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Abstract

Deep neural networks (DNNs) are known to be vulner-
able to adversarial examples. It is thus imperative to de-
vise effective attack algorithms to identify the deficiencies of
DNNs beforehand in security-sensitive applications. To effi-
ciently tackle the black-box setting where the target model’s
particulars are unknown, feature-level transfer-based at-
tacks propose to contaminate the intermediate feature out-
puts of local models, and then directly employ the crafted
adversarial samples to attack the target model. Due to the
transferability of features, feature-level attacks have shown
promise in synthesizing more transferable adversarial sam-
ples. However, existing feature-level attacks generally em-
ploy inaccurate neuron importance estimations, which de-
teriorates their transferability. To overcome such pitfalls,
in this paper, we propose the Neuron Attribution-based At-
tack (NAA), which conducts feature-level attacks with more
accurate neuron importance estimations. Specifically, we
first completely attribute a model’s output to each neuron
in a middle layer. We then derive an approximation scheme
of neuron attribution to tremendously reduce the computa-
tion overhead. Finally, we weight neurons based on their
attribution results and launch feature-level attacks. Exten-
sive experiments confirm the superiority of our approach to
the state-of-the-art benchmarks. Our code is available at:
https://github.com/jpzhang1810/NAA .

1. Introduction
Deep neural networks (DNNs) have been deployed in

many safety-critical real-world applications, such as au-
tonomous driving and medical diagnosis. However, recent
research shows that DNNs are vulnerable to adversarial at-
tacks [30], which add human-imperceptible perturbations to
clean images to mislead DNNs. It is thus imperative to de-
vise effective attack algorithms to identify the deficiencies
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Figure 1. Visualization of model attentions on both the benign
image and adversarial image generated by our method. The atten-
tions of both the source model and target model change dramati-
cally on the adversarial image compared with the benign image.

of DNNs beforehand, which serves as the first step to im-
prove their robustness.

There are generally two categories of adversarial at-
tacks: white-box and black-box attacks. Attackers under the
white-box setting can fetch the structures and parameters of
the target models to craft adversarial examples. In contrast,
under the black-box setting, attackers have no access to the
model structure and parameters. In real-world applications,
the DNN models are generally deployed in the black-box
situation. Therefore, we focus on black-box attacks in this
work.

Black-box attacks can be roughly divided into query-
based and transfer-based schemes. Query-based methods
approximate the gradient information by queries [1, 14, 32]
to generate adversarial examples. However, query-based
methods are impractical since large quantities of queries
are not allowed in reality. As a result, researchers turn to
efficient transfer-bases attacks [6, 7, 9, 19, 38], which em-
ploy white-box attacks to attack a local surrogate model,
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and then directly transfer the resultant adversarial samples
to the target model. Instead of directly manipulating the
local model’s final output, feature-level transfer-based at-
tacks propose to destroy the intermediate feature maps of
local models. Since the most critical features are shared
among different DNN models [8,22], feature-level transfer-
based attacks have shown promise in relieving the over-
fitting issue and synthesizing more transferable adversarial
samples [33].

However, existing feature-level transfer-based attacks
still have limited transferability due to the reliance on inap-
propriate neuron importance measures. NRDM [22] views
all neurons as important neurons and tries to maximize the
distortion of neuron activation after attacks. However, in a
middle layer, there are positive and negative features that
promote and suppress the correct prediction of models, re-
spectively. As a result, maximizing the feature distortion
destroys positive and negative features at the same time,
while the negative features should be enhanced for gener-
ating adversarial samples. FDA [8] differentiates the polar-
ity of neuron importance by mean activation values. Un-
fortunately, it still attaches the same importance to all neu-
rons except for their signs. FIA [33] measures the neuron
importance by the multiplication of neuron activation and
back-propagated gradients. However, the back-propagated
gradient on the original input suffers from the problem of
saturation [5].

