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ABSTRACT

Logs are often used for troubleshooting in large-scale software sys-
tems. For a cloud-based online system that provides 24/7 service, a
huge number of logs could be generated every day. However, these
logs are highly imbalanced in general, because most logs indicate
normal system operations, and only a small percentage of logs
reveal impactful problems. Problems that lead to the decline of sys-
tem KPIs (Key Performance Indicators) are impactful and should be
fixed by engineers with a high priority. Furthermore, there are var-
ious types of system problems, which are hard to be distinguished
manually. In this paper, we propose Log3C, a novel clustering-based
approach to promptly and precisely identify impactful system prob-
lems, by utilizing both log sequences (a sequence of log events)
and system KPIs. More specifically, we design a novel cascading
clustering algorithm, which can greatly save the clustering time
while keeping high accuracy by iteratively sampling, clustering,
and matching log sequences. We then identify the impactful prob-
lems by correlating the clusters of log sequences with system KPIs.
Log3C is evaluated on real-world log data collected from an online
service system at Microsoft, and the results confirm its effectiveness
and efficiency. Furthermore, our approach has been successfully
applied in industrial practice.
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1 INTRODUCTION

For large-scale software systems, especially cloud-based online ser-
vice systems such as Microsoft Azure, Amazon AWS, Google Cloud,
high service quality is vital. Since these systems provide services
to hundreds of millions of users around the world, a small service
problem could lead to great revenue loss and user dissatisfaction.

Large-scale software systems usually generate logs to record
system runtime information (e.g., states and events). These logs are
frequently utilized in the maintenance and diagnosis of systems.
When a failure occurs, inspecting recorded logs has become a com-
mon practice. Particularly, logs play a crucial role in the diagnosis
of modern cloud-based online service systems, where conventional
debugging tools are hard to be applied.

Clearly, manual problem diagnosis is very time-consuming and
error-prone due to the increasing scale and complexity of large-scale
systems. Over the years, a stream of methods based on machine
learning have been proposed for log-based problem identification
and troubleshooting. Some use supervised methods, such as classi-
fication algorithms [43], to categorize system problems. However,
they require a large number of labels and substantial manual label-
ing effort. Others use unsupervised methods, such as PCA [41] and
Invariants Mining [23] to detect system anomalies. However, these
approaches can only recognize whether there is a problem or not
but cannot distinguish among different types of problem.

To identify different problem types, clustering is the most perva-
sive method [7-9, 21]. However, it is hard to develop an effective
and efficient log-based problem identification approach through
clustering due to the following three challenges:

1) First, large-scale online service systems such as those of Mi-
crosoft and Amazon, often run on a 7 X 24 basis and support hun-
dreds of millions of users, which yields an incredibly large quantity
of logs. For instance, a service system of Microsoft that we studied
can produce dozens of Terabytes of logs per day. Notoriously, con-
ducting conventional clustering on data of such order-of-magnitude
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consumes a great deal of time, which is unacceptable in practice
[1, 12, 15, 18].

2) Second, there are many types of problems associated with
the logs and clustering alone cannot determine whether a cluster
reflects a problem or not. In previous work on log clustering, de-
velopers are required to verify the problems manually during the
clustering process [21], which is tedious and time-consuming.

3) Third, log data is highly imbalanced. In a production envi-
ronment, a well-deployed online service system operates normally
most of the time. That is, most of the logs record normal operations
and only a small percentage of logs are problematic and indicate
impactful problems. The imbalanced data distribution can severely
impede the accuracy of the conventional clustering algorithm [42].
Furthermore, it is intrinsic that some problems may arise less fre-
quently than others; therefore, these rare problems emerge with
fewer log messages. As a result, it is challenging to identify all
problem types from the highly imbalanced log data.

To tackle the above challenges, we propose a novel problem
identification framework, Log3C, using both log data and system
KPI data. System KPIs (Key Performance Indicators such as service
availability, average request latency, failure rate, etc.) are widely
adopted in industry. They measure the health status of a system
over a time period and are collected periodically.

To be specific, we propose a novel clustering algorithm, Cas-
cading Clustering, which clusters a massive amount of log data
by iteratively sampling, clustering, and matching log sequences
(sequences of log events). Cascading clustering can significantly
reduce the clustering time while keeping high accuracy. Further, we
analyze the correlation between log clusters and system KPIs. By in-
tegrating the Cascading Clustering and Correlation analysis, Log3C
can promptly and precisely identify impactful service problems.

We evaluate our approach on real-world log data collected from
a deployed online service system at Microsoft. The results show
that our method can accurately find impactful service problems
from large log datasets with high time performance. Log3C can
precisely find out problems with an average precision of 0.877
and an average recall of 0.883. We have also successfully applied
Log3C to the maintenance of many actual online service systems
at Microsoft. To summarize, our main contributions are threefold:

e We propose Cascading Clustering, a novel clustering algorithm
that can greatly save the clustering time while keeping high
accuracy. The implementation is available on Github'.

e We propose Log3C, which is a novel framework that integrates
cascading clustering and correlation analysis. Log3C can auto-
matically identify impactful problems from a large amount of log
and KPI data efficiently and accurately.

o We evaluate our method using the real-world data from Microsoft.
Besides, we have also applied Log3C to the actual maintenance
of online service systems at Microsoft. The results confirm the
usefulness of Log3C in practice.

The rest of this paper is organized as follows: In Section 2, we
introduce the background and motivation. Section 3 presents the
proposed framework and each procedure in detail. The evaluation
of our approach is described in Section 4. Section 5 discusses the
experiment results and Section 6 shares some success stories and

https://github.com/logpai/Log3C
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01 | Name=Request (GET:http://AAA:1000/BBBB/sitedata.html) t_41bx0

02 | Leaving Monitored Scope (EnsurelListitemsData) Execution Time=52.9013 | t_51xi4

03 | HTTP request URL: /14/Emails/MrX(MrX@mail.com)/1c-48f0-b29.eml t_23hi3

04 | HTTP Request method: GET t_41bx0

05 | HTTP request URL: /55/RST/UVX/ADEG/Lists/Files/docXX.doc t_0lmul

06 | Overridden HTTP request method: GET t_41bx0

07 | HTTP request URL: http://AAA:1000/BBBB/sitedata.html t_41bx0

08 | Leaving Monitored Scope (Request (POST:http://AAA:100/BBBB/ t_41bx0
sitedata.html)) Execution Time=334.319268903038 (Task_ID)

E1 [Name=Request (*)

E2 |Leaving Monitored Scope (*) Execution Time = *

E3 |HTTP Request method: * Log Parsing

E4 |HTTP request URL: *

E5 [Overridden HTTP request method: *

Figure 1: An Example of Log Messages and Log Events

experiences obtained from industrial practice. The related work and
conclusion are presented in Section 7 and Section 8, respectively.

