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Abstract
In this paper, we propose a generic approach for
accelerating the convergence of existing algorithms
to solve the problem of stochastic zeroth-order con-
vex optimization (SZCO). Standard techniques for
accelerating the convergence of stochastic zeroth-
order algorithms are by exploring multiple func-
tional evaluations (e.g., two-point evaluations), or
by exploiting global conditions of the problem
(e.g., smoothness and strong convexity). Neverthe-
less, these classic acceleration techniques are nec-
essarily restricting the applicability of newly devel-
oped algorithms. The key of our proposed generic
approach is to explore a local growth condition (or
called local error bound condition) of the objective
function in SZCO. The benefits of the proposed ac-
celeration technique are: (i) it is applicable to both
settings with one-point evaluation and two-point e-
valuations; (ii) it does not necessarily require strong
convexity or smoothness condition of the objective
function; (iii) it yields an improvement on conver-
gence for a broad family of problems. Empirical s-
tudies in various settings demonstrate the effective-
ness of the proposed acceleration approach.

1 Introduction
We consider the following problem of stochastic convex op-
timization:

min
x∈Ω

f(x) , Eξ[f(x; ξ)], (1)

where Ω ⊆ Rd is a closed compact convex set, f(x; ξ) is
a stochastic convex function depending on random noise ξ.
This problem has broad applications in computer science and
engineering. For example, many practical problems in ma-
chine learning can be cast into a stochastic convex optimiza-
tion, where ξ denotes a random data point and x denotes
the parameter of a prediction model. A standard approach

for solving the problem of Eq. (1) is to adopt the stochastic
(sub)gradient of f(x; ξ) [Nemirovski et al., 2009]. However,
there exist situations where the first-order gradient informa-
tion is computationally infeasible, expensive, or impossible,
while the zeroth-order functional information can be easily
obtained. For example, in online auctions and advertisement
selections, only function values are revealed as feedbacks for
algorithms [Wibisono et al., 2012]. In stochastic structured
predictions, explicit differentiations may be difficult to per-
form while the functional evaluations of predicted structures
are easily obtained [Sokolov et al., 2016]. The optimization
problem of Eq. (1) in such situations is referred to SZCO.

A key concern in the development of iterative stochastic
zeroth-oder algorithms for solving Eq. (1) is the order of the
necessary number of functional evaluations in the form of
f(x; ξ), which is termed as sample complexity or iteration
complexity. [Flaxman et al., 2005] should be the first work
related to SZCO. They studied a closely related setting name-
ly online bandit convex optimization where only one-point
evaluation (OPE) is available for the cost function at each it-
eration. Applied to the stochastic setting, their algorithm suf-
fers from an iteration complexity of O(d2/ε4) for finding an
ε-optimal solution x̂ such that E[f(x̂) −minx∈Ω f(x)] ≤ ε.
Since then, there have been a number of studies [Agarwal et
al., 2010; Shamir, 2013; Duchi et al., 2015; Shamir, 2017;
Nesterov and Spokoiny, 2017] trying to improve the iteration
complexity of [Flaxman et al., 2005] in online bandit setting
or in stochastic optimization setting. A useful technique to
accelerate the convergence of SZCO is by leveraging two-
point evaluations (TPE) at each iteration. Another technique
is to explore the strong convexity or the smoothness condi-
tion of the random function f(x; ξ). Clearly, both techniques
impose strong restrictions of their developed algorithms, and
thus the applicability of the resultant algorithms is limited.