To address the drawbacks of existing feature-level
transfer-based attacks, in this paper, we propose Neuron
Attribution-based Attack (NAA), which conducts feature-
level attacks based on more accurate neuron importance
measures. Specifically, inspired by the neuron attribu-
tion method [5], we first attempt to completely attribute a
model’s output to each neuron. It ensures that our neuron
attribution results possess a good property of completeness
that the sum of all the neuron attribution results equals to
the output value. Consequently, the attribution results can
accurately reflect the attribution of each neuron to the out-
put, taking into consideration both the polarity and mag-
nitude of neuron importance. From Figure 1, our attack
method finds the important features on the mouse instead
of the lake, which means our method can accurately find
more important features that can craft more transferable ad-
versarial examples. However, directly utilizing neuron attri-
bution method is intractable due to extensive computation
consumption. We then devise an approximation approach
to conduct neuron attribution to tremendously reduce the
computation cost. Finally, we weight each neuron accord-
ing to their attribution results, and endeavor to minimize the
weighted feature output. Comprehensive experiments con-
firm the superiority of our method. Our contributions are:

• We deploy neuron attribution method to better mea-
sure neuron importance when launching feature-level

attacks. We further devise an approximation for neu-
ron attribution, which largely reduces the time con-
sumption and promotes the attack efficiency.

• Based on the proposed neuron importance mea-
sure, we devise a novel feature-level attack, Neu-
ron Attribution-based Attack (NAA), to overcome the
drawbacks of existing feature-level attacks and im-
prove the transferability of adversarial examples.

• Comprehensive experiments validate the effectiveness
and efficiency of our method. We can achieve state-of-
the-art performance on attacking both undefended and
defended models.

2. Related Work
2.1. Adversarial Attacks

Adversarial attacks generally have two categories:
white-box attack and black-box attack. Attackers can ac-
cess the information of victim models like model structure
and parameters under the white-box setting, while the at-
tackers fail to fetch the information of the victim models
in the black-box setting. Many methods adopt the gradient
information of the victim model to launch adversarial at-
tacks under the white-box setting, like Fast Gradient Sign
Method (FGSM) [10], Iterative Fast Gradient Sign Method
(I-FGSM) [17], Project Gradient Descent (PGD) [21], and
Carlini and Wagner Attack (C&W) [3]. However, white box
attacks are unrealistic in real applications because the model
structure and parameters are hidden from the users.

Therefore, black-box adversarial attacks are of more sig-
nificance. In this paper, we mainly focus on the transfer-
based adversarial attack. Transferability is a phenomenon
in which adversarial examples crafted by the source model
have the ability to mislead other models. Therefore, we uti-
lize the transferability of adversarial examples to launch the
black-box adversarial attack. Many works are proposed to
improve the transferability of adversarial examples by ad-
vanced gradient, like Momentum Iterative Method (MIM)
[6] and Nesterov Iterative Method (NIM) [19]. In addi-
tion to the modification of the gradient, input transformation
methods adopt the image transformation methods on the
input image to generate more transferable adversarial ex-
amples, like Diverse Input Method (DIM) [38], Patch-wise
Iterative Method (PIM) [9], Translation Invariant Method
(TIM) [7], and Scale Invariant Method (SIM). Input trans-
formation methods can be composed with any other adver-
sarial attack methods to further improve the transferability
of adversarial examples.

In addition to crafting adversarial examples on the out-
put layer, some works pay attention to the internal layers.
Transferable Adversarial Perturbations (TAP) [39] observes
that maximizing the distance between the adversarial ex-
ample and benign image on the feature map enhances the
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transferability of adversarial examples. NRDM [22] fol-
lows the same idea and generates high-strength adversar-
ial examples that are transferable across different network
architectures and different vision tasks (image segmenta-
tion, classification and object detection). Intermediate Level
Attack (ILA) [13] fine-tunes existing adversarial examples
by increasing the perturbation on a target layer from the
source model to further enhance the transferability. Fea-
ture Disruptive Attack (FDA) [8] introduces a new attack
method motivated by corrupting features at the target layer.
Although FDA differentiates the polarity of neuron impor-
tance by mean activation values, previous methods treat all
neurons as important neurons. Feature Importance-aware
Attack (FIA) [33] measures the neuron importance by the
multiplication of activation and the back-propagated on the
target layer. However, the back-propagated gradient on the
original input suffers from the problem of saturation [5],
which fail to measure the real importance. Though pre-
vious methods generate transferable adversarial examples,
their inappropriate measurement can not represent the real
effect of each neuron to the output. Our approach utilizes
neuron attribution as the measurement to reflect the real in-
fluence on the output. We thus deploy the neuron attribution
to craft adversarial examples. We suppress the weighted
sum of neuron attributions to destroy the positive features
and promote the negative features at the same time. Uti-
lizing the neuron attribution paves an explainable and more
transferable way to do feature-level adversarial attacks.

