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ABSTRACT
Many learning-to-rank (LtR) algorithms focus on query-independent
model, in which query and document do not lie in the same feature
space, and the rankers rely on the feature ensemble about query-
document pair instead of the similarity between query instance
and documents. However, existing algorithms do not consider lo-
cal structures in query-document feature space, and are fragile to
irrelevant noise features. In this paper, we propose a novel Riemann-
ian metric learning algorithm to capture the local structures and
develop a robust LtR algorithm. First, we design a concept called
ideal candidate document to introduce metric learning algorithm
to query-independent model. Previous metric learning algorithms
aiming to �nd an optimal metric space are only suitable for query-
dependent model, in which query instance and documents belong
to the same feature space and the similarity is directly computed
from the metric space. Then we extend the new and extremely
fast global Geometric Mean Metric Learning (GMML) algorithm to
develop a localized GMML, namely L-GMML. Based on the combi-
nation of local learned metrics, we employ the popular Normalized
Discounted Cumulative Gain (NDCG) scorer and Weighted Approx-
imate Rank Pairwise (WARP) loss to optimize the ideal candidate
document for each query candidate set. Finally, we can quickly eval-
uate all candidates via the similarity between the ideal candidate
document and other candidates. By leveraging the ability of metric
learning algorithms to describe the complex structural information,
our approach gives us a principled and e�cient way to perform LtR
tasks. The experiments on real-world datasets demonstrate that
our proposed L-GMML algorithm outperforms the state-of-the-art
metric learning to rank methods and the stylish query-independent
LtR algorithms regarding accuracy and computational e�ciency.
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1 INTRODUCTION
In many information retrieval systems, especially Web search, users
expect to obtain the most relevant documents according to users’
query phrase or document. This task is technically formulated
as a ranking problem. Most of the Web search engines exploit
this ranking task based on learning-to-rank (LtR) techniques [21].
In the LtR framework, a machine learning algorithm is typically
employed to derive a ranking model about document collection
from a training subset of documents with labels or partial order.
After the supervised or semi-supervised learning procedures, the
ranking model is expected to retrieval top-k (ordered) relevant
documents from the candidate collection when a query is given.

In practice, search engines develop the LtR model in two stages:
(i) candidate retrieval and (ii) candidate re-ranking [22]. In the
�rst stage, search engine retrieves from the inverted document
repository a su�ciently large set of relevant candidate documents
Dq matching a user’s query. It is used to avoid applying the ranking
model to all documents possibly matching a user’s query. This stage
usually requires that the size of candidate set is much larger than
the number of the relevant URLs to be included in the returned
page. Based on the candidate document set Dq obtained in the
�rst stage, Web search engines reformulate the documents with
features extracted from the query-document pair and hide query
features, then employ the LtR model without the dependency of
query instance to score and re-rank the document collection Dq .
Finally, search engines return the top-k documents to the user.

In Web search engine, the time-budget of this two-stage frame-
work is usually limited. Therefore, strongly motivated by the time
budget consideration, the current two most e�cient and the state-
of-the-art methods are based on the additive ensemble of regression
trees, namely Gradient-Boosted Regression Tree (GBRT) [11] and
λ-MART [4]. These two kinds of methods are capable of meeting
the time requirement with acceptable accuracy even when thou-
sands of regression tree are evaluated for each document. However,
one of the drawbacks of this line of methods is that when the input
samples contain an enormous amount of non-informative features,
many methods fail to identify the most relevant features. Therefore,
researchers are still trying to devise techniques and strategies to �nd
a better way of combining features extracted from query-document
pairs through discriminative training to accelerate the training
process for document ranking without losing in quality [12, 35].

Another perspective to the ranking problem is to seek the best
similarity measurement and develop the corresponding e�cient
algorithm. These approach aims to optimize the accuracy in the
�rst stage to �nd candidate documents or even directly return the
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top-k documents with an order. Concerning accuracy, the similarity-
based models for a ranking problem can be classi�ed into three
categories from the formulation of the loss function: pointwise,
pairwise and listwise loss functions [3]. Practically, the pairwise
loss function tends to be more e�cient for training and have been
widely adopted by large Web search engines [3].

The pairwise similarity motivates that how to apply the classical
metric learning or similar learning methods to the ranking prob-
lem [7]. The metric learning algorithms aim to �nd a better distance
metric than Euclidean metric to measure the pairwise similarity.
The advantage of such metric-learning-to-rank [24] framework has
two folds: (1) the metrics often preserves the nearest neighborhood
information, which is the perfect structure to conduct ranking; (2)
a proper metric containing the structural information of the docu-
ment collections in the document space is useful for reducing the
over-�tting and improving the robustness to noise features [16].
Therefore, the metric-learning-to-rank methods [18, 19, 25] typi-
cally enjoy higher accuracy. Nevertheless, unfortunately, the dis-
advantage of metric-learning-to-rank also has two folds: (1) many
metric learning algorithms [8, 32] are degraded by its extremely
high computational expense; (2) the similarity measurement is not
suitable for LtR because we can not estimate the similarity between
query and documents with features extracted from other domain
knowledge.