1.1 Our Contributions
The goal of this paper is to design a generic approach for ac-
celerating existing SZCO algorithms which is applicable to
both settings with OPE and TPE, and to cases even without
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smoothness and strong convexity assumptions of the objec-
tive function. A novel contribution is to explore a generic
local growth condition (or called local error bound condition)
of the objective function, which specifies how fast the objec-
tive function grows in a local neighborhood of optimal solu-
tions. In particular, we propose a generic algorithmic frame-
work for accelerating existing SZCO algorithms in various
settings by leveraging the local error bound condition. This
is accomplished by a novel synthesis of existing SZCO al-
gorithms and a multi-stage adaptive technique, which con-
sists of three components: using a multi-stage scheme with
each stage running existing algorithms, warm starting each
stage using the solution from previous stage, and adaptive-
ly changing the algorithm’s parameters after each stage (e.g.,
step size, the smoothing parameter). Depending on the local
error bound (LEB) condition, the improvement over existing
results is up to a factor of 1/ε2. Empirical studies in various
settings demonstrate the effectiveness of the proposed accel-
eration approach.

1.2 Related Work
A quick comparison between our obtained upper bounds of
iteration complexities under different settings and previous
upper bounds is shown in Table 1. Lower bounds for SZCO
have been also studied in several works [Dani et al., 2008;
Shamir, 2013; Duchi et al., 2015] in different settings. We
will show that our proposed algorithm’s performance in cer-
tain settings matches the existing lower bounds. For ex-
ample, for stochastic zeroth-order linear optimization with
OPE, our obtained upper bound of iteration complexity is
Õ(d2/ε2)1, which matches the lower bound in [Dani et al.,
2008]. In addition, the best upper bound in this paper for
SZCO in the setting with OPE without smoothness assump-
tion is Õ(d2/ε2), which matches the lower bound in [Shamir,
2013] up to a logarithmic factor. It is also notable that the
best upper bound achieved in this paper can be as good as
min(O(d2 log(1/ε)), Õ(d/ε)). However, we note that our re-
sult does not contradict to the lower bound in [Duchi et al.,
2015] because either their considered random functions do
not necessarily have bounded gradients as assumed in this
paper or their considered problem does not satisfy the LEB
condition that yields our best result. Finally, we note that the
LEB condition has been explored in (stochastic) convex op-
timization for improving the convergence of first-order meth-
ods [Yang and Lin, 2015; Xu et al., 2017]. To the best of
our knowledge, this is the first paper that leverages the LEB
condition for improving the convergence of SZCO.

2 Notations and Preliminaries
In this section, we present some notations and preliminar-
ies for SZCO. Let the `-norm of a vector x be ‖x‖` (where
` ≥ 1). The inner product of two vectors x,y is denoted by
x>y = 〈x,y〉. The notation of B(x, r) denotes a Euclidean
ball centered at x with radius r > 0. The ceiling integer of a
real number r is dre.

1We omit a poly-logarithmic factor for Õ(·).

Let ∂f(x) and ∇f(x) denote, respectively, the subgradi-
ent of a non-smooth function and the gradient of a smooth
function. f(x) is G-Lipschitz continuous if ∃G > 0
such that |f(x) − f(y)| ≤ G‖x − y‖2, ∀x,y ∈ Ω, i.e.,
‖∂f(x)‖2 ≤ G, ∀x ∈ Ω. f(x) is L-smooth if it is d-
ifferentiable and has L-Lipschitz-continuous gradient, i.e.,
‖∇f(x) − ∇f(y)‖2 ≤ L‖x − y‖2, ∀x,y ∈ Ω. f(x) is
convex if f(x) ≥ f(y)+ 〈∂f(y),x−y〉, ∀x,y ∈ Ω. f(x) is
σ-strongly convex if f(x) ≥ f(y)+ 〈∂f(y),x−y〉+σ‖x−
y‖22/2, ∀x,y ∈ Ω and σ ≥ 0.

Let u ∼ B(0, 1) denote a noise vector uniformly sam-
pled from a unit sphere, and u ∼ N (0, 1) denote a noise
vector sampled from a standard Gaussian distribution. Giv-
en a noise vector u, let f̂(x; ξ) , Eu[f(x + δu; ξ)] denote
a smoothed function with smoothing parameter δ > 0 and
f̂(x) , Eu;ξ[f(x + δu; ξ)]. Let Ω∗ denote the optimal solu-
tion set for Eq. (1), and f∗ , minx∈Ω f(x). In the sequel, we
will make the following assumption.
Assumption 1. Assume that there exist x0 ∈ Ω and ε0 > 0
such that f(x0)−minx∈Ω f(x) ≤ ε0. For any δ ∈ (0,+∞),
there exists B > 0 such that |f(x + δu; ξ)| ≤ B for any
x ∈ Ω and ξ, where u ∼ B(0, 1).