2 BACKGROUND AND MOTIVATION

Cloud-based online service systems, such as Microsoft Azure, Google
Cloud, and Amazon AWS, have been widely adopted in the industry.
These systems provide a variety of services and support a myriad
of users across the world every day. Therefore, one system problem
could cause catastrophic consequences. Thus far, service providers
have made tremendous efforts to maintain high service quality. For
example, Amazon AWS [2] and Microsoft Azure [25] claim to have
"five nines", which indicates the service availability of 99.999%.

Although a lot of efforts have been devoted to quality assurance,
in practice, online service systems still encounter many problems.
To diagnose the problem, engineers often rely on system logs, which
record system runtime information (e.g., states and events).

The top frame of Figure 1 shows eight real-world log messages
from Microsoft (some fields are omitted for simplicity of presenta-
tion). Each log message comprises two parts: a constant part and a
variable part. The constant part consists of fixed text strings, which
describe the semantic meaning of a program event. The variable
part contains parameters (e.g., URL) that record important system
attributes. A log event is the abstraction of a group of similar log
messages. As depicted in Figure 1, the log event for log message
3,5,7 is E4: "HTTP request URL: =", where the constant part is the
common part of these log messages ("HTTP request URL:"), and the
asterisk represents the parameter part. Log parsing is the procedure
that extracts log events from log messages, and we defer details to
Section 3.1. A log sequence is a sequence of log events that record a
system operation in the same task. In Figure 1, log message 1,4,6,7,8
are sequentially generated to record a typical HT TP request. These
log messages share the same task ID (t_41bx0), and thereby the
corresponding log sequence is: [E1, E3, E5, E4, E2].

For a well-deployed online service system, it operates normally in
most cases and exhibits problems occasionally. However, it does not
imply that problems are easy to identify. On the contrary, problems
are hidden among a vast number of logs while most logs record the
system’s normal operations. In addition, there are various types
of service problems, which may manifest different patterns, occur
at different frequencies, and affect the service system in different
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Figure 2: Long Tail Distribution of Log Sequences

manners. As a result, it is challenging to precisely and promptly
identify the service problems from the logs.

As an example, Figure 2 shows the long tail distribution of 18
types of log sequences (in logarithmic scale for easy plotting), which
are labeled by engineers from product teams. The first two types
of log sequences occupy more than 99.8% of the total occurrences
("head") and are generated by normal system operations. The re-
maining ones indicate different problems, but they all together only
take up less than 0.2% of all occurrences ("long tail"). Besides, the
occurrences of distinct problem types varies significantly. For ex-
ample, the first type of problem (the 3rd bar in Figure 2) is a "SQL
connection problem", which shows that the server cannot connect
a SQL database. The most frequent problem occurs over 100 times
more often than the least frequent one. The distribution is highly
imbalanced and exhibits strong long-tail property, which poses
challenges for log-based problem identification.

Among all the problems, some are impactful because they can
lead to the degradation of system KPIs. As aforementioned, sys-
tem KPIs delineate the system’s health status. A lower KPI value
indicates that some system problems may have occurred and the
service quality deteriorates. In our work, we leverage both log and
KPI data to guide the identification of impactful problems. In prac-
tice, systems continuously generate logs, but the KPI values are
periodically collected.

We use time interval to denote the KPI collection frequency. The
value of time interval is typically 1 hour or more, which is set by
the production team. In our setting, we use failure rate as the KPI,
which is the ratio of failed requests to all requests within a time
interval. In each time interval, there could be many logs but only
one KPI value (e.g., one failure rate).

3 LOG3C: THE PROPOSED APPROACH

In this paper, we aim at solving the following problems: Given sys-
tem logs and KPIs, how to detect impactful service system problems
automatically? How to identify different kinds of impactful service
system problems precisely and promptly?

To this end, we propose Log3C, whose overall framework is
depicted in Figure 3. Log3C consists of four steps: log parsing, se-
quence vectorization, cascading clustering, and correlation analysis.
In short, at each time interval, logs are parsed into log events and
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vectorized into sequence vectors, which are then grouped into mul-
tiple clusters through cascading clustering. However, we still cannot
extrapolate whether a cluster is an impactful problem, which ne-
cessitates the use of KPIs. Consequently, in step four, we correlate
clusters and KPIs over different time intervals to find impactful
problems. More details are presented in the following sections.

3.1 Log Parsing

As aforementioned, log parsing extracts the log event for each raw
log message since raw log messages contain some superfluous in-
formation (e.g., file name, IP address) that can hinder the automatic
log analysis. The most straightforward way of log parsing is to
write a regular expression for every logging statement in the source
code, as adopted in [41]. However, it is tedious and time-consuming
because the source code updates very frequently and is not always
available in practice (e.g., third-party libraries). Thus, automatic log
parsing without source code is imperative.

In this paper, we use an automatic log parsing method proposed
in [13] to extract log events. Following this method, firstly, some
common parameter fields (e.g., IP address), are removed using reg-
ular expressions. Then, log messages are clustered into coarse-
grained groups based on weighted edit distance. These groups are
further split into fine-grained groups of log messages. Finally, a
log event is obtained by finding the longest common substrings for
each group of raw log messages.

