
setting, the training set only considers / labeled examples for
each class.

The LDA algorithm is used as the baseline method for
evaluating the performance of the proposed face annotation
approach. The implemented baseline method 2 is similar to the
Fisherfaces method [21], which applies LDA after PCA dimen-
sionality reduction. We also implement SVM and Transductive
SVM (TSVM) for comparison. As mentioned in [39], finding
an exact optimal solution for TSVM is NP-hard; a great deal
of research effort has been devoted to the approximation algo-
rithm. We consider the LapSVM [20] as the reference TSVM
method, which has demonstrated better performance than the
other popular approaches, such as the TSVM in SVM! 8! [40]
and the Low Density Separation (LDS) [41].

It is worth noting that LDA is a feature extraction method
rather than a classifier itself. It is often followed by some simple
classifiers, such as k-NN, to solve the pattern classification prob-
lems. Other sophisticated classification techniques can also be
engaged as the classifiers on the extracted features. Similarly,
the extracted features by KFD and TKFD could also be used by
other kernel-based classifiers.

We set up the following experimental protocol for all tests.
The number of labeled examples of each class, [, is gradually
increased from 1 to 7, and the rest examples are considered as
the unlabeled data. A variation of the tenfold cross validation
approach is performed in the experiments. For each evaluation
round, the labeled data are randomly selected. We use the
same kernel and regularization parameters for both KFD and
TKFD. The linear kernel is used for all the experiments. The
regularization parameter A = 0.001 is fixed for all experiments
to enable an objective comparison and reduce the complexity
in choosing model parameters. For SVM and TSVM, the linear
kernel is also used in the experiment, and the regularization
parameter C is set to 100. For TSVM and TKFD, the Laplacian
graph is constructed based on the Euclidean nearest neigh-
borhood. For selecting the eigenspaces of KFD and TKFD,
we choose the eigenvectors corresponding to 98% of the total
variations.

In our experiments, all the compared methods were imple-
mented in Matlab and evaluated on a PC with a 3.0 GHz single
processor and 2 GB memory.

2A regularization term is added into the LDA optimization (S, + 1)~ 'S,
in order to ensure numerical stability, where v = 0.001. In addition, Euclidean
distance is employed as the similarity measurement.
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F. Experiment-1: Evaluation on FRGC Face Dataset

Table II presents the experimental results of different set-
tings. From the experimental results, we first observe that all the
kernel methods, SVM, TSVM, KFD and TKFD, outperform the
baseline LDA method significantly on different features. For ex-
ample, when the number of labeled example is equal to 5, the
LDA method only achieved overall 43.9% accuracy on intensity
and 71.3% on Gabor features, while four other kernel methods
are able to achieve significantly better performance. These re-
sults show that kernel techniques are generally much powerful
than the linear ones in face annotation tasks. Second, we can ob-
serve that the Gabor features are more efficient than the intensity
features in all cases. Further, comparing the two kernel methods,
KFD and TKFD, we found that the proposed TKFD method per-
forms better than the supervised KFD method given the same
number of labeled data in most cases. The improvements are
particularly significant when there are smaller numbers of la-
beled examples. More impressively, for the cases with one and
two labeled examples, the TKFD method is able to outperform
the supervised KFD method with 96% and 15% improvements,
respectively. Finally, the proposed TKFD approach outperforms
TSVM in most cases except for the single example case. This is
because there is no intra-class information for KFD and TKFD
methods when there is only one sample in a class. Therefore,
the KFD and TKFD may not work effectively in this case.

In order to look into the details of the empirical compar-
ison, we also plot the precision-recall curve of the annotation
results in Fig. 7. These experimental results show that the
TKFD approach consistently outperforms the supervised KFD
and SVM methods. In contrast to the other state-of-the-art
semi-supervised method, TKFD is comparable to TSVM in
the performance of retrieval precision, and better than TSVM
in the performance of retrieval recall. This verifies that our
proposed TKFD algorithm is effective to improving traditional
supervised KFD methods over the challenge of insufficient
training samples.