2.1 Noisy Gradient Estimators
The noisy gradient estimator in the setting with OPE pro-
posed by [Flaxman et al., 2005] is given as:

gf
t =

d

δ
f(xt + δut; ξt)ut, (2)

where ut ∼ B(0, 1) and δ > 0. The properties of gf
t and

f̂(x; ξ) are stated below.
Lemma 1 ([Flaxman et al., 2005]). Given u ∼ B(0, 1), we
have Eu[gf

t] = ∇f̂(xt; ξt), and ‖gf
t‖2 ≤ dB/δ. If f(x; ξ) is

G-Lipschitz continuous, we have |f(x; ξ) − f̂(x; ξ)| ≤ Gδ.
If f(x; ξ) is L-smooth, we have |f(x; ξ)− f̂(x; ξ)| ≤ Lδ2/2.

For the setting with TPE, there are different gradient esti-
mators used in previous studies. For example, [Agarwal et
al., 2010; Shamir, 2017] used the following noisy gradient
estimator with ut ∼ B(0, 1):

ga
t =

d

2δ

(
f(xt + δut; ξt)− f(xt − δut; ξt)

)
ut. (3)

[Nesterov and Spokoiny, 2017; Duchi et al., 2015] considered
the following noisy gradient estimator for TPE with ut ∼
N (0, 1):

gn
t =

1

δ
(f(xt + δut; ξt)− f(xt; ξt))ut. (4)

The properties of estimators in Eqs. (3) and (4) are summa-
rized as below.
Lemma 2 ([Agarwal et al., 2010; Shamir, 2017]). Given
u ∼ B(0, 1), we have Eu[ga

t ] = ∇f̂(xt; ξt). If f(x; ξ) is
G-Lipschitz continuous, we have ‖ga

t‖2 ≤ Gd, Eu[‖gat ‖22] ≤
db2G2C, and |f(x; ξ)− f̂(x; ξ)| ≤ Gδ, where C is a univer-
sal constant and b is a constant such that (E[‖u‖42])1/4 ≤ b.
If f(x; ξ) is L-smooth, we have |f(x; ξ)− f̂(x; ξ)| ≤ Lδ2/2.
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setting algorithm assumption iteration complexity high probability or expectation

[Flaxman et al., 2005] LC O
(
d2

ε4

)
expectation

[Agarwal et al., 2010] LC + SC Õ
(
d2

ε3

)
expectation

LC + SC + SM Õ
(
d2

ε2

)
expectation

OPE our work LC + LEB Õ
(

d2

ε2(2−θ)

)
, θ ∈ (0, 1

2
] expectation

Õ
(

d2

ε2(2−θ)

)
, θ ∈ (0, 1] high probability

our work LC + LEB + SM Õ
(

d2

ε3−2θ

)
, θ ∈ (0, 1

2
] expectation

Õ
(

d2

ε3−2θ

)
, θ ∈ (0, 1] high probability

[Agarwal et al., 2010] LC O
(
d2

ε2

)
high probability

LC + SC Õ
(
d2

ε

)
high probability

[Nesterov and Spokoiny, 2017] LC Õ
(
d2

ε2

)
expectation

LC + SM O
(
d
ε2

)
expectation

TPE [Duchi et al., 2015] LC Õ
(
d log d
ε2

)
expectation

LC + SM O
(
d
ε2

)
expectation

[Shamir, 2017] LC O
(
d
ε2

)
expectation

our work LC + LEB Õ
(

d2

ε2(1−θ)

)
, θ ∈ (0, 1] high probability

our work LC + LEB Õ
(

d

ε2(1−θ)

)
, θ ∈ (0, 1

2
] expectation

Table 1: A comparison between our results and existing works for SZCO in the settings of OPE and TPE. LC: Lipschitz Continuous, SC:
Strong Convexity, SM: SMoothness, and LEB: Local Error Bound.