To form a log sequence, log messages that share the same task
ID are linked together and parsed into log events. Moreover, we re-
move the duplicate events in the log sequence. Generally, repetition
often indicates retrying operations or loops, such as continuously
trying to connect to a remote server. Without removing duplicates,
similar log sequences with different occurrences of the same event
are identified as distinct sequences, although they essentially indi-
cate the same system behavior/operation. Following the common
practice [21, 32] in log analysis, we remove the duplicate log events.

3.2 Sequence Vectorization

After obtaining log sequences from logs in all time intervals, we
compute the vector representation for each log sequence. We be-
lieve that different log events have different discriminative power in
problem identification. As delineated in Step 2 of Figure 3, to mea-
sure the importance of each event, we calculate the event weight
by combining the following two techniques:

IDF Weighting: IDF (Inverse Document Frequency) is widely
utilized in text mining to measure the importance of words in some
documents, which lowers the weight of frequent words while in-
creasing rare words’ weight [30, 31]. In our scenario, events that
frequently appear in numerous log sequences cannot distinguish
problems well because problems are relatively rare. Hence, the
event and log sequence are analogous to word and document re-
spectively. We aggregate log sequences in all time intervals together
to calculate the IDF weight, which is defined in Equation 1, where N
is the total number of all log sequences and n, is the number of log
sequences that contain the event e. With IDF weighting, frequent
events have low weights, while rare events are weighted high.

wiap(e) = log ( N )

ne

1)
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1. Log Parsing 2. Sequence Vectorization
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3. Cascading Clustering 4. Correlation Analysis
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1
t: 18 12 107 4 | 064
9 | 078
Cluster Size

Figure 3: Overall Framework of Log3C

w(e) = a x Norm(wigg(e)) + (1 — @) * weor(e)

@
Importance Weighting: In problem identification, it is intu-
itive that events strongly correlate with KPI degradation are more
critical and should be weighted more. Therefore, we build a re-
gression model between log events and KPI values to find the im-
portance weight. To achieve so, as shown Figure 3, in each time
interval, we sum the occurrence of each event in all log sequences
(three in the example) as a summary sequence vector. After that, we
get d summary sequence vectors, and d KPI values are also available
as aforementioned. Then, a multivariate linear regression model
is applied to evaluate the correlation between log events and KPIs.
The weights wcor(e) obtained from the regression model serve as
the importance weights for log events e. Note that the regression
model only aims to find the importance weight for the log event.
As denoted in Equation 2, the final event weight is the weighted
sum of IDF weight and importance weight. Besides, we use Sigmoid
function [40] to normalize the IDF weight into the range of [0, 1].
Since the importance weight is directly associated with KPIs and
is thereby more effective in problem identification, we value the
importance weight more, i.e., « < 0.5. In our experiments, we
empirically set & to 0.2. Given the final event weights, the weighted
sequence vectors can be easily obtained. For simplicity, hereafter,
we use "sequence vectors" to refer to "weighted sequence vectors".
Note that each log sequence has a corresponding sequence vector.

3.3 Cascading Clustering

Once all log sequences are vectorized, we group sequence vectors
into clusters separately for each time interval. However, the conven-
tional clustering methods are incredibly time-consuming when the
data size is large [1, 12, 15, 18] because distances between any pair
of samples are required. As mentioned in Section 2, log sequences
follow the long tail distribution and are highly imbalanced. Based
on the observation, we propose a novel clustering algorithm, cas-
cading clustering, to group sequence vectors into clusters (different
log sequence types) promptly and precisely, where each cluster
represents one kind of log sequence (system behavior).

Figure 4 depicts the procedure of cascading clustering, which
leverages iterative processing, including sampling, clustering, match-
ing and cascading. The input of cascading clustering is all the se-
quence vectors in a time interval, and the output is a number of
clusters. To be more specific, we first sample a portion of sequence
vectors, on which a conventional clustering method (e.g., hierar-
chical clustering) is applied to generate multiple clusters. Then, a
pattern can be extracted from each cluster. In the matching step,
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we match all the original unsampled sequence vectors with the
patterns to determine their cluster. Those unmatched sequence
vectors are collected and fed into the next iteration. By iterating
these processes, all sequence vectors can be clustered rapidly and
accurately. The reason behind is that large clusters are separated
from the remaining data at the first several iterations.

3.3.1 Sampling. Given numerous sequence vectors in each time
interval, we first sample a portion of them through Simple Random
Sampling (SRS). Each sequence vector has an equal probability p
(e.g., 0.1%) to be selected. Suppose there are N sequence vectors in
the input data, then the sampled data size is M = [p = N. After
sampling, log sequence types (clusters) that dominate in the original
input data are still dominant in the sampled data.

3.3.2  Clustering. After sampling M sequence vectors from the
input data, we group these sequence vectors into multiple clusters
and extract a representative vector (pattern) from every cluster.
To do so, we calculate the distance between every two sequence
vectors and apply an ordinary clustering algorithm.

Distance Metric: During clustering, we use Euclidean distance
as the distance metric, which is defined in Equation 3: u and v
are two sequence vectors, and n is the vector length, which is the
number of log events. u; and v; are the i-th value in vector u and
v, respectively.

d(w,v) = llu = vl = > —0:)? 3)
D(A, B) = max{d(a,b), Va€ A Vb e B} (4)
p=min{d(x,P;), Vje{1,2,...k}} (5)

Clustering Technique: We utilize Hierarchical Agglomerative
Clustering (HAC) to conduct clustering. At first, each sequence
vector itself forms a cluster, and the closest two clusters are merged
into a new one. To find the closest clusters, we use the complete
linkage [38] to measure the cluster distance. As shown in Equation
4, D is the cluster distance between two clusters A and B, which is
defined as the longest distance between any two elements (one in
each cluster) in the clusters. The merging process continues until
reaching a distance threshold of 6. That is, the clustering stops
when all the distances between clusters are larger than 6. In Section
4.4, we also study the effect of different thresholds. After clustering,
similar sequence vectors are grouped into the same cluster, while
dissimilar sequence vectors are separated into different clusters.

Pattern Extraction: After clustering, a representative vector is
extracted for each cluster, which serves as the pattern of a group
of similar log sequences. To achieve so, we compute the mean
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vector [3] of all sequence vectors in a cluster. Assume that there
are k clusters, then k mean vectors (patterns) can be extracted to
represent those clusters respectively.