2.2. Adversarial Defenses

Adversarial defenses are of great importance to allevi-
ate the threats of adversarial attacks. Adversarial defenses
generally have two categories: adversarial training and de-
noising. Adversarial training is a simple but effective way
to defend the adversarial attacks [17,31] because DNNs are
data-driven. Consequently, retraining the models by adding
the adversarial examples into the training data improves the
model robustness dramatically [10]. Additionally, ensemble
adversarial training injects the adversarial examples trans-
ferred from several models to defend transfer-based attacks
[17]. While, denoising filters out the adversarial perturba-
tions by pre-processing mechanisms before feeding the data
into the models. The models can correctly classify the rec-
tified input images without the loss of performance. The
state-of-the-art defense methods include utilizing a high-
level representation guided denoiser [18], random resiz-
ing and padding [37], JPEG based defensive compression
framework [20], compression module [15], and randomized
smoothing [4]. In this paper, we exploit these state-of-the-
art defenses to validate the superior of our attack against
advanced defended models.

3. Approach
Feature-level attacks follow the observation that the

DNN models share similar features in their receptive fields
[35] and craft adversarial examples by destroying the posi-
tive features or enlarging the negative features. Therefore,
the adversarial examples generated by feature-level attacks
inherit the highly transferable features which can mislead
other DNN models. The key point to craft feature-level at-
tacks is to find a proper way of measuring the importance
of each neuron for representing feature patterns. In this sec-
tion, we introduce a measurement of neuron importance,
namely neuron attribution. Then we propose an approxi-
mation for neuron attribution which reduces the computa-
tion cost greatly. Finally, we propose our approach, Neuron
Attribution-based Attack via the estimation of neuron im-
portance.

We denote the benign image to be x and its correspond-
ing true label as z. Then we assume a classification model
F (·) where F (x) represents the output with the input im-
age x. Furthermore, y denotes the activation values of the
y-th layer while yj denotes the activation value of the j-th
neuron on this feature map. We aim to craft the adversar-
ial example xadv by injecting imperceptible perturbation on
the input image to mislead the model while satisfying the
constraints

∥∥x− xadv
∥∥
p
< ϵ. The ∥·∥p represents the p-

norm distance and we follow the previous works [6, 33] to
focus on the L∞-norm distance in this paper.

Inspired by [27] and [5], we define the attribution of in-
put image x (with N ×N pixels) with respect to a baseline
image x′ as

A :=

N2∑
i=1

(xi − x′
i)

∫ 1

0

∂F

∂xi
(x′ + α(x− x′)) dα, (1)

where ∂F
∂xi

(·) denotes the partial derivative of F to the i-th
pixel. Equation 1 is a path integration of the gradient of F
along the straight line given by (x′ + α(x− x′)). Applying
the fundamental theorem of calculus for path integrals, we
can show that A ≈ F (x) as long as F (x′) ≈ 0. In practice,
a black image (i.e., x′ = 0) serves well as this baseline.

Then we can attribute the attribution A to each neuron in
a certain layer y. With denoting x′ + α(x − x′) = xα, the
attribution of the neuron yj is

Ayj
=

N2∑
i=1

(xi − x′
i)

∫ 1

0

∂F

∂yj
(y(xα))

∂yj
∂xi

(xα) dα.

Note that
∑

yj∈y Ayj
= A always holds no matter which

layer we choose. Therefore, neuron attribution reflects the
real influence of each neuron to the output. To compute the
integral in practice, we sample n virtual images along the
straight line and use the Riemann sum to approximate the
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Algorithm 1 Neuron Attribution-based Attack

Require: classifier F , and target layer y
Require: positive and negative transformation function

fp(·) and fn(·), and hyperparameter γ
Require: benign input x with label z
Require: perturbation budget ϵ and iteration number T
Require: baseline image x′ and integrated step n
α = ϵ

T , xadv
0 = x, IA = 0, g0 = 0, µ = 1

for m = 1← n do
IA = IA+∇y(x′+m

n (x−x′))F (x′ + m
n (x− x′))

end for
IA = IA/n
for t = 0← T − 1 do

Ay = (y − y′) · IA
WAy =

∑
Ayj

≥0
yj∈y

fp(Ayj )− γ ·
∑

Ayj
<0

yj∈y

fn(−Ayj )

gt+1 = µ · gt + ∇xWAy

∥∇xWAy∥1

xadv
t+1 = Clipϵx{xadv

t+1 − α · sgn(gt+1)}
end for

integral. And after changing the order of the summation,
we have

Ayj
≈ 1

n

n∑
m=1

(
∂F

∂yj
(y(xm))

)( N2∑
i=1

(xi − x′
i)
∂yj
∂xi

(xm)

)
,

(2)

where xm = x′ + m
n (x− x′) are the virtual images.