Lemma 3 ([Nesterov and Spokoiny, 2017]). Considering
u ∼ N (0, 1), we have Eu[gn

t ] = ∇f̂(xt; ξt). If f(x; ξ) is
G-Lipschitz continuous, we have Eu[‖gn

t‖22] ≤ G2(d + 4)2,
and |f(x; ξt)− f̂(x; ξt)| ≤ δGd1/2. If f(x; ξ) is G-Lipschitz
continuous and L-smooth, we have Eu[‖gn

t‖22] ≤ δ2(d +

6)3L2/2 + 2(d+ 4)G2, and |f(x; ξ)− f̂(x; ξ)| ≤ δ2Ld/2.

Remark 1: The absolute upper bound of the noisy gradien-
t estimators is needed for high probability analysis and the
variance bound of the noisy gradient estimators is useful for
expectational convergence analysis.

The iterative update in the previous studies takes the fol-
lowing form:

xt+1 = ΠΩ[xt − ηgt], (5)

where η > 0 is a step size, gt is a gradient estimator and
ΠΩ denotes the Euclidean projection onto the set Ω. We syn-
thesize the convergence analysis of stochastic optimization in
the following proposition, which, combined with properties
of different gradient estimators, yields corresponding conver-
gence results in previous studies.

Proposition 1. Considering the update in Eq. (5) with an

initial point of x1 ∈ Ω, for any x ∈ Ω, we have
T∑
t=1

f(xt; ξt)− f(x; ξt) ≤ 2

T∑
t=1

sup
x∈Ω
|f(x; ξt)− f̂(x; ξt)|

+

T∑
t=1

g>t (xt − x) + (∇f̂(xt; ξt)− gt)
>(xt − x),

and
∑T
t=1 g

>
t (xt − x) ≤ ‖x1−x‖22

2η +
∑T
t=1

η‖gt‖22
2 .

2.2 Local Error Bound (LEB) Condition
Definition 1. A problem of Eq. (1) satisfies the LEB condition
on a compact set Ω if there exist θ ∈ (0, 1] and c > 0 such
that for any x ∈ Ω

dist(x,Ω∗) ≤ c(f(x)−min
x∈Ω

f(x))θ, (6)

where dist(x,Ω∗) , minv∈Ω∗ ‖v − x‖2.
Note that the LEB condition has been studied thorough-

ly in [Yang and Lin, 2015; Bolte et al., 2015; Xu et al.,
2017]. It is satisfied for a broad family of problems. For ex-
ample, when f(x) is continuous and semi-algebraic (or sub-
analytic), the LEB condition holds on any compact set [Bolte
et al., 2015]. Below, we consider several instances of prob-
lems that satisfy the LEB condition. More interesting exam-
ples in machine learning can be found in [Yang and Lin, 2015;
Xu et al., 2017].
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Algorithm 1 A generic approach for accelerating SZCO

1: initialization x0, K, η1, δ1, D1

2: for k = 1, · · · ,K do
3: x1

k = xk−1, Dk = Ω ∩ B(x1
k, Dk)

4: for τ = 1, · · · , t do
5: compute a gradient estimator in light of Eq. (2) or

Eq. (3) or Eq. (4)
6: compute xτk according to Eq. (5) or Eq. (7) with a

step size ηk, a parameter δk, and a domain Dk
7: end for
8: let xk =

∑t
τ=1 x

τ
k/t

9: update δk+1, Dk+1 and ηk+1

10: end for
11: return xK

Example 1: When f(x; ξ) = x>ξ is a linear function
and Ω is a polyhedral set (e.g., hypercube), then the prob-
lem of Eq. (1) satisfies the LEB with θ = 1 [Yang and
Lin, 2015]. These functions are considered in online ban-
dit linear optimization [Dani et al., 2008]. More generally, if
f(x) is a polyhedral function and Ω is a polyhedral set, then
LEB with θ = 1 holds [Yang and Lin, 2015]. For instance,
f(x) =

∑n
i=1 |a>i x− bi|/n and Ω = {‖x‖1 ≤ s}.