G. Experiment-II: Evaluation on Yahoo! News Image Dataset

Using the Yahoo! News image dataset, we conduct evalua-
tions similar to the FRGC approach. Table III shows the experi-
mental results of overall annotation accuracy. From the results,
we found that the annotation task on Web images is more chal-
lenging than the FRGC faces. Specifically, given the setting of
5 labeled examples per class, the TKFD method achieved only
53.9% average accuracy on the Yahoo! News image dataset of
96 classes, while it achieved 82.4% average accuracy on the
FRGC dataset of 80 classes. This is because the images in the
FRGC dataset are usually taken in some controlled environment,
while the images collected in the Yahoo! News image dataset
have more variants of different lighting conditions and orienta-
tions. Looking into the performance comparison, we also found
the two kernel methods are considerably better than the LDA
method in most cases, and the TKFD method outperforms the
supervised KFD in most cases. For the cases with one and two
labeled examples per class, the TKFD method is able to respec-
tively outperform the KFD method by 77.5% and 10.0%. To ex-
amine the retrieval performance of precision and recall, we also
plot the corresponding curves in Fig. 8, in which the proposed

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:10:06 UTC from IEEE Xplore. Restrictions apply.



ZHU et al.: FACE ANNOTATION USING TRANSDUCTIVE KERNEL FISHER DISCRIMINANT

TABLE II

AVERAGE ACCURACY OF ANNOTATION PERFORMANCE ON THE FRGC DATASET (%)

93

Label Intensity Gabor
Size LDA SVM TSVM KFD TKFD LDA SVM TSVM KFD TKFD
1 133 +£48 125+13 213+18 122+14 225+15 165+87 332+15 434+20 184+18 36.1+15
2 203+66 360+17 394+20 365+1.1 404 +13 | 3404113 497+15 604+17 531+22 609+ 1.3
3 341 +28 467 +28 492+25 473+14 493 +17 | 539+£61 622+£19 71.1+£20 690+15 724+1.1
4 368 +32 532422 553+20 529+21 552+18 | 628+£72 716+£10 779409 77714 79.6+12
5 439+£40 57219 590+£19 590+£19 594+16 | 713+£31 75717 808+14 817+12 824+13
6 456 =49 607 +20 626+18 623+11 638+ 10 734 £ 34 800+ 12 83111 843+10 845+09
7 505+33 630+15 643+18 644+19 651+18 | 783+£09 830411 86+14 870+10 873110
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Fig. 7. Precision-Recall curves of annotation results with two labeled examples per person on the FRGC dataset. (a) Average Precision. (b) Average Recall.

TABLE III
AVERAGE ACCURACY OF ANNOTATION PERFORMANCE ON THE YAHOO! NEWS FACE DATASET (%)

Label Intensity Gabor

Size LDA SVM TSVM KFD TKFD LDA SVM TSVM KFD TKFD
1 83 £ 1.1 724+ 09 9.6 + 1.1 72+ 1.1 103 +£1.2 | 11.54+09 181+16 231+19 107+10 190412
2 130£15 176 £06 1924+06 178+12 194 +10 | 244+07 288+12 340+11 299+12 329+16
3 161 £12 2244+14 242+16 216+12 231412 |320+20 353+13 412+1.1 41.1+14 424+13
4 180 +£23 248+ 11 265+14 252+£13 267+13|368+19 404+12 470x14 475+11 482+ 14
5 198 +£17 268+12 281+11 272+14 282+11|415+16 448+11 51.1+18 538=+13 539+12
6 212 +£17 301+12 307+14 297+£15 31L1+13|452+13 482+10 54909 572+15 573 +12
7 228 £20 304+07 315+09 314+£15 31.6+13 | 484+10 509+09 579+14 605+09 61.6=+ 12

TKFD is significantly better than the supervised methods, SVM
and KFD, and is slightly better than the other semi-supervised
method, i.e., TSVMs.