As shown in Equation 2, we have to compute the gra-
dient ∂yj

∂xi
for each neuron. Consequently, the computa-

tion cost is extremely high considering the number of neu-
rons in the DNNs. To reduce the computation time, we
make a simple assumption to simplify Equation 2. To be-
gin with, ∂F

∂yj
(y(xm)) is the gradient of F (x) to the neu-

ron yj , related to the latter layers after y. Meanwhile,∑N2

i=1(xi − x′
i)

∂yj

∂xi
(xm) is the sum of the gradient of yj

to each pixel xi, related to the former layers of the network.
Given the fact that the former part and latter part are inde-
pendent in most traditional DNN models, we assume that
the two parts are linearly independent, i.e., the two gradient
sequences should have zero covariance.

Note that given two sequences ai and bi with zero co-
variance, we have

∑n
1 (ai − āi)(bi − b̄i) = 0, where (̄·)

is the mean of the sequence. After the expansion, we have∑n
1 ai · bi =

1
n

∑n
1 ai ·

∑n
1 bi. Regarding the components

in the two big brackets in Equation 2 as a and b respectively,
we have

Ayj
≈ 1

n

n∑
m=1

∂F

∂yj
(y(xm))

1

n

n∑
m=1

N2∑
i=1

(xi − x′
i)
∂yj
∂xi

(xm).

By applying the fundamental theorem of calculus for path
integrals, we have 1

n

∑n
m=1

∑N2

i=1(xi − x′
i)

∂yj

∂xi
(xm) =

(yj − y′j) where y′j is the activation value of the neuron
when the input is a black image. With denoting yj − y′j
as ∆yj and 1

n

∑n
m=1

∂F
∂yj

(y(xm)) as Integrated Attention
IA(yj), we have a simpler form of Ayj

≈ ∆yj · IA(yj).
The name of IA(yj) reflects the integration of the gradient
along the straight line from the baseline image to the input
with attention to the neuron yj .

All in all, we approximate the attribution of each neuron
on the feature map by the multiplication of relative acti-
vation ∆yj and Integrated Attention on the neuron IA(yj).
The computation complexity of neuron attribution isO(H ∗
W ∗ C), where H is the height of the target layer, W is
the width of the target layer, and C is the channel number
of the target layer. While our computation complexity is
O(1). Note that we only need one gradient operation in
each integration step. Conversely, we have to take about
nearly one million gradient operations in each step if we
do not simplify the Equation 2. Hence, our approximation
saves the computation time to a significant extent. Now, we
demonstrate our proposed Neuron Attribution-based Attack
(NAA). Since minimizing the total neuron attributions to
the output can reduce the positive attributions and enlarges
the negative attributions at the same time, we consider the
attribution of all neurons in a same layer y calculated by

Ay =
∑
yj∈y

Ayj
=

∑
yj∈y

∆yj · IA(yj) = (y − y′) · IA(y).

In consequence, useful features are suppressed and harmful
features are amplified. To analyze the influence of the two
kinds of features and figure out which one dominates the
transferability of adversarial examples, we utilize a hyper-
parameter γ to balance between the positive and negative
attributions. Furthermore, we aim to distinguish the signifi-
cant degree of neuron attributions with different values. For
example, we investigate whether decreasing a large positive
attribution neuron may benefit the attack more compared
to increasing a small negative attribution neuron. To this
end, we design multiple linear or non-linear transformation
functions, namely fp(Ayj ) for positive neuron attribution
and−fn(−Ayj ) for negative neuron attribution. Therefore,
the Weighted Attribution WAy of all neurons on the target
layer y can be computed with

WAy =
∑

Ayj
≥0

yj∈y

fp(Ayj
)− γ ·

∑
Ayj

<0
yj∈y

fn(−Ayj
).