Example 2: When f(x) is strongly convex, then the LEB
condition holds with θ = 1/2 [Xu et al., 2017].

Example 3: Even when f(x) is not strongly convex, the
LEB condition with θ = 1/2 may still hold, such as f(x) =∑n
i=1(a>i x− bi)2/n and Ω is a polyhedral set.

3 Our Generic Approach
In this section, we propose a generic algorithm for acceler-
ating the convergence of SZCO and its main results in vari-
ous settings. In order to achieve improved high probability
convergence results, we need to use the following update to
control the last term in Proposition 1:

xt+1 = ΠD[xt − ηgt], (7)

where D = Ω ∩ B(x1, D) with x1 being a reference point
and D being the radius of the ball. The proposed acceleration
framework is presented in Algorithm 1, which is a multi-stage
adaptive scheme consisting of three key components: (i) a
multi-stage scheme with each stage running existing updates,
(ii) warm starting each stage using the solution from previous
stage, and (iii) adaptively changing the parameters after each
stage. Next, we present the iteration complexities of Algo-
rithm 1 in various settings. Let εk = ε0/2

k be a sequence.
Theorem 1 (Results for OPE). Let Algorithm 1 run with E-
q. (2) as the noisy gradient estimator and K = dlog2(ε0/ε)e
stages. We have the following results.
• R-I: if f(x; ξ) is G-Lipschitz continuous, by employing

Eq. (5) and setting t = O(d2/ε2(2−θ)), δk = εk/(6G),
ηk = ε3k/(54G2d2B2), then Algorithm 1 enjoys an it-
eration complexity of Õ(d2/ε2(2−θ)) in expectation for
problems satisfy the LEB condition with θ ∈ (0, 1/2];
• R-II: if f(x; ξ) isG-Lipschitz continuous and L-smooth,

by employing Eq. (5) and setting t = O(d2/ε3−2θ),

δk =
√
εk/(
√

3L), ηk = 2ε2k/(9Ld
2B2), then Algorith-

m 1 enjoys an iteration complexity of Õ
(
d2/ε3−2θ

)
in

expectation for problems satisfy the LEB condition with
θ ∈ (0, 1/2];

• R-III: if f(x; ξ) is G-Lipschitz continuous, by employ-
ing Eq. (7) and setting δk, ηk similarly as in R-I and
t = Õ(d2/ε2(2−θ)), Dk = O(εθk−1), then Algorithm 1
enjoys an iteration complexity of Õ(d2/ε2(2−θ)) with
high probability 1−p, where we set p ∈ (0, 1), for prob-
lems satisfy the LEB condition with θ ∈ (0, 1];

• R-IV: if f(x; ξ) isG-Lipschitz continuous andL-smooth,
by employing Eq. (7) and setting δk, ηk similarly as in
R-II and t = Õ(d2/ε3−2θ), Dk = O(εθk−1), then Algo-
rithm 1 enjoys an iteration complexity of Õ(d2/ε3−2θ)
with high probability 1− p, where we set p ∈ (0, 1), for
problems satisfy the LEB condition with θ ∈ (0, 1].

Remark 2: For the statement of high probability results, we
omit a poly-logarithmic factor of log(K/p) in t. Our iteration
complexities by leveraging the LEB condition are better than
those in [Agarwal et al., 2010; Flaxman et al., 2005]. For
LEB with θ = 1/2 that is weaker than the strong convexity
assumption, our iteration complexities match that in [Agarw-
al et al., 2010] for strongly convex functions. For problems
with f(x; ξ) being a linear function and Ω being a polyhedral
set, the LEB with θ = 1 holds and we achieve an iteration
complexity of Õ

(
d2/ε2

)
with high probability, which match-

es the lower bound in [Dani et al., 2008]. Besides, one may
get expectational results for θ > 1/2 from high probability
results R-III and R-IV following the Corollary 3 in [Xu et al.,
2016].

