
Component Recommendation for Cloud Applications

Zibin Zheng
The Chinese University of Hong Kong

Hong Kong, China
zbzheng@cse.cuhk.edu.hk

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China
lyu@cse.cuhk.edu.hk

ABSTRACT
Cloud computing is becoming popular nowadays. Build-
ing highly reliable cloud applications is a great challenge
since the cloud applications are usually large-scale, complex,
and include a lot of distributed components. In this paper,
we propose a significant component recommendation frame-
work for the cloud applications to attack this challenge. Our
approach employs the component invocation relationship to
compute significant values of components. The most signifi-
cant components can be identified efficiently and effectively
by our approach.

1. INTRODUCTION
Cloud computing is a style of computing, in which re-

sources (e.g. infrastructure, software, applications, etc) are
sharing among the cloud service consumers, cloud partners,
and cloud vendors in the cloud value chain. Cloud comput-
ing is increasingly popular these recently years. The leading
industry companies (e.g., Microsoft, Google, IBM, Amazon,
etc.) strongly promote this new computing paradigm. Ap-
plications running on such cloud environment are taken as
cloud applications. Cloud applications, which usually in-
volve a number of distributed components, are becoming
ever larger and more complex. The demand for highly re-
liable cloud applications is becoming stronger. Before en-
terprises transfer their critical systems to the cloud envi-
ronment, one question they ask is: Can clouds become as
reliable as the power grid achieving 99.999% uptime? In the
current stage, the reliability and availability of cloud appli-
cations are still far from perfect. Designing approaches to
build highly reliable and robust clouds is a critical, challeng-
ing, and urgently-required research problem.
Reconfigurability is a main feature of cloud computing.

When designing or reconfiguring a cloud application, recom-
mendation algorithms for significant components can help
the designers and developers to better cope with the hug
amount of component information in a cloud and to dis-
cover the most important components efficiently and effec-

tively. By identifying the significant components from the
large number of distributed components of a cloud applica-
tion, the designers can employ various reliability enhance-
ment techniques to make sure that the important compo-
nents are reliable. The reliability of the whole system can
thus be improved within the budget. In this paper, we pro-
pose a component recommendation framework for cloud ap-
plications by employing the component invocation relation-
ships. In our approach, the components which are invoked
frequently by other important components are considered
to be more important. This is because their failures will
have a great impact to the whole system. In the following of
this paper, Section 2 presents the significant component rec-
ommendation approach, Section 3 shows related work and
discussion, and Section 4 concludes the paper.

2. RECOMMENDATION FRAMEWORK
The target of our recommendation framework is to mea-

sure the importance of components in cloud applications
based on the application structures and the component in-
vocation frequencies. As shown in Figure 1, firstly, a com-
ponent graph is built for a cloud application. Then, a com-
ponent ranking algorithm is run to measure the importance
of the components. Finally, the most significant components
of the cloud application are recommended to the application
designer. The details of these three phases are introduced
in Section 2.1 to Section 2.3, respectively.

2.1 Component Graph Building
A cloud application can be modeled as a weighted directed

graph G, where a node ci in the graph represents a compo-
nent and a directed edge eij from node ci to node cj repre-
sents a component invocation relationship (ci invokes cj).

Each node ci in the graph G has a nonnegative significant
value SV (ci), which is between 0 and 1. Each edge eij in
the graph also has a nonnegative weight W (eij), which is
also between 0 and 1. For each node ci, the sum of weights
of the outgoing edges is equal to 1:∑

j∈M(ci)

W (eij) = 1, (1)

where M(ci) is a set of nodes that ci invokes. W (eij) = 0 if
there is no edge from ci to cj (ci does not invoke cj).

2.2 Component Ranking
In a cloud application, some components are invoked more

often than others. These components are considered to be
more important, since the failure of these components will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
RSSE’10, May 4, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-974-9 /10/05…$10.00.