3.3.3 Matching. Asillustrated in Figure 4, we match each sequence
vector in the original unsampled input data (of size N) to one of the
k patterns, which are obtained by clustering M sampled sequence
vectors. To this end, for each sequence vector x, we calculate the
distance between it and every pattern. Furthermore, we compute
the minimum distance p as denoted in Equation 5, where P is a
set of all patterns. If the minimum distance y is smaller than the
threshold 0 defined in the clustering step, the sequence vector x is
matched with a pattern successfully and thereby can be assigned
to the corresponding cluster. Otherwise, this sequence vector is
classified as mismatched. Note that those mismatched sequence
vectors would proceed to the next iteration.

Algorithm 1: Cascading Clustering

Input :Sequence vector data D, Sample rate p, Clustering
threshold 6
Output:Sequence clusters globalClusters, Pattern set
gloablPatList
1 misMatchData = D;
2 globalPatList = 0; globalClusters = 0;
3 while mismatchData! = 0 do
4 SampleData = 0;

5 /* Sampling sequence vectors */
6 foreach seqVec € D do

7 if random(0,1) <= p then

8 ‘ SampleData.append(seqVec);

9 end

10 end

11 /* Hierarchical clustering */
12 localClusters = HAC(SampledData, 0);

13 localPatList = patternExtraction(clusters);

14 /* Matching and finding mismatched data */
15 newMismatchData = 0;

16 foreach seqVec € misMatchData do

17 foreach pat € localPatList do

18 ‘ distList.append(dist(seqVec, pat));

19 end

20 if min(distList) > 6 then

21 ‘ newMismatchData.append(seqVec);

22 end

23 end

24 misMatchData = newMismatchData;

25 globalPatList.extend(localPatList);
26 globalClusters.extend(localClusters);

27 end
28 Return globalClusters, globalPatList

3.34 Cascading. After going through the above three processes
(i.e., sampling, clustering, and matching), the majority of the data in
a time interval can be grouped into clusters, while some sequence
vectors may remain unmatched. Hence, we further process the
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Figure 4: Overview of Cascading Clustering Algorithm

unmatched data by repeating the abovementioned procedures. That
is, during each iteration, new clusters are grouped based on current
mismatched data, new patterns are extracted, and new mismatched
data are produced. In our experiments, we cascade these repetitions
until all the sequence vectors are successfully clustered.

3.3.5 Algorithm and Time Complexity Analysis. The pseudo code
of Cascading Clustering is detailed in Algorithm 1. The algorithm
takes sequence vectors in a time interval as input data, with sample
rate and clustering distance threshold as hyper-parameters. After
cascading clustering, the algorithm outputs all sequence vector
clusters and a set of patterns. To initialize, we assign all sequence
vectors D to the mismatched data. Besides, we define two global
variables (lines 1-2) to store the clusters and patterns. Then, the
sampled data is obtained with a sampling rate of p (lines 3-10). In
lines 12 and 13, we perform the hierarchical agglomerative cluster-
ing (HAC) on sampled data with threshold 6 and extract the cluster
patterns. In fact, other clustering methods (e.g., K-Means) are also
applicable here. During the matching process (line 16-23), we use
distList (line 17-19) to store the distances between a sequence vector
and every cluster pattern. The sequence vector is allocated to the
closest cluster if the distance is smaller than the threshold 6. The
remaining mismatched data is updated (lines 24) and processed in
the next cascading round.

We now analyze the time complexity of the proposed algorithm.
Note that only the core parts of the cascading clustering algorithm
are considered, i.e., distance calculation and matching, because they
consume most of the time. We set the data size to N, which is a large
number (e.g., larger than 10°). The sample rate p is usually a user-
defined small number (e.g., less than 1%). For standard hierarchical
agglomerative clustering, the distance calculation takes O(N?) time
complexity, and no matching is involved. For cascading clustering,
suppose that pN data instances are selected and clustered into kg
groups firstly, and further Nj instances are mismatched. Therefore,
the time complexity of the first round is Ty = p?N? + kN After ¢
iterations, the total number of clusters is K = Zle k;. Therefore,
the overall time complexity T(cc) is calculated as:

T(cc) = p*N? + kyN + p?N? + koNy + ... + p°N? + k; Ny
t t-1
= p2N2 + Zi:lpZNiz + klN + Zi:l k,’+1Ni
< p’N? + tp*N? + KN < (pN + pViN; + VKN)?
Since N is a large number and K is the total number of clusters,
we have K << N and VKN < N. Because the data follows the long
tail distribution and the "head" occupies most of the data (e.g., more

than 80%). After several iterations, most data can be successfully
clustered and matched. Recall that p < 1, we then have pVIN; < N
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and pN < N. Therefore, the inequality pN + pViN; + VKN < N
holds and the left-hand side is much smaller. Given that £(X) = X?
is a monotonic increasing function (X > 0), where f(X) decreases
with the decreasing of X. We then have (pN+pViN; +VKN)? <« N2
satisfied, which indicates that cascading clustering consumes much
less time than standard clustering in terms of distance calculation
and matching. In our experiments, we empirically evaluate the time
performance of cascading clustering, and the results support our
theoretical analysis.

3.4 Correlation Analysis

As described in Figure 3, log sequence vectors are grouped into
multiple clusters separately in each time interval. These clusters
only represent different types of log sequences (system behaviors)
but may not necessarily be problems. From the clusters, we identify
the impactful problems that lead to the degradation of KPI. Intu-
itively, KPI degrades more if impact problems occur more frequently.
Hence, we aim to identify those clusters that highly correlate with
KPT’s changes. To do so, we model the correlation between clus-
ter sizes and KPI values over multiple time intervals. Unlike the
importance weighting in Section 3.2 that discriminates the impor-
tance of different log events, this step attempts to identify impactful
problems from clusters of sequence vectors.