Theorem 2 (Results for TPE). Let Algorithm 1 run withK =
dlog2(ε0/ε)e stages. We have the following results.

• R-I: if f(x; ξ) is G-Lipschitz continuous, by employing
the noisy gradient estimator of Eq. (3) and the update of
Eq. (5) and setting t = O(d/ε2(1−θ)), δk = εk/(6G),
ηk = 2εk/(3db

2G2C) where b and C are parameters
discussed in Lemma 2, then Algorithm 1 enjoys an it-
eration complexity of Õ(d/ε2(1−θ)) in expectation for
problems satisfy the LEB condition with θ ∈ (0, 1/2];

• R-II: if f(x; ξ) isG-Lipschitz continuous and L-smooth,
by employing the noisy gradient estimator of Eq. (4) and
the update of Eq. (5) and setting t = O(d/ε2(1−θ)), δk =√
εk/(2

√
dL), ηk = min{εk/(4(d + 4)G2), 2d/((d +

6)3L)}, then Algorithm 1 enjoys an iteration complexity
of Õ(d/ε2(1−θ)) in expectation for problems satisfy the
LEB condition with θ ∈ (0, 1/2];

• R-III: if f(x; ξ) isG-Lipschitz continuous, by employing
the noisy gradient estimator of Eq. (3) and the update of
Eq. (7) and setting δk = εk/(8G), ηk = εk/(2d

2G2),
t = Õ(d2/ε2(1−θ)), and Dk = O(εθk−1), then Algo-
rithm 1 enjoys an iteration complexity of Õ(d2/ε2(1−θ))
with high probability 1− p, where we set p ∈ (0, 1), for
problems satisfy the LEB condition with θ ∈ (0, 1].
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Remark 3: It is notable that in the setting with TPE, the s-
moothness of the random function does not improve the con-
vergence (by comparing R-I and R-II). The reason is that, for
R-I, we utilize the refined analysis in [Shamir, 2017] to bound
the variance of the noisy gradient estimator E[‖ga

t‖22] ≤ O(d)
(see Lemma 2), which is in the same order to that of the
noisy gradient estimator gn

t with small enough δ as estab-
lished in [Nesterov and Spokoiny, 2017] (see Lemma 3). The
expectational results R-I and R-II have better dependence on
d compared to the high probability result R-III. The reason is
that, for high probability analysis, we have to use the abso-
lute bound of ga

t . However, the expectational results R-I and
R-II cannot enjoy better dependence on ε for θ > 1/2 as in
the high probability result R-III. We notice that one can ob-
tain similar expectational results for θ > 1/2 in light of R-III
with the same technique in Remark 2.

Finally, we would like to point out that although the above
results require knowing the value of θ in the LEB condition,
we can use another level of restarting on top of Algorithm 1
and an increasing sequence of t for the outer loop similar to
that in [Yang and Lin, 2015; Xu et al., 2017], which still en-
joy improved iteration complexities compared with previous
results. Due to limitation of space, this result and the related
proofs are both omitted here.

Convergence Analyses. Due to limitation of space, we
present proofs of results R-I and R-III in Theorem 1. How-
ever, we note that proofs of other results can be simply de-
rived by using different variance bounds of the noisy gradient
estimators and different bounds of |f(x; ξ) − f̂(x; ξ)| from
Lemmas 1-3.

Proof of R-I. Based on Proposition 1 and Lemma 1, we
have

T∑
t=1

f(xt; ξt)− f(x; ξt) ≤ 2TGδ +
ηTd2B2

2δ2

+
‖x1 − x‖22

2η
+

T∑
t=1

(∇f̂(xt; ξt)− gf
t)
>(xt − x).