H. Experiment-1lI: Evaluation on Trecvid Video Dataset

The final experimental evaluation is on the TRECVID 2005
video dataset. Similar evaluations are conducted. Table IV and
Fig. 9 show the experimental results. From the empirical results,
we can see that the overall annotation performance is rather
promising in this dataset. Specifically, for the case of five labeled

examples per class, the TKFD method achieves an average ac-
curacy of 83.0%, which is better than the results achieved on the
other two datasets. One reason is because the number of classes
used in the TRECVID dataset is smaller than with the other two
datasets. Thus, the annotation task becomes relatively easy. In
comparison with other annotation methods, we found similar
results to those observed on the previous datasets. Precision-re-
call curves of annotation results with two labeled examples each
person on the TRECVID 2005 dataset

Based on the promising empirical results on the three
datasets, we can conclude that our proposed TKFD algorithm
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Fig. 8. Precision-recall curves of annotation results with 2 labeled examples each person on the Yahoo! News photo dataset. (a) Average Precision. (b) Average
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TABLE 1V
AVERAGE ACCURACY OF ANNOTATION PERFORMANCE ON THE TRECVID 2005 FACE DATASET (%)
Label Intensity Gabor
Size LDA SVM TSVM KFD TKFD LDA SVM TSVM KFD TKFD
1 358 £34 413+23 442427 343+£29 400+34 | 463+13 513+£29 550+44 459437 541440
2 488 £37 512427 540+32 498 +41 554426 | 607+19 59.1+11 656+38 614+22 682+ 25
3 568 £28 573+23 600+24 567+£27 601+27 | 68733 686+34 748 L35 69.6+25 744122
4 645 +£23 61.6+42 636+39 640+08 683+08 | 740430 73721 767+£23 746+24 792420
5 650 £ 16 646+23 669+22 665+30 697+33 | 794+17 776+20 804+14 795+23 83.0+18
6 68.6 £23 677+20 697+24 679+£27 714+21|80.1+22 81.1+22 823+17 8l4+24 846+20
7 70.7 £18 700431 7244+33 705+23 731+22|87+17 85+18 843+17 843+14 871409
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Fig. 9. Precision-recall curves of annotation result with two labeled examples each person on the TRECVID 2005 dataset.

is more effective than the traditional supervised KFD and
SVM methods for face annotation when dealing with a small
number of labeled examples, which is a critical advantage for
large-scale face annotation applications.

V. DISCUSSIONS AND FUTURE WORK

We have proposed a comprehensive scheme for face anno-
tation by a novel Transductive Kernel Fisher Analysis algo-

rithm. Although the promising experimental results validated
the effectiveness of our methodology, we should address lim-
itations and future directions to improve our current approach.
First of all, we focused our attention only on exploring the vi-
sual information for the face annotation task. In future work, we
can combine other annotation approaches studied in the textual
domain [10], [25] for improving the annotation performance
if the textual information is available. Second, we employed
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the kernel deformation principle for learning transductive ker-
nels in the TKFD algorithm. In future work, we can extend the
TKFD algorithm to other kernel learning techniques [42]-[44].
For example, we may consider the kernel alignment techniques
for combining multiple input kernels instead of using only a
single input kernel as in the current solution [42]. We may also
study spectral kernel learning techniques to achieve better trans-
ductive kernels for annotation tasks [43]. Finally, to minimize
the human effort of labeling training data, we can study active
learning techniques to provide users the most informative ex-
amples for labeling during the annotation tasks [45]-[48].

VI. CONCLUSION

In this paper, we proposed a novel transductive learning algo-
rithm for face annotation. In contrast to traditional approaches
using supervised learning methods, we proposed the Transduc-
tive Kernel Fisher Discriminant (TKFD) algorithm, which em-
ploys the kernel deformation techniques to exploit both labeled
and unlabeled data effectively for annotation tasks. The TKFD
algorithm is more effective than traditional supervised anno-
tation methods with a small set of training data, since it can
take advantage of information from unlabeled data. To apply
the TKFD to face annotation tasks effectively, we developed
a comprehensive face annotation scheme using state-of-the-art
face detection and feature extraction techniques. We conducted
extensive evaluations on three kinds of testbeds. The promising
experimental results showed that our method is more effective
than conventional approaches, especially for dealing with the
cases having only a limited amount of labeled data, which is
critical for large-scale face annotation tasks.
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