Minimizing WAy is better than minimizing Ay directly in
practice since WAy takes the neuron attribution polarity
and value magnitude into consideration. Hence, the goal of
our proposed NAA is formulated into solving the following
constrained minimization problem:

min
xadv

WAy s.t.
∥∥x− xadv

∥∥
∞ < ϵ.
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2
Inc-v3

adv
IncRes-v2

adv
Inc-v3
ens3

Inc-v3
ens4

IncRes-v2
ens3

Inc-v3

MIM 100.0 41.1 39.9 32.7 22.9 19.3 16.0 16.5 8.1
NRDM 90.9 61.3 53.9 50.8 26.6 18.7 9.8 10.3 5.1

FDA 81.3 42.9 36.0 35.4 19.3 12.2 8.9 6.4 2.3
FIA 98.3 83.2 79.1 71.6 53.3 50.8 36.1 37.0 20.0

NAA 98.1 85.0 82.4 77.1 61.5 62.7 50.5 50.8 31.5

Inc-v4

MIM 58.2 99.7 45.5 38.6 23.8 21.2 18.7 18.5 8.9
NRDM 78.2 97.4 61.9 61.9 26.1 26.0 17.7 15.7 5.6

FDA 84.8 99.6 71.9 68.7 27.9 25.9 18.4 17.2 7.3
FIA 84.1 95.7 78.6 72.0 45.3 47.3 38.0 37.2 19.4

NAA 86.0 96.5 81.0 75.5 52.4 56.0 50.5 49.4 30.8

IncRes-v2

MIM 59.5 51.0 99.2 42.3 25.3 30.9 21.8 23.7 12.7
NRDM 71.0 66.8 77.3 57.8 34.3 29.6 16.2 23.8 19.4

FDA 69.3 67.7 78.3 56.3 36.4 29.8 16.2 22.3 17.9
FIA 81.6 77.1 88.7 71.0 63.8 65.0 49.8 46.6 34.1

NAA 82.4 78.0 93.0 74.4 64.9 67.1 60.0 56.7 47.5

Res-v2

MIM 54.1 47.5 45.3 99.4 26.4 25.1 24.2 25.3 12.4
NRDM 73.6 70.9 58.8 90.4 39.5 30.3 23.7 19.9 9.5

FDA 83.9 84.1 73.9 89.1 51.2 42.9 27.9 23.6 11.5
FIA 83.0 81.6 78.4 98.9 58.2 58.2 49.1 44.9 29.3

NAA 85.9 85.0 83.6 98.2 66.1 69.8 61.6 59.2 46.7
Table 1. The attack success rates (%) on four undefended models and five adversarially trained models by various momentum optimization
based attacks. The adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-v2, respectively. The best result is in bold.

We deploy MIM [6] to solve this constrained minimization
problem. The whole process of running NAA algorithm is
shown in Algorithm 1.

4. Experiments
In this section, we launch extensive experiments to eval-

uate the effectiveness of our proposed methods. We first
clarify the setup of the experiments. After that, we illus-
trate the attacking results of our methods against compet-
itive baseline methods under various experimental settings
and state the attack effectiveness on advanced defense mod-
els. The experiment results demonstrate the effectiveness of
our methods that further improve the transferability of ad-
versarial examples compared with baseline methods. Fur-
thermore, we analyze the positive and negative attribution
transformation functions as well as the hyperparameter γ to
understand the significance of neuron attributions with dif-
ferent polarities and values. Finally, we present the ablation
study on the target feature map layers and the hyperparam-
eter n in the Integrated Attention equation.

4.1. Experiment Setup

We follow the protocol of the baseline method [33] to
set up the experiments for a fair comparison to attack image
classification models trained on ImageNet [23]. ImageNet
is also the most widely utilized benchmark task for transfer-
based adversarial attacks [2, 16, 36]. Here are the details of

the experiment setup.

Dataset. We follow the dataset of the baseline method
[33] by randomly sampling 1000 images of different cat-
egories from the ILSVRC 2012 validation set [23]. We
check that all of the attacking models are almost approach-
ing 100% classification success rate in this paper.

Models. We choose four representative models contain-
ing Inception-v3 (Inc-v3) [29], Inception-v4 (Inc-v4) [28],
Inception-Resnet-v2 (IncRes-v2) [28] and Resnet-v2-152
(Res-v2) [11,12] as the source model to craft adversarial ex-
amples. We consider undefended (normally trained) mod-
els and defended (adversarial training and advanced defense
technique) models as the target models. For undefended
models, we use the four source models as the target mod-
els. For defended models, we consider adversarial training
and advanced defense models because adversarial training
is a simple but effective technique [21] and advanced de-
fense models are robust against black-box adversarial at-
tacks. We select five adversarially trained models: adver-
sarially trained Inception-v3 (Inc-v3adv), ensemble of three
adversarially trained Inception-v3 models (Inc-v3ens3), en-
semble of four adversarially trained Inception-v3 mod-
els (Inc-v3ens4), adversarially trained Inception-Resnet-v2
(IncRes-v2adv) and ensemble of three adversarially trained
Inception-Resnet-v2 models (IncRes-v2ens3). We also select
seven advanced defense methods covering random resizing
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2
Inc-v3