By setting x̂T =
∑T
t=1 xt/T and taking the expectation over

randomness in u and ξ, we have

E[f(x̂T )− f(x)] ≤ E[‖x1 − x‖22]

2ηT
+
ηd2B2

2δ2
+ 2Gδ.

By adopting the generic framework in Algorithm 1, for the
k-th stage, we have

E[f(xk)− f(x)] ≤
E[‖xk−1 − x‖22]

2ηkt
+
ηkd

2B2

2δ2
k

+ 2Gδk,

where we use t iterations in inner loops of Algorithm 1.
We will prove by induction that E[f(xk) − f∗] ≤ εk. It

is trivial for k = 0 due to Assumption 1. Conditioned on
the inequality of E[f(xk−1) − f∗] ≤ εk−1, we will show
that E[f(xk) − f∗] ≤ εk. Let xk−1,∗ = arg minv∈Ω∗ ‖v −

xk−1‖2. Then, we have

E[f(xk)− f(xk−1,∗)]

≤ E[‖xk−1 − xk−1,∗‖22]

2ηkt
+
ηkd

2B2

2δ2
k

+ 2Gδk

≤ c(E[f(xk−1)− f(xk−1,∗)])
2θ

2ηkt
+
ηkd

2B2

2δ2
k

+ 2Gδk

≤
cε2θk−1

2ηkt
+
ηkd

2B2

2δ2
k

+ 2Gδk,

where the second inequality uses the concavity of (s)2θ for
θ ≤ 1/2 and the Jensen’s inequality. To establish E[f(xk)−
f∗] ≤ εk, we set

c2ε2θk−1

2ηkt
≤ εk−1

6
⇒ t ≥ 1296d2B2G2c2

ε
2(2−θ)
k−1

,

ηkd
2B2

2δ2
k

≤ εk
3
⇒ ηk ≤

ε3k
54G2d2B2

,

2Gδk ≤
εk
3
⇒ δk ≤

εk
6G

.

By setting εK = ε0/2
K = ε, we have K = dlog(ε0/ε)e.

Thus, we have E[f(xK) − f∗] ≤ εK ≤ ε. As a result, the
total iteration complexity is Õ(d2/ε2(2−θ)).

Proof of R-III. First,
∑T
t=1(f̂(xt) − f̂(x)) ≤∑T

t=1〈gf
t, (xt−x)〉+

∑T
t=1(∇f̂(xt)−gf

t)
>(xt−x). We can

use the result in Proposition 1 and the absolute upper bound of
the noisy gradient estimator to bound the first term in R.H.S.
The second term can be bounded using martingale inequali-
ties (please refer to Lemma 14 in [Hazan and Kale, 2014]).
As a result, for any fixed x ∈ Ω ∩ B(x1, D) and p̃ ∈ (0, 1),
with a probability at least 1−p̃, the following inequality holds

f̂(x̂T )− f̂(x) ≤
‖x1 − x‖22

2ηT
+
ηd2B2

2δ2
+

4dBD
√

3 log( 1
p̃
)

√
Tδ

,

where x̂T =
∑T
t=1 xt/T . Then, we are ready to have

f(xk)− f(xk−1,∗) ≤
c2ε2θk−1

2ηkt
+
ηkd

2B2

2δ2
k

+

4dBcεθk−1

√
3 log( 1

p̃ )
√
tδk

+ 2Gδk,

where we use Dk = cεθk−1, and xk−1,∗ ∈ B(xk−1, Dk).
We can easily establish f(xk) − f∗ ≤ εk with high proba-
bility by induction if we set δk = O(εk), ηk = O(ε3k/d

2),
t = O(d2 log(1/p̃)/ε2(2−θ)). Then, with K = dlog(ε0/ε)e,
we have the iteration complexity as Õ(d2/ε2(2−θ)) with prob-
ability of 1− p, where p̃ = p/K.