More specifically, we utilize a multivariate linear regression
(MLR) model (Equation 6), which correlates independent variables
(cluster sizes) with the dependent variable (KPI). Among all indepen-
dent variables, those have statistical significance make notable con-
tributions to the dependent variable. Moreover, the corresponding
clusters indicate impactful problems, whose occurrences contribute
to the change of KPI Statistical significance is widely utilized in
the identification of important variables [17, 34].
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In Equation 6, suppose there are n clusters generated during d
time intervals, c;; represents the cluster size (the number of se-
quence vectors) of the j-th cluster at time interval i. KPI; is the
system KPI value at time interval i. f; and ¢; are coefficients and
error terms that would be learned from data.

To find out which clusters are highly correlated with the KPI
values, we adopt the t-statistic, which is a widely used statistical
hypothesis test. In our MLR model, important clusters (indicating
impactful problems) make major contributions to the change of
KPIs, and their coefficients should not be zero. Therefore, we make
a null hypothesis for each independent variable that its coefficient
is zero. Then, a two-tailed t-test is applied to measure the significant
difference of each coefficient, i.e., the probability p that the null
hypothesis is true. A lower p-value is preferred since it represents a
higher probability of the null hypothesis being rejected. If p-value
is less than or equal to a given threshold « (significance level), the
corresponding cluster implies an impactful problem that affects the
KPLI. In this paper, we set a to 0.05, which is a common setting in
hypothesis test.
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4 EXPERIMENTS

In this section, we evaluate our approach using real-world data from
industry. We aim at answering the following research questions:

RQ1: How effective is the proposed Log3C approach in detecting
impactful problems?

RQ2: How effective is the proposed Log3C approach in identify-
ing different types of problems?

RQ3: How does cascading clustering perform under different
configurations?

4.1 Setup

Datasets: We collect the real-world data from an online service
system X of Microsoft. Service X is a large scale online service sys-
tem, which serves hundreds of millions of users globally on a 24/7
basis. Service X has been running over the years and has achieved
high service availability. The system is operating in multiple data
centers with a large number of machines, each of which produces a
vast quantity of logs every hour. Service X utilizes the load balanc-
ing strategies, and end user requests are accepted and dispatched
to different back-ends. There are many components at the appli-
cation level, and each component has its specific functionalities.
Most user requests involve multiple components on various servers.
Each component generates logs and all the logs are uploaded to a
distributed HDFS-like data storage automatically. Each machine
or component has a probability to fail, leading to various problem
types. We use failure rate as the KPI, which shows the percentage
of failed requests in a time interval.

Table 1: Summary of Service X Log Data

Data | Snapshot starts | #Log Seq (Size) | #Events | #Types
Datal | Sept5th 10:50 | 359,843 (722MB) 365 16
Data 2 Oct 5th 04:30 | 472,399 (996MB) 526 21
Data 3 | Nov 5th 18:50 184,751 (407MB) 409 14

Service X produces a large quantity of log data consisting of bil-
lions of log messages. However, it is unrealistic to evaluate Log3C
on all the data due to the lack of labels. The labeling difficulties
origin from two aspects: first, the log sequences are of huge size.
Second, various problem types can exist, and human labeling is
very time-consuming and error-prone. Therefore, we extract logs
that were generated during a specified period” on three different
days. In this way, three real-world datasets (i.e., Data 1, 2, 3) are
obtained, as shown in Table 1. Besides the log data, we also col-
lect the corresponding KPI values. During labeling, product team
engineers utilize their domain knowledge to identify the normal
log sequences. Then, they manually inspect the rest log sequences
from two aspects: 1) Does the log sequence indicate a problem? 2)
What is the problem type? Table 1 shows the number of problem
types identified in the evaluation datasets. Note that the manual
labels are only used for evaluating the effectiveness of Log3C in
our experiments. Log3C is an unsupervised method, which only
requires log and KPI data to identify problems.

Implementation and Environments: We use Python to im-
plement our approach for easy comparison, and run the experiments
on a Windows Server 2012 (Intel(R) Xeon(R) CPU E5-4657L v2 @
2.40GHz 2.40 with 1.00TB Memory).

2The actual period is anonymous due to data sensitivity.
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Table 2: Accuracy of Problem Detection on Service X Data

Data Data 1 Data 2 Data 3
Metrics Precision | Recall | Fl1-measure | Precision | Recall | F1-measure | Precision | Recall | F1-measure
PCA 0.465 0.946 0.623 0.142 0.834 0.242 0.207 0.922 0.338
Invariants Mining 0.604 1 0.753 0.160 0.847 0.269 0.168 0.704 0.271
Log3C 0.900 0.920 0.910 0.897 0.826 0.860 0.834 0.903 0.868

Evaluation Metrics: To measure the effectiveness of Log3C in
problem detection, we use the Precision, Recall, and F1-measure.
Given the labels from engineers, we calculate these metrics as
follows:

Precision: the percentage of log sequences that are correctly
identified as problems over all the log sequences that are identified
as problems: Precision = %.

Recall: the percentage of log sequences that are correctly iden-

tified as problems over all problematic log sequences: Recall =
TP

TP+FN"
F1-measure: the harmonic mean of precision and recall.

TP is the number of problematic log sequences that correctly
detected by Log3C, FP is the number of non-problematic log se-
quences that are wrongly identified as problems by Log3C. FN is
the number of problematic log sequences that are not detected by
Log3C, TN is the number of log sequences that are identified as
non-problematic by both engineers and Log3C.

To measure the effectiveness of clustering, we use the Normal-
ized Mutual Information (NMI), which is a widely used metric for
evaluating clustering quality [35]. The value of NMI ranges from 0
to 1. The closer to 1, the better the clustering results. To measure
the efficiency of cascading clustering, we record the total time (in
seconds) spent on clustering.

4.2 RQ1: Effectiveness of Log3C in Detecting
Impactful Problems

To answer RQ1, we apply Log3C to the three datasets collected from
Service X and evaluate the precision, recall, and F1-measure. The
results are shown in Table 2. Log3C achieves satisfactory accuracy,
with recall ranging from 0.826 to 0.92 and precision ranging from
0.834 to 0.9. The F1-measures on the three datasets are 0.91, 0.86,
and 0.868, respectively.