In this paper, we focus on improving the ranking accuracy at
the second stage in the search engine and attempt to provide a new
query-independent model for LtR task. Di�erent from the existing
research on how to combine features extracted from other domains,
we try to learn an optimal representation of these features via met-
ric learning algorithm. To adopt query-dependent metric learning
framework to a query-independent model, we propose a concept
called ideal candidate document, which represents a perfect match
for a given query. With the help of this concept, we can quickly
evaluate all candidate documents and sort them by calculating
the distance based on the optimal metric space between the ideal
candidate document and other documents. Same with the query-
dependent model, the shorter distance leads to a higher relevance
to the query.

Since features from di�erent domains generate local structure on
the whole feature space, in order to preserve more local information
and avoid over�tting, we develop a novel local metric learning
framework for ranking with high e�ciency and accuracy. Our
localized metric learning algorithm extends from the state-of-the-
art global metric learning algorithm called Geometric Mean Metric
Learning (GMML) [36], and we apply Weighted Approximate Rank
Pairwise (WARP) loss to optimize the metric space around the ideal
document from the combination of several anchor documents.

We summarize our main contributions as follows:

• To the best of our knowledge, we are the �rst to extend
geometric mean metric learning algorithm to a local metric
learning approach in order to capture the local structures
for LtR problem.

• We propose a novel ideal candidate document concept to
transform metric-learning-to-rank framework from query-
dependent model to query-independent model, which brings

wider applications for metric learning and also improves
the accuracy of classical LtR task.

• We conduct extensive experiments to reveal that our method
outperforms the state-of-the-art query-dependent metric-
learning-to-rank algorithms and query-independent LtR
methods both in the accuracy and the computational com-
plexity.

2 PRELIMINARIES AND RELATEDWORK
Since our approach employs local metric learning algorithm to
conduct the LtR task, two sets of previous work relate to our work:

2.1 Learning to Rank
In the information retrieval setting, a search engine maintains a col-
lection of candidate examplesD. Given a query q, the search engine
returns the top ranked subset of documents

{
p ∈ Rd

}
⊂ Dq ⊂ D

from the collection with order, ranked by a speci�c ranking model
fq (p).

According to the formulation of the loss function, the LtR meth-
ods are categories into three folds: (1) pointwise loss approach, (2)
pairwise loss approach and (3) listwise loss approach.

For pointwise loss function, Li et al. [17] cast the ranking prob-
lem to a multi-class classi�cation problem. The training process
relies on enough labeled information, which is not always easy to
satisfy. Pairwise loss approach such as RankNet [2], RankBoost [10]
focus on the relative order, which is capable of being adapted to
classi�cation problem. In the listwise loss approach, a relevance
label l related with the query for ground truth is usually bound
to the document p. Cao et al. [5] �rst propose to �nd the optimal
permutation to minimize the listwise loss function. McFee [25] pro-
poses a similar objective, but the di�erent solution from the metric
learning methods.

The majority of LtR methods follows listwise loss function. Cur-
rently, the most popular methods [4, 9, 11] come from the combina-
tion of an ensemble of trees like random forest and the boosting-like
methods [10]. Based on multiple decision trees, this kind of methods
gains an accepted level of accuracy.

2.2 Metric Learning
The (squared) Mahalanobis distance, an extension of Euclidean dis-
tance, measures the distance between two points lie on the special
linear space. It is de�ned as

dM (p1,p2) = (p1 − p2)
T M (p1 − p2) , (1)

where p1,p2 ∈ Rd are input examples, M is a symmetric and
positive semi-de�nite d × d matrix. When M = I, the Mahalanobis
distance is equivalent to the Euclidean distance.

There are plenty of algorithms aiming at learning such metric
by solving a semide�nite or a quadratic program [29, 32, 34]. Al-
most all the metric learning algorithms try to constrain the similar
data points and to scatter those dissimilar data points. Early work
like [34] formulates this problem as an optimization problem on
the second-order cone, which is costly solvable. Davis et al. [8],
Weinberger et al. [32] and Shen et al. [29] formulate di�erent kinds
of optimization problems, namely ITML, LMNN, BoostMetric re-
spectively. However, the common issue that their solutions are
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computationally expensive. Very recently, Zadeh et al. [36] propose
a new objective function and give the closed-form solution from
the geometric domain. It is the most promising global metric learn-
ing method because of the computational speed several orders of
magnitude faster than the widely used ITML and LMNN methods.