adv
IncRes-v2

adv
Inc-v3
ens3

Inc-v3
ens4

IncRes-v2
ens3

Inc-v3

MIM-PD 99.8 70.0 67.6 53.6 31.0 28.0 21.3 22.0 9.3
NRDM-PD 87.3 66.7 62.8 59.5 29.7 22.9 12.2 18.6 13.6

FDA-PD 76.0 50.4 46.5 39.2 23.0 16.0 10.8 12.1 8.0
FIA-PD 98.7 87.2 86.1 80.1 59.8 57.1 38.5 37.3 21.5

NAA-PD 98.8 89.4 88.4 83.6 67.9 68.6 55.4 55.6 33.8

Inc-v4

MIM-PD 81.4 99.3 72.0 59.4 30.6 28.8 23.9 24.5 12.5
NRDM-PD 88.8 97.0 80.2 78.4 34.2 35.0 21.3 19.2 8.6

FDA-PD 91.4 99.2 87.1 82.2 36.6 38.0 21.9 20.9 9.1
FIA-PD 90.6 97.1 88.8 84.9 55.3 60.7 45.5 42.1 23.5

NAA-PD 91.5 97.7 89.7 86.5 61.3 87.9 55.4 53.6 34.4

IncRes-v2

MIM-PD 80.6 76.5 98.1 64.0 36.7 41.7 28.8 26.7 16.3
NRDM-PD 76.5 75.4 79.6 66.3 40.8 32.3 18.6 30.6 26.0

FDA-PD 78.6 76.0 80.3 66.3 41.2 35.6 17.4 29.9 25.3
FIA-PD 85.1 79.9 90.9 76.5 66.9 66.7 49.7 44.9 31.9

NAA-PD 85.5 82.5 93.9 79.3 69.4 71.3 61.9 59.0 48.3

Res-v2

MIM-PD 81.8 76.7 75.7 99.4 42.0 44.5 36.3 34.3 18.1
NRDM-PD 60.6 55.9 50.0 87.2 26.2 18.2 13.8 14.5 5.9

FDA-PD 64.7 60.1 56.5 92.1 28.7 21.5 13.6 15.5 7.1
FIA-PD 90.0 88.4 87.9 98.7 71.0 69.7 58.3 53.9 34.6

NAA-PD 92.0 90.7 90.3 98.7 76.0 78.9 72.4 68.0 52.8
Table 2. The attack success rates (%) on four undefended models and five adversarially trained models by various momentum optimization
based attacks with input transformations (PIM and DIM). The adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-v2,
respectively. The best result is in bold.

and padding (R&P) [37], NIPS-r31, feature distillation (FD)
[20], compression defense (ComDefend) [15], and random-
ized smoothing (RS) [4], PGD-based adversarial training
(PGD) [24], and Fast adversarial training (Fast) [34].

Baseline Methods. We choose the advanced gradient-
based iterative adversarial attacks: MIM [6] as our baseline,
which we also utilize as an optimization method. Addition-
ally, we select three feature-level adversarial attack meth-
ods: NRDM [22], FDA [8] and FIA [33] as our compet-
itive baselines, where FIA is state-of-the-art. NRDM di-
rectly increases the difference between the original exam-
ple and adversarial example on the target feature map. FDA
utilizes mean activation to split the feature map into posi-
tive and negative activation then they suppress the positive
activation and enhance the negative activation. FIA com-
putes the average gradient of the input with random drop
transformation [26] as the attention and reduces the multi-
plication of the attention and activation on the target layer.
We compare our approach with them in various settings to
validate the effectiveness of our method. In addition, we in-
tegrate all the methods with two well-known input transfor-
mation methods: DIM [38] and PIM [9] to further validate
the superiority of our method. We denote our method com-
bined with input transformation methods as NAA-PD. The
basic baseline method MIM combined with input transfor-

1https://github.com/anlthms/nips-2017/tree/master/mmd

mation methods as MIM-PD. Furthermore, we denote other
feature-level adversarial attacks combined with input trans-
formation methods as NRDM-PD, FDA-PD, and FIA-PD.

Evaluation. The attack success rate is the ratio of
the adversarial examples that successfully mislead the tar-
get model among all the generated adversarial examples.
Therefore, we utilize the attack