48

Component Graph Building Component Ranking Significant Component RecommendationGraph Significant ValuesInput/output of phasesLegendInput/output dataCloud Application Significant Components
Figure 1: Recommendation Framework for Significant Components

influence a lot of other components and thus have greater
impact to the whole system. Intuitively, these components
(named as significant components) are the ones that have
many invocation links coming in from other frequently in-
voked components.
To measure the significant values of different components

in a cloud application, we propose an algorithm as follows:
1. Assign initial numerical scores between 0 and 1 to the

components in the graph.
2. Calculate weights of the edges by the following equa-

tion:

W (eij) =
fij∑n
j=1 fij

, (2)

where fij is the invocation frequency of component cj by
component ci and n is the number of components. In this
way, the component which is invoked more frequently con-
tains larger weights. By Eq. (2), an n × n transition prob-
ability matrix P can be obtained for a component graph,
where each entry pij in the matrix is the value of W (eij).
3. Employ the following equation to compute the signifi-

cant value for a component ci:

SV (ci) =
1− d

n
+ d

∑
k∈N(ci)

(SV (ck)W (eki)), (3)

where n is the number of components, d is a parameter with
value between 0 and 1, and N(ci) is a set of components that
invoke component ci. Consequently, a component ci has
larger significant value if it is invoked by a lot of significant
components (large SV (ck) values) frequently (large W (eki)
values). In vector form, we can write Eq (3) as: SV (c1)

...
SV (cn)

 =

 (1− d)/n
...

(1− d)/n

+ dP t

 SV (c1)
...

SV (cn)

 , (4)

where P t is the transposed matrix of the transition proba-
bility matrix P .
4. Solve the above problem by computing the eigenvector

with eigenvalue 1 or by repeating the computation until all
significant values become stable. With the above approach,
the significant value of a component ci is determined by the
number of components that invoke ci, the significant weights
of these components, and how often ci is invoked by these
components.

2.3 Significant Component Recommendation
Based on the significant values of the components in the

cloud application, the components can be ranked and the
top k (1 ≤ k ≤ n) most significant components will be
recommended to the designer of the cloud application. In
this way, the application designer can identify significant
components early at the architecture design time and can
employ various techniques to guarantee the reliability and
performance of these significant components.

3. RELATED WORK AND DISCUSSIONS
The recommendation approach of this paper is based on

intuition that the significant components of cloud applica-
tions can be effectively identified by using a similar approach
as Google PageRank [1] (a ranking algorithm for Web page
searching) or SPARS-J [2] (software product archieing and
retrieving system for Java). Different from the PageRank
model and the SPARS-J model where the weights of differ-
ent outgoing links are identical, invocation frequencies of the
invocation links are explored when calculating the weights of
edges in our model. Moreover, instead of Web page search-
ing (PageRank) or component searching (SPARS-J), the tar-
get of our approach is identifying significant components for
the cloud applications.

By employing an approach proposed in our work [3], com-
ponent reliability can be predicted early at design time. In
this work, instead of component reliability prediction, we
focus on component ranking employing the component in-
vocation structure as well as the invocation frequency.

4. CONCLUSION AND FUTURE WORK
This paper proposes a significant component recommen-

dation framework for cloud applications. In our approach,
whether a component ci is a significant component or not
is determined by the number of components that invoke ci,
the significant weights of these components, and how often
ci is invoked by these components.

Currently, the weights of edges are calculated only by the
invocation frequencies. In our future work, more factors
will be considered for computing the weights. Our ongoing
research also includes real-world experiments to verify our
approach and the involvement of component quality infor-
mation for better component recommendation.

Acknowledgement
The work described in this paper was fully supported by
a grant (Project No. CUHK4154/09E) from the Research
Grants Council of Hong Kong, China.

5. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In Proc. 7th Int’l Conf.
World Wide Web (WWW’98), 1998.

[2] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita,
and S. Kusumoto. Ranking significance of software
components based on use relations. IEEE Trans.
Software Engineering, 31:213–225, 2005.

[3] Z. Zheng and M. R. Lyu. Collaborative reliability
prediction for service-oriented systems. In Proc. 32th
Int’l Conf. Software Eng. (ICSE’10), 2010.

49