There are two di�erent roadmaps to conduct the LtR tasks from
the metric learning perspective: (1), McFee [25] and Lim et al. [18,
19] learn global metric with Positive Semi-De�nite (PSD) constraint
on the metric parameter. They belong to the application of the
standard metric learning algorithm. (2), Chechik et al. [7] and Liu
et al. [20] remove PSD constraint and employ the bilinear model
to measure the similarity between two data points. Usually, with-
out PSD constraints, the bilinear model easily leads to over-�tting.
However, PSD constraint brings a tremendous amount of computa-
tion.

In most cases, global metric learning relies on a learned PSD ma-
trix, which is not only computational expensive in high-dimensional
case but not reasonable for retrieval ranking problem. In the LtR
framework, the local similarity is far more important than the
dissimilar information because we aim at ranking the relevant doc-
uments around a user’s query. Therefore, several important local
metric learning approaches are related to our work. Wang et al. [31]
parameterize the weight function of each data point. The approach
enhances the model complexity but brings the extra computation.
Hauberg et al. [13] provide the theoretical analysis about the opti-
mal weight function. However, the calculation of the geodesics is
extremely expensive.

3 OUR PROPOSED METHODOLOGY
In the LtR problem, a ranked list of the relevant documents is re-
turned for a speci�c user’s query. In this situation, we can assume
without losing generality that all relevant documents should be
closer to an unreal document than other irrelevant documents.
This unreal document should be related to the query. Therefore,
although the query instance is not accessible in the document fea-
ture space, we can still construct this unreal candidate document
to represent the query in the feature space of the document. In our
paper, this unreal but perfect-matching document is named as the
ideal candidate document.

Usually, the indexed documents are assumed to be static, and
the set of queries considered as input testing data is dynamic. This
assumption allows us to transform the training documents to an
another static representation, and model ideal candidate documents
for each query to a dynamic combination of static documents.

In our paper, we assume the documents including candidate doc-
uments and ideal documents lie on the surface of a Riemannian
manifold. Then, we attempt to build the similarity measurement
between documents on the geodesic lines in the Riemannian mani-
fold. Very often, a single linear metric M can not describe the whole
surface of Riemannian manifold adequately. It reveals the inabil-
ity of a single metric to model the complexity of the LtR problem.
Furthermore, the discriminative features vary between di�erent
neighborhoods on the surface of the manifold. To address this limi-
tation, researchers try to learn a set of local metrics representing the
various regions of the surface. In most cases, local metric learning

algorithms will generate a local metric for each learning exam-
ple [26]. The whole parameters of these kinds of the algorithm are
prohibitively huge when the number of examples becomes large.

In our approach, we follow [31] to learn a local metric for a part
of the feature space of documents, in which case the number of
learned metricsm can be considerably smaller than n, the size of
the examples collection.

Suppose we have learnedm local metrics {M1, . . . ,Mm } and the
associated anchor points

{
p1, . . .pr , . . .pm

}
. The choice of anchor

points and the computation of local metrics are described in Subsec-
tion 3.1. Then the similarity model f (q,p) between two documents
pi and pj is extended from Eq. (1) as follows:

f (pi ,pj ) = dM(pi ) (pi ,pj ) (2)

M(pi ) =

m∑
r=1

wr (pi )Mr , (3)

where wr (pi ) ≥ 0 is the weight of document pi for local metric
Mr . The PSD constraints ofM(p) is automatically satis�ed if all local
metric Mr are PSD matrices. These formulation includes m anchor
documents andpi should be close to these anchor documents [27]. It
is clear that the ideal candidate document should be close to several
high relevant documents. Therefore, we can employ these high
relevant documents as anchor documents to construct the local
metric space around the ideal candidate document.

With the above assumption and observation, the task of infor-
mation retrieval precedes in the following steps:

(1) Given a candidate collection Dq for query q , we employ
high/low relevant documents to compute a M and �nd a
anchor point pr to maximize the ranking scorer under the
metric M by computing (pi − pr )M (pi − pr )

>.
(2) After sampling m candidate collection to �nd m anchor

documents and m associated metrics, we can construct
the ideal candidate document based on a combination of m
anchor documents.

(3) We can build an evaluation function to measure the sim-
ilarity between candidate document and ideal candidate
document, then, sort these documents via the similarity to
ideal candidate document.