4 Experiments
In this section, we conduct experiments on two real-world
datasets in various settings to demonstrate the superior per-
formance of the proposed acceleration approach in Algorith-
m 1. We run experiments in a personal computer with Intel
CPU@3.70GHz and 16GB memory.
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(a) f(x) =
∑N
i=1(w>i x−ri)2

N
, θ = 0.5 (b) f(x) =

∑N
i=1 |w

>
i x−ri|
N

, θ = 1 (c) f(x) is averaged Huber loss, θ = 1

Figure 1: Comparisons of convergence with three objective functions for music recommendation competition data and T = 104.

To compare the efficiency of the acceleration framework
with prior methods, we will show the evolution of function
values with respect to the number of iterations. We adopt
three baselines: the first is OPE from [Flaxman et al., 2005];
the second is TPEA from [Agarwal et al., 2010]; and the third
is TPEN from [Nesterov and Spokoiny, 2017]. We add a term
“Acc” to denote our acceleration version for each baseline in
experiments. To show experimental results, we run experi-
ments ten times with the same initialization point, and show
the average of function values. For the first experiment on
the real-world datasets, we also demonstrate error bars of one
standard variance.

4.1 Music Recommendation Competition Data

We consider the ensemble learning setting of recommenda-
tions as a black-box optimization problem discussed in [Lian
et al., 2016]. In particular, we blend the existing models
in [Chen et al., 2011] for music recommendation competition
in KDD-Cup 2011, which turns out to be a linear regression
problem. Since true ratings for the test set are unknown in
competition, the feedback is the evaluation of the linear re-
gression prediction of the blended model. Thus, this ensem-
ble learning case is SZCO.

We get predicted ratings of individual models in [Chen et
al., 2011] for the test set in KDD-Cup 2011, with 237 models
and 6,005,940 predictions for each model2. In addition to a
square loss [Lian et al., 2016], we also consider an absolute
loss and a huber loss [Zadorozhnyi et al., 2016] as objective
functions. For better demonstrations of convergence rate, we
sample 10 models from 237 models with predicted ratings de-
noted by w ∈ R10 in ensemble learning, and set the number
of training points as N = 105. The ground truth of sample i
is denoted by ri.

We show the superior convergence of our proposed acceler-
ation approach with different objective functions in Figure 1.
From the standard variance error bar, we clearly find that
our approach stably accelerates the existing SZCO algorithms
with order improvements.

2We thank the authors of [Lian et al., 2016] for providing the
predicted ratings for us.

Figure 2: Growth of ceramic thin films with T = 104.

4.2 Industrial Data on Ceramic Thin Films
We consider industrial data on crystallization of ceramic thin
films in [Nakamura et al., 2017]. The goal for the indus-
trial application on crystallization of ceramic thin films is
to determine an optimal setting for the volume of tetraethy-
lene glycol (TEG), temperature (T), and the time of heat to a
temperature in time (HTI), which is in fact a SZCO prob-
lem. The objective of the experiment is a quadratic func-
tion. For more details, please refer to [Nakamura et al., 2017;
Wang et al., 2017].

By updating the values of TEG, T and HTI, we show the
growth of ceramic thin films with the number of iterations
in Figure 2. The superior performance of the acceleration via
Algorithm 1 is clear. We also test different intensity of noises,
and find that the acceleration is robust. Note that, in ceramic
thin films, we solve a concave function and thus the function
value increases.

5 Conclusions
In this paper, we have developed a generic acceleration ap-
proach to solve the problem of SZCO. We tackled the SZ-
CO problem with the core idea of exploring an LEB con-
dition of objective functions, which is frequently encoun-
tered in real applications. The benefits of the proposed
acceleration technique are three-fold: wide applicability,
weak assumption and improvements on iteration complexi-
ty. With LEB condition, the best upper bound here can be
min(O(d2 log(1/ε)), Õ(d/ε)), and the improvement over ex-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3045



isting results is up to a factor of 1/ε2. Experimental results
have shown superior and robust performance of the proposed
acceleration approach.
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