Furthermore, we compare our method with two typical meth-
ods: PCA [41] and Invariants Mining [23]. All these three methods
are unsupervised, log-based problem identification methods. PCA
projects the log sequence vectors into a subspace. If the projected
vector is far from the majority, it is considered as a problem. Invari-
ants Mining extracts the linear relations (invariants) between log
event occurrences, which hypothesizes that log events are often
pairwise generated. For example, when processing files, "File A
is opened" and "File A is closed" should be printed as a pair. Log
sequences that violate the invariants are regarded as problematic.

Log3C achieves good recalls (similar to those achieved by two
comparative methods) and surpasses the comparative methods
concerning precision and F1-measure. The absolute improvement
in F1-measure ranges from 15.7% to 61.8% on the three datasets.
The two comparative methods all achieve low precision (less than
0.61), while the precisions achieved by Log3C are greater than 0.83.
We also explore the reasons for the low precision of the competing
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methods. In principle, PCA and Invariants Mining aim at finding
the abnormal log sequences from the entire data. However, some
rare user/system behaviors can be wrongly identified as problems.
Thus, many false positives are generated, which result in high recall
and low precision. More details are described in Section 6.2.1.
Regarding the time usage of problem detection, on average, it
takes Log3C 223.93 seconds to produce the results for each dataset,
while PCA takes around 911.97 seconds and invariants mining
consumes 1830.78 seconds. The time performance of Log3C is satis-
factory considering the large amount of log sequence data.

4.3 RQ2: Effectiveness of Log3C in Identifying
Different Types of Problems

In Log3C, we propose a novel cascading clustering algorithm to
group the log sequences into clusters that represent different types
of problems. For the ease of evaluation, clusters that represent
normal system behaviors are considered as special "non-problem”
types. In this section, we use NMI to evaluate the effectiveness of
Log3C in identifying different types of problems. We also compare
the performance of cascading clustering (denoted as CC) with the
standard clustering method hierarchical agglomerative clustering
(denoted as SC). To compare fairly, we implement a variant of
Log3C that replaces CC with SC, denoted as Log3C-SC. All the
other settings (e.g., distance threshold, event weight) remain the

same.
Table 3: NMI of Clustering on Service X Data

Size 10k 50k 100k 200k

Data1 | Log3C-SC  0.659 0.706 0.781  0.822

Log3C 0.720 0.740 0.798 0.834

Size 10k 50k 100k 200k

Data 2 | Log3C-SC  0.610 0.549 0.600  0.650

Log3C 0.624 0.514 0.663 0.715

Size 10k 50k 100k 180k

Data 3 | Log3C-SC  0.601 0.404 0.792  0.828

Log3C 0.680 0.453 0.837 0.910

Table 3 presents the NMI results, in which data size refers to the
number of log sequences. We sample four subsets of each dataset
with size ranging from 10k to 200k (for Data 3, 180k is used instead
of 200k as its total size is around 180k). From the table, we can con-
clude that Log3C (with cascading clustering) is effective in grouping
numerous log sequences into different clusters and outperforms
Log3C-SC on all three datasets. Besides, with the increase of data
size, clustering accuracy increases. This is because more accurate
event weights can be obtained with more data during sequence
vectorization. For instance, when 200k data is used, the NMI values
achieved by Log3C range from 0.715 to 0.91 (180k for Data 3).

We also evaluate the time performance of cascading clustering.
Table 4 shows that our cascading clustering (CC) dramatically save
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Table 4: Time Performance (in Seconds) of Clustering

Size | 10k 50k 100k 200k
Datal | SC | 127.6 | 2319.2 | 9662.3 | 38415.5
CC 1.0 4.3 9.2 20.7
Size | 10k 50k 100k 200k
Data2 | SC 80.6 | 2469.1 | 8641.2 | 38614.0
CC 0.7 3.8 9.5 18.9
Size | 10k 50k 100k 180k
Data3 | SC 81.5 | 2417.2 | 8761.2 | 33728.3
CC 0.8 4.0 8.8 18.3

the time in contrast to the standard HAC clustering (SC), and the
comparison is more noticeable when the data size grows. For exam-
ple, our approach is around 1800x faster than standard clustering
on dataset 1 with a size of 200k.

4.4 RQ3: Cascading Clustering under Different
Configurations

In Section 3.3, we introduced two important hyper-parameters that
are used in cascading clustering: the sample rate p and the distance
threshold 6. In this section, we evaluate clustering accuracy and
time performance under different configurations of parameters.
We conduct the experiments on Data 1, but the results are also
applicable to other datasets.
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Figure 5: Cascading Clustering on Service X Data under Dif-
ferent Configurations

5% 10%

Distance threshold 0: We first fix the sample rate (1%) and vary
the distance threshold 6 for cascading clustering. The clustering
accuracy (NMI) is given in Table 5. When 6 is 0.30, the highest
NMI value (0.928) is achieved. However, we also observe that NMI
changes slightly when the threshold changes within a reasonable
range. The results show that our proposed cascading clustering
algorithm is insensitive to the distance threshold to some degree.

Sample rate p: It is straightforward that sample rate can affect
the time performance of cascading clustering because it takes more
time to do clustering on a larger dataset. To verify it, we change the
sample rate while fixing the distance threshold. Figure 5 depicts the
results. We conduct the experiments with different sample rates
under three distance thresholds (0.15, 0.25, and 0.3). The left sub-
figure shows that a higher sample rate generally causes more time
usage. However, when the sample rate is very small, e.g., 0.01%, a
little more time is required. This is because, in cascading clustering,
a small sample rate leads to more iterations of clustering, which
hampers the efficiency of cascading clustering. Besides, we also
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Table 5: NMIs of Cascading Clustering under Different Dis-
tance Thresholds 0

0 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

NMI | 0.848 | 0.867 | 0.912 | 0.916 | 0.928 | 0.898 | 0.898 | 0.887

evaluate the clustering accuracy under different sample rates. As
shown in the right sub-figure of Figure 5, clustering accuracy (NMI)
is relatively stable when the sample rate changes. It shows that the
NMI value floats slightly with a small standard deviation of 0.0071.
In summary, we can conclude that generally, a small sample rate
does not affect clustering accuracy and cost much less time. This
finding can guide the setting of the sample rate in practice.