3.1 Computation of Basis Metrics
Before constructing the local metrics in Eq. (3), we need to learn
m local metrics. With the assumption that each local metric Mr
represents a part of feature space, we can employ the classical single
metric learning algorithm associated with a subset of the triplets
from a part of examples space.

In this paper, we extend the state-of-the-art global metric learn-
ing algorithm GMML [36] into local metric forms. The extension
consists of two parts:

(1) The local basis metric associated with the triplets set Dr
is computed by the original GMML.

(2) The smooth weighting function wr (p) is computed from
Eq. (11).

Given a subset of the triplets Tr =
(
pi ,pj ,pk

)
such that pi is

more similar topj than topk , we can extract the similarity set Sr and
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Figure 1: General framework of proposed L-GMML for ranking. Di�erent gray levels in query test represent the relevant level
of the document

the dissimilarity set Dr by following the instruction in Section 3.4.
Then we construct two corresponding matrices:

Sr =
∑

(pi ,pj )∈Sr

(
pi − pj

) (
pi − pj

)>
(4)

Dr =
∑

(pi ,pk )∈Dr

(pi − pk ) (pi − pk )
> (5)

Then, the basic optimization formulation of local metric Mr is
de�ned as follows:

min
Mr �0

h(Mr ) := tr (Mr Sr ) + tr
(
M−1r Dr

)
(6)

Equation (6) implies that GMML will return a single local metric
Mr that minimize the sum of distances over all the similar pairs Sr
and maximize the distance over all the dissimilar pairs Dr .

The closed-form solution of Eq. (6) is obtained by

∇h(Mr ) = Sr −M−1r DrM−1r (7)
Taking ∇h(Mr ) = 0, we obtain:

Mr SrMr = Dr (8)
Equation (8) is a Riccati equation whose unique solution is [36]

Mr = S−1/2r
(
S1/2r Dr S

1/2
r

)1/2
S−1/2r (9)

In experiments, Mr is e�ciently computed from Cholesky-Schur
method [14].

3.2 Smoothing Weight Functions
Lots of researchers try to provide the insights of their local metric
learning approaches [13, 31] by modeling their methods from the
perspective of Riemannian metric. An important property about the
Riemannian metric is that a Riemannian metric M (p) on a manifold
M is a smoothly varying inner product

〈
xi ,x j

〉
p
= xTi M(p)x j in

the tangent space TpM of each point p ∈ M. From Lemma 1 in [13],

when the weight function wr (p) is smooth with p, Eq. (3) will be
a well-studied Riemannian metric. Therefore, any well-designed
local metric methods should provide a smooth weight function.

Another important issue is that the weight functionwr (p) should
re�ect the �tness of the local metric Mr . Suppose (p,pr ) ∈ Sr , it
indicates that Mr is the best local metric to measure the similarity
between pr and other examples, which means that Eq. (8) should be
robust against the additive similar pair (p,pr ). Therefore, the weight
functionwr (p) should be in the opposite to Mr (p−pr ) (p−pr )

TMr .
Take the limit as an example, if Mr (p − pr ) (p − pr )

TMr = 0,
then,

Mr (Sr + (p − pr )) (Sr + (p − pr ))
T Mr = Dr (10)

The solution of Eq. (10) is the same with Eq. (9), which indicates
that Mr (p − pr ) (p − pr )

TMr is a proper measurement whether the
Mr is the optimal local metric for the document p.

By taking consideration about the above observation, we propose
the smoothing weight functions [1] as:

wr (p) = exp
(
−
ρ

2


p − pr 

Mr

)
, (11)

where, ‖·‖2Mr
is the L2 norm with the metric Mr .



p − pr 

2Mr
= tr

(
Mr (p − pr ) (p − pr )

TMr
)

(12)
From Eq. (12) and Eq. (10), we can easily know 

p − pr 

Mr

is a
proper measurement about the similarity between query p and the
anchor point pr associated with the local metric Mr .

Therefore, our evaluation function is formulated as:

fq (p,Φq ) = −
m∑
r=1

Φ
(r )
q · exp

(
− 

p − pr 

Mr

)
· 

p − pr 

Mr

, (13)

where, Φq ∈ Rm , Φ(r )
q = exp

(
ρ
(r )
q /2

)
is the key parameter we

need to learn in order to �nd a better manifold structure. Higher
fq (p,Φq ) means that p is closer to the ideal candidate document. In
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the next subsection, we will introduce our exploration to optimize
Φ for a speci�c ranking problem.

3.3 Update of Φ
In the above subsection, we formulate a general local metric frame-
work in Eq. (13) to represent the manifold structure. From the
theoretical analysis in [27], the whole space of Φ keeps the learned
manifold smooth. Therefore, we de�ne our loss function under
the popular Weighted Approximate Rank Pairwise (WARP) frame-
work [33] and optimize the associated objective function to obtain
an optimal solution for ranking task.

The WARP loss for a given set of candidate document Dq with
query ID q is de�ned as:

L (q) =
1

���D
+
q

���

∑
p∈D+q

L
(
vq

(
p+

))
, (14)

where vq (p+) is the number of violators in Dq for positive p+,
de�ned as:

vq (p
+) =

∑
p−∈D−q

I
[
fq

(
p−,Φq

)
− fq

(
p+,Φq

)]
(15)

To obtain better NDCG score, L (·) is de�ned as:

L(k ) =
k∑
i=1

1
log2 (i + 1)

(16)

In order to optimize Φq , we follows the methods in [18, 33] to
approximate L

(
vq (p

+)
)

by a continuous formulation with hinge
loss:

∑
p−∈Vq,p+

L
(���Vq,p+

���
) [
ζ − fq

(
p+,Φq

)
+ fq

(
p−,Φq

)]
+

���Vq,p+
���

, (17)

where for a given q,p+, ζ is the hinge loss margin.Vq,p+ is the
set of violators with hinge loss:

Vq,p+ =
{
p− ∈ X−q | fq (p

+,Φq )
}

(18)

In order to obtain an unbiased estimation of the loss function in
Eq. (17), we can randomly sample q, p+ ∈ Dq and �nd an violator
p− such that ζ + fq

(
p−,Φq

)
> fq

(
p+,Φq

)
. In this situation, the

tuple of
(
q,p+,p−

)
has the following contribution to Eq. (17):

l
(
q,p+,p−

)
= L

(���Vq,p+
���
) (
ζ − fq

(
p+,Φq

)
+ fq

(
p−,Φq

))
(19)

From the WARP framework, ���Vq,p+
��� can be approximated by⌊���D

−
q

��� /Nq
⌋
, where Nq is the number of less relevant documents

p− drawn with replacement from D−q until a violator is found.
Finally, the stochastic gradient descent for the parameter Φ can

be easily conducted at iteration t as:

Φq (t + 1)

=Φq (t ) − µ
∂l

(
q,p+,p−

)
∂Φq (t )

, (20)

=Φq (t ) − µL
*.
,



���D
−
q

���
Nq



+/
-
·



∂ fq (p
−,Φq (t ))

∂Φq (t )
−
∂ fq

(
p+,Φq (t )

)
∂Φq (t )


,

(21)

where ∂fq (p,Φq )
∂Φq

=

[
∂fq

(
p,Φ(r )

q
)

∂Φ
(r )
q

]

r=1...m
. To avoid over-�tting,

we project Φ(r )
q to zero when Eq. (21) leads to negative value. We

take derivation from Eq. (13) to obtain:

∂ fq

(
p,Φ

(r )
q

)
∂Φ

(r )
q

= exp
(
− 

p − pr 

Mr

)
· 

p − pr 

Mr

(22)

Overall, our proposed algorithm is illustrated in Figure 1 and
summarized in Algorithm 2.

3.4 Sampling Strategy
Our approach will not iterate all triplets forD introduced in Section
3.1, because learning the global ranking model from all triplets
is an NP-hard problem [23]. Hence, we choose to stochastically
sample the triplets

(
pi ,pj ,pk

)
from candidate documents. pi and

pj representing similar documents are sampled from high relevant
documents, then pk is sampled from the less relevant documents.
In our implementation, we only sample pk from the documents
with zero relevant label.

For sampling procedure in Section 3.3,Φi andΦj are independent
for two queries i and j . Therefore, the update can be computed in a
highly parallel way.

ALGORITHM 1: Geometric Mean Metric Learning (GMML) [36]
Input: D+ : positive set of documents, D− : negative set of documents, λ

: regularization parameter
Output: M ∈ Sd+ : Mahalanobis metric;
S = λI +

∑
pi,pj ,pi ∈D+,pj ∈D+

(
pi − pj

) (
pi − pj

)>
;

D = λI +
∑
pi ∈D+,pj ∈D−

(
pi − pj

) (
pi − pj

)>
;

M = S−1/2
(
S1/2DS1/2

)1/2
S−1/2

4 EVALUATION
In this section, we discuss the implementation of our approach for
the LtR problem and display extensive experiments evaluating our
methodology in comparison to the state-of-the-art (R-MLR, GBRT,
and λ-MART). Our design on experiments tackle the following
questions:

• Do we develop a correct localized extension to the global
GMML? To answer this question, we generate varied scale
synthetic datasets to evaluate the performance gain against
global metric learning algorithm when a di�erent number
of local metrics invoke in our L-GMML approach to prove
the correctness.
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ALGORITHM 2: L-GMML to Rank
Input: Candidate set for c queries

{
D1, D2, . . . , Dq, . . . , Dc

}
, m :

number of local metrics, T : number of iteration, µ : step size, ζ :
hinge loss margin

Output:
{
(p1, M1) , (p2, M2) . . . , (pm, Mm )

}
: set of local metrics and

associated anchor points, p ∈ Rd , M ∈ Sd+ , Φ ∈ Rc×m : weights
for local metrics to model the ideal candidate documents for each
queries

for q ∈ [1, c] do
Extract D+q and D−q from Dq ;

end
for i ∈ [1,m] do

Sample D+i and D−i from
{
Dq

}
q∈[1,c]

;

Mi = GMML
(
D+i , D

−
i

)
;

for p ∈ D+i do
Γ
(i )
p ←Sort Di in ascending order by computing


p − d

2Mi

∀d ∈ Dq ;
end
Find the anchor point pr with maximum NDCG score of Γ (i )pr ;

end
for t = 1 to T do

Sample a tuple (q, p+, p−) from
{
Dq

}
q∈[1,c]

such that

ζ + fq
(
p+, Φq (t )

)
> fq

(
p−, Φq (t )

)
;

Nq ← the number of less relevant documents drawn with replacement
from D−q until p− is found;

Φq (t + 1) =[
Φq (t ) − µL

(⌊ ���D
−
q

���
Nq

⌋)
·

[
∂fq (p−,Φq (t ))

∂Φq (t )
−

∂fq (p+,Φq (t ))
∂Φq (t )

] ]

+

;

end

• Is our assumption on the existence of local structures rea-
sonable? If reasonable, does our solution enjoy high com-
putational e�ciency and the good scalability for scaled
datasets? We make comparisons with the state-of-the-art
metric learning algorithms for ranking in the query-dependent
model on scaled datasets. We attempt to demonstrate the
improvements of our approach over other metric learning
algorithms.

• Does our LtR algorithm have any amazing properties? We
conduct experiments on real-world large-scale datasets to
illustrate the enormous improvement of our approach on
accuracy compared with the dominant ranking methods
like GBRT and λ-MART in the query-independent frame-
work.

4.1 Experiments Setting
In our experiments, we have implemented our local GMML (L-
GMML) algorithm in Julia1, the source code is released at Github2.
To make a fair comparison against the state-of-the-art ranking
methods, we also implement R-MLR, GBRT and λ-MART in Julia.
We take RankLib3, an open-source implementation of the GBRT

1http://julialang.org/
2https://github.com/yxsu/LtR.jl
3http://sourceforge.net/p/lemur/wiki/RankLib/

Table 1: Di�erent kinds of song representation

# of features # of songs

Audio 1,024 5,419
Lyrics-128 128 2000
Lyrics-256 256 2000

and λ-MART algorithms and MLR4 as references to implement
these algorithms in Julia.

Our program is executed on an Ubuntu 14.04 LTS server with
12 Intel Xeon E5-2620 cores and 128GB main memory. All baseline
methods and our method are performed in a parallel way to fully
utilize the computational resources. Our R-MLR implementation is
based on the parallel MLR-ADMM [19]. GBRT and λ-MART come
from RankLib.

The statistical tests in the following experiments are computed
over the values for Mean Average Precision (MAP) and Normalized
Discounted Cumulative Gain (NDCG) [15] at the top k retrieved
documents denoted as NDCG@k . These two metrics are the most
important and frequently used in information retrieval community
to evaluate a given permutation of a ranked list using binary and
multi-relevance order.

4.2 Datasets
For all real-world datasets, we split each of them into two compo-
nents: 1), the training set is used to learn ranking models; 2), the
test set is purely used to evaluate the performance of the learned
ranking models.

All the datasets we use are freely available online for scienti�c
purpose. Such datasets can be divided into two groups:

4.2.1 �ery-dependent Dataset. We employ CAL10K [30] to
make fair comparisons between our L-GMML and R-MLR. Because,
in the original paper, R-MLR performs well on the CAL10K dataset.
Following the experiments in [19], we use a subset of the CAL10K
dataset, which is provided as ten 40/30/30 splits of a collection of
5419 songs.

4.2.2 �ery-Independent Datasets. In this subsection, we em-
ploy two popular real-world large-scale datasets: Yahoo! and MSN
to evaluate the competitive performance of proposed L-GMML
against the state-of-the-art query-independent LtR methods.

Yahoo! datasets come from Yahoo! Learning to Rank Challenge [6].
The datasets consist of feature vectors extracted from query-url
pairs along with relevance judgment labels.

In our experiments, we also employ the two set of MSN learning
to rank5 datasets: MSLR-10K and MSLS-30K, both of which consists
of 136 features extracted from query-url pairs. The MSN datasets
provide relevance judgment labels ranging from 0 (irrelevant) to 4
(perfect match). In experiments, each MSN dataset is partitioned
into �ve subsets for �ve-fold cross validation.

The complete statistical information about these datasets are
listed at Table 2.

4https://github.com/bmcfee/mlr
5https://www.microsoft.com/en-us/research/project/mslr/
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Table 2: Characteristics of publicly available large-scale datasets for learning to rank

Name # of Queries # of Doc. Rel. Levels # of Features Year

Train Vali. Test Train Vali. Test

Yahoo! Set I 19,944 2,994 6,983 473,134 71,083 165,660 5 519 2010
Yahoo! Set II 1,266 1,266 3,798 34,815 34,881 103,174 5 596 2010

MSLR-WEB10K 6,000 2,000 2,000 723,412 235,259 235,259 5 136 2010
MSLR-WEB30K 31,531 6,306 6,306 3,771k 6,306 753k 5 136 2010

4.3 Evaluation of the Proposed Approach
In our L-GMML model, the most important hyper-parameter is the
number of local metrics, which has signi�cant in�uence on the
overall model performance. We will evaluate the correction of our
localized extension method from synthetic datasets, and reveal the
impact of the metric numbers.

4.3.1 Global GMML vs Local GMML. In this subsection, we
attempt to employ multi-class classi�cation problem to verify the
correction of the local metric learning algorithm. Because multi-
class synthetic datasets certainly contain local structures around
the center of each class. If the accuracy gain is observed, we can
also address the objective that local metric learning approach is
designed to extend the global metric learning method’s ability of
modeling complex data manifold.

We employ the normal distribution to generate synthetic datasets
with multiple centers and 95% con�dence interval. The datasets
with {10,50,100} classes are denoted as Synthetic-10, Synthetic-50,
Synthetic-100 respectively. In these synthetic datasets, we assign
the index of class to the relevant label of the corresponding data
point.

We report the performance gain of the proposed local GMML
against the global GMML in Figure 2. We can easily �nd the fact that
when the number of local metrics is approximate to the number of
the real centers in Gaussian synthetic data distribution, the relative
accuracy gain of local metrics is maximized. This observation meets
the objective of local metric learning approach.

4.3.2 The Number of Local Metrics. In this subsection, we will
evaluate the signi�cance of the number of local metrics, which is
typically the most important parameter in the �eld of local metric
learning. A large number of local metrics will enhance the algo-
rithm’s ability to model the complex manifold structure. However
the computational complexity increases linearly with the number of
local metrics. In experiments, we need to carefully tune the number
of local metrics to make the balance between model’s ability and
computational complexity.

Figure 3 displays the impact of the number of local metrics on
all datasets used in our paper. For all datasets, localized method can
compete with the corresponding global method with a single metric.
This fact proves that our localized extension is reasonable. Another
obvious observation is that the optimal number of local metrics
varies dramatically among di�erent datasets, since it is decided by
the complexity of the manifold structure sealed in the data space.

4.3.3 Scalability. In our experiments, the synthetic datasets is
primarily invoked to evaluate the scalability of our approach.

Due to the limited scalability of real-world datasets, we syn-
thesize datasets with the feature dimensionality scaled from 10
to 1000. In this experiment, we �x the number of local metrics as
10 since we only concern about the computational complexity on
di�erent scaled dimensions instead of the optimal number of local
metrics. Figure 4 illustrates the training time of our L-GMML on
these datasets.

Compared with other local metric learning methods, the less
training time come from two-fold issues: (1) the GMML in Algo-
rithm 1 is very fast. (2) The update of weighting function in our
approach is relatively simple and straightforward. It does not in-
volve the huge computational resources to �nd the optimal form.

4.4 Comparison with R-MLR
The Robust Metric-Learning-to-Rank (R-MLR) [19] is the most com-
petitive metric learning method for ranking. It retrieves relevant
examples in response to a query instance. To make direct compar-
isons, we need to modify our approach by assigning all anchor
points to the query instance. Because our approach is originally
designed for the query-independent framework.

In this set of experiments, we evaluate our approach on the
music similarity task, because the R-MLR method is veri�ed to be
successful in music similarity task compared with other metric-
learning-to-rank methods such as MLR [25], L1-MLR [28]. For each
song pi , a relevant set D+i ⊂ Dtrain is de�ned as the subset of
songs in the training set performed by the top 10 most similar
artists to the performer of pi , where the similarity between artists is
measured by the number of shared users in a sample of collaborative
�lter data [24]. This top-10 thresholding results in the relevant sets
in this data being asymmetric and non-transitive. Therefore, the
traditional pairwise metric learning methods do not work in this
situation. However, our approach based on the sampling on the
relevant set is not necessary to obey the symmetric and transitive
properties.

The experiments are conducted on two di�erent kinds of song
representation: audio and lyrics, whose details are listed in Table 1.
We use recommended candidate hyper-parameters in the original
paper to tune R-MLR on validation set and select the best parameter
to evaluate the performance of the model.

Since the scalability of the original R-MLR is limited, the exper-
iments of R-MLR employ the latent features compressed by PCA.
Our approach has no such problem and is suitable to conduct the
training process on the original 1,024 features.

Figure 5 illustrates the performance of three metric learning
algorithms. We �x the number of local metrics in our L-GMML as
1 to obtain the global GMML algorithm. The motivation of making
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Figure 2: Comparisons between global GMML and local GMML on synthetic datasets. The performance is measured by MAP
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thetic datasets

Table 3: Comparison on the training time of R-MLR and L-
GMML. The number of local metrics in L-GMML is �xed as
50

Time (s) R-MLR L-GMML

Audio N/A 38
Audio with PCA 607 4.7

Lyrics-128 302 2.6
Lyrics-256 1241 7.8

such comparison is that we attempt to demonstrate the di�erent
in�uence of the new GMML algorithm and our proposed L-GMML
algorithm on the performance improvements.

Therefore, we can draw the conclusion from the experiments in
this subsection that the proposed approach outperforms other met-
ric learning algorithms for the ranking problem regarding accuracy
and computational e�ciency.
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Figure 5: Music similarity performance of each algorithm
on the three feature representation Audio, Lyrics-128 and
Lyrics-256. Performance was measured by MAP and aver-
aged across 10 folds.

4.5 Comparisons on Large-scale Real-world
Datasets

We attempt to �nd amazing features of our method in the compar-
isons with two state-of-the-art ranking methods, Gradient-Boosted
Regression Trees (GBRT) and λ-MART on Yahoo! Set I&II, MSLR-
10K, and MSLR-30K. Because they have been proved to be the most
e�ective in the Yahoo! learning to rank challenge and become the
dominant methods in the LtR �eld.

For these four datasets, the feature domain varies dramatically.
To avoid for challenging the �oating point precision in complex
mathematical computation, we preprocess these four datasets by
normalizing each feature dimension with 2-norm. For the stochastic
sampling procedure in Algorithm 2, to �nd the optimal model, we
try di�erent initial weight values Φ(1) ranging from 0.1 to 10, the
hinge loss margin ζ ranging from 0.01 to 1.

The training time of GBRT and λ-MART is sensitive to the num-
ber of trees in both of the models. The number of local metrics also
determines the training time of L-GMML. When we plan to make
comparisons on the accuracy and training time of three methods,
we �x the number of trees of GBRT and λ-MART as 5000 and the
number of local metrics as 500. The motivation of these choices
is that the performance of these two methods become stable on
the four datasets. The comprehensive comparisons on a di�erent
measurement of the above three methods are illustrated in Table 4.
From the table, we can draw a conclusion that our approach enjoys
a huge advantage in accuracy compared with the state-of-the-art
ranking methods.

Currently, the only disadvantage of our approach lies in scoring
time. Table 5 displays the comparisons about the time of scoring
documents. Our algorithm heavily relies on the scoring for each
document in di�erent stages, which is less e�cient than GBRT
and λ-MART. On the other hand, our approach is simple in struc-
ture, and GMML in the �rst stage is also e�cient. Therefore, our

method still has an advantage in computationally e�ciency. The
time-consuming comparison in Table 4 can prove this statement.

5 CONCLUSION
In this paper, we focus on improving the accuracy of LtR methods by
utilizing the local structure of documents and degrading irrelevant
features. We �rstly developed a localized GMML algorithm for the
query-independent ranking framework. Speci�cally, we proposed a
concept called ideal candidate document to adopt metric learning for
ranking algorithm from a query-dependent model to widely used
query-independent model. In our approach, a well de�ned smooth
weighting function is optimized by reducing the popular WARP loss,
which is de�ned for the candidate document set of a given query.
Then we can e�ciently score document by calculating the distance
between candidate documents and a nonexistent ideal candidate
document from an optimized metric space. The experiments prove
that our approach outperforms both of the state-of-the-art query-
dependent algorithms and query-independent algorithms.
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