5 DISCUSSIONS

5.1 Discussions of Results

5.1.1  Performance of Cascading Clustering with Different Numbers
of Clusters. In Section 4, we explored the efficiency and effective-
ness of cascading clustering on real-world datasets. In this section,
we evaluate our cascading clustering algorithm on some synthetic
datasets. More specifically, we generate some synthetic datasets
with different number of clusters.

To simulate a scenario that is similar to problem identification,
we synthesize several synthetic datasets consisting of multiple
clusters, where the cluster sizes follow the long tail distribution. In
more detail, 1) we firstly synthesize a dataset of multiple clusters,
and the data sample dimension is fixed at 200. The data samples
in each cluster follow the multivariate normal distribution [39]. 2)
Then, we use the pow law function (i.e., f(x) = ax_k) to determine
the size of each cluster with some Gaussian noises added, as noises
always exist in real data. In this way, we can generate multiple
datasets with different data sizes (from 20k to 600k) and various
numbers of clusters (from 20 to 200).
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Figure 6: Time Performance of Clustering Methods on Syn-
thetic Data with 50 Cluster (Left) and 200 Clusters (Right)

Figure 6 shows the time performance (in logarithmic scale for
easy plotting) of standard clustering and cascading clustering where
the number of clusters is 50 and 200. We also vary the synthetic data
size from 20k to 600k. It is clear that cascading clustering requires
much less time than standard clustering (hierarchical agglomerative
clustering), with different cluster numbers. For example, standard
clustering takes 11512.2 seconds (around 3.19 hours) on 200k data
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Table 6: NMIs of Standard Clustering (SC) and Cascading Clustering (CC) on Synthetic Data

Size 20k 50k 100k 200k 300k 600k
#Clusters  SC CC SC CC SC CC SC CcC SC cC SC ccC
20 0.958 0947 0.885 0.918 0.837 0.850 0.786 0.791 0.758 0.774 - 0.725
50 0.971 0961 0.937 0.960 0.906 0916 0.864 0.883 0.837 0.854 - 0.811
100 0.976 0995 0.956 0.979 0927 0.939 0.903 0911 0.889 0.892 - 0.859
200 0.988 0.990 0.973 0.973 0955 0953 0929 0.937 0914 0925 - 0.896

with 50 clusters, while cascading clustering (sample rate is 1%) only
takes 10.3 seconds on the same dataset. Our cascading clustering is
more than 1000x faster than standard clustering.

In Table 6, we measure the clustering accuracy (in terms of NMI)
under different data sizes and cluster numbers. We can conclude
from the table that, overall, cascading clustering leads to equal or
slightly better accuracy when compared with the standard cluster-
ing. The main reason is that our cascading clustering algorithm is
specially designed for long-tailed data. The small clusters can be
precisely clustered. Moreover, the evaluation results of standard
clustering on 600k data are not available due to the out-of-memory
(more than 1TB) computation. From Table 6, we can also observe
that clustering accuracy increases with the increase of cluster num-
ber and decreases when the data size increases.

5.1.2  Impact of Log Data Quality. The quality of log data is cru-
cial to log-based problem identification. For a large-scale service
system, logs are usually generated on local machines, which are
then collected and uploaded to a data center separately. During the
process, some logs may be missed or duplicated. For duplicated logs,
they do not affect the accuracy of Log3C as duplicates are removed
from log sequences as described in Section 3.2. To evaluate the im-
pact of missing log data, we randomly remove a certain percentage
(missing rate) of logs from Data 1 and then evaluate the accuracy
of Log3C. We use three different missing rates 0.1%, 0.5%, and 1%.
The resulting F1-measures are 0.877, 0.834, 0.600, respectively. It
can be concluded that a higher missing rate could lead to a lower
problem identification accuracy. Therefore, we suggest ensuring
the log data quality before applying Log3C in practice.

5.2 Threats to Validity

We have identified the following threats to validities:

Subject Systems: In our experiment, we only collect log data
from one online service system (Service X). This system is a typ-
ical, large-scale online system, from which sufficient data can be
collected. Furthermore, we have applied our approach to the main-
tenance of actual online service systems of Microsoft. In the future,
we will evaluate Log3C on more subject systems and report the
evaluation results.

Selection of KPI: In our experiments, we use failure rate as
the KPI for problem identification. failure rate is an important
KPI for evaluating system service availability. There are also other
KPIs such as mean time between failures, average request latency,
throughput, etc. In our future work, we will experiment with prob-
lem identification concerning different KPI metrics.

Noises in labeling: Our experiments are based on three datasets
that are collected as a period of logs on three different days. The
engineers manually inspected and labeled the log sequences. Noises

68

(false positives/negatives) may be introduced during the manual
labeling process. However, as the engineers are experienced profes-
sionals of the product team who maintain the service system, we
believe the amount of noise is small (if it exists).

6 SUCCESS STORY AND LESSONS LEARNED

6.1 Success Story

Log3C is successfully applied to Microsoft’s Service X system for
log analysis. Service X provides online services to hundreds of mil-
lions of global end users on 7 * 24 basis. For online service systems
like Service X, inspecting logs is the only feasible way for fault
diagnosis. In Service X, more than one Terabyte of logs (around
billions) are generated in a few hours, and it is a great challenge to
process the great volume of logs. A distributed version of Log3C is
developed and employed in Service X. Billions of logs can be han-
dled within hours using our method, which helps the service team
in identifying different log sequence types and detecting system
problems. For example, in April 2015, a severe problem occurred
to one component of Service X on some servers. The problem was
caused by an incompatibility issue between a patch and a previ-
ous product version during a system upgrade. The service team
received lots of user complains regarding this problem. Our Log3C
successfully detected the problem and reported it to the service
team. The service team also utilized Log3C to investigate the logs
and precisely identified the type of the problem. With the help of
Log3C, the team quickly resolved this critical issue and redeployed
the system.

Log3C is also integrated into Microsoft’s Product B, an integrated
environment for analyzing the root causes of service issues. Tens of
billions of logs are collected and processed by Product B every day,
in which Log3C is the log analysis engine. Using Log3C, Product
B divides the log sequences into different clusters and identifies
many service problems automatically. Log3C greatly reduces engi-
neers’ efforts on manually inspecting the logs and pinpointing root
causes of failures. Furthermore, fault patterns are also extracted
and maintained for analyzing similar problems in the future.

6.2 Lessons Learned

6.2.1 Problems != Outliers. Recent research [23, 41] proposed many
approaches to detect system anomalies using data mining and ma-
chine learning techniques. These approaches work well for rela-
tively small systems. Their ideas are mainly based on the following
hypothesis: systems are regular most of the time and problems are
"outliers". Many current approaches try to detect the "outliers" from
a huge volume of log data. For example, PCA [41] attempts to map
all data to a normal subspace, and those cannot be projected to the
normal space are considered as anomalies.
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However, the outliers are not always real problems. Some outliers
are caused by certain infrequent user behaviors, e.g., rarely-used
system features. Our experiences with the production system reveal
that there are indeed many rare user behaviors, which are not
real problems. A lot of effort could be wasted by examining these
false positives. In our work, we utilize system KPI to guide the
identification of real system problems.

6.2.2 The Trend of Problem Reports Is Important. In production,
engineers not only care about the occurrence of a problem but
also about the number of problem reports (i.e., the instances of
problems) over time (which reflects the number of users that are
affected by the problem over time). Through our communication
with a principal architect of a widely-used service in Microsoft, we
conclude three types of important trends: 1) Increasing. When the
size of one certain problem continuously increases for a period, the
production team should be notified. This is because the number
of problem reports may accumulate and cause even serious conse-
quences. 2) The appearance of new problems: when a previously
unknown problem appears, it is often a sign of new bugs, which
may be introduced by software updates or a newly launched prod-
uct feature. 3) The disappearance of problems: The disappearing
trend is very interesting. In production, after fixing a problem, the
scale of the problem is expected to decrease. However, sometimes
the disappearing trend may stop at a certain point (the service team
continues to receive reports for the same problem), which often
indicates an incomplete bug-fix or a partial solution. More debug-
ging and diagnosis work are needed to identify the root cause of
the problem and propose a complete bug-fixing solution.

7 RELATED WORK
7.1 Log-based Problem Identification

Logs have been widely used for the maintenance and diagnosis of
various software systems with the abundant information they pro-
vide. Log-based problem identification has become a very popular
area [13, 26, 28, 43] in recent years. Typically, based on informa-
tion extracted from logs, these work employ machine learning and
data mining techniques to analyze logs for anomaly detection and
problem diagnosis [22, 23, 27, 41].

The target of anomaly detection is to find system’s abnormal
behaviors and give feedback to engineers for further diagnosis. Lou
et al. [23] mined the invariants (linear relationships) among log
events to detect anomalies. Liang et al. [20] trained a SVM classifier
to detect failures. However, anomaly detection can only determine
whether a log sequence is abnormal or not; it cannot determine
if there is a real problem. Our Log3C can not only detect system
problems but also cluster them into various types.

Problem identification aims at categorizing different types of
problems by grouping similar log sequences together. Lin et al.
[21] proposed a clustering-based approach for problem identifica-
tion. Based on testing environment logs, a knowledge base is built
firstly and updated in production environment. However, it requires
manual examination when new problems appear. Yuan et al. [43]
employed a classification method to categorize system traces by
calculating the similarity with traces of existing and known prob-
lems. Beschastnikh et al. [5] inferred system behaviors by utilizing
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logs, which can support anomaly detection and bug finding. Ding
et al. [10, 11] correlated logs with system problems and mitigation
solutions when similar logs appear. Shang et al. [32] identified prob-
lems by grouping the same log sequences after removing repetition
and permutations. However, they ignored different importance of
log events and the similarity between two log sequences. In our
work, we use cascading clustering to quickly and precisely cluster
log sequences into different groups, and correlate clusters with the
KPIs to identify problems. Our approach does not require manual
examination, nor a knowledge base of known problems.

7.2 Log Parsing and Logging Practice

Logs cannot be utilized towards automatic analysis before being
parsed into log events. Many log parser (e.g. LogSig [36], SLCT
[37], IPLoM [24]) have been proposed in recent years, and the pars-
ing accuracy can significantly affect the downstream log analysis
tasks [16]. Xu et al. [41] extracted log events from console logs
using the source code. Fu et al. [13] parsed logs by clustering with
weighted edit distance. Makanju et al. [24] proposed a lightweight
log parsing method by iteratively partitioning logs into subgroups
and extracting log event.

Recently, there are also research on logging practice [4, 6, 14,
29, 32, 44, 45]. For example, Fu et al. [14], Yuan et al. [44], and
Shang et al. [33] provide suggestions to developers by exploring
the logging practice on some open-source systems and industry
products. Zhu et al. [45] proposed a method to guide developers on
whether to write logging statements. Kabinnal et al. [19] examined
the stability of logging statements and suggested to developers the
unstable ones. The above research improves the quality of logs,
which could in turn help with log-based problem identification.

8 CONCLUSION

Large-scale online service systems generate a huge number of logs,
which can be used for troubleshooting purpose. In this paper, we
propose Log3C, a novel framework for automated problem identifi-
cation via log analysis. At the heart of Log3C is cascading clustering,
anovel clustering algorithm for clustering a large number of highly
imbalanced log sequences. The clustered log sequences are corre-
lated with system KPI through a regression model, from which the
clusters that represent impactful problems are identified. We eval-
uate Log3C using the real-world log data. Besides, we also apply
our approach to the maintenance of actual online service systems.
The results confirm the effectiveness and efficiency of Log3C in
practice.

In the future, we will apply Log3C to a variety of software sys-
tems to further evaluate its effectiveness and efficiency. Also, the
proposed Cascading Clustering algorithm is a general algorithm,
which can be applied to a wide range of problems as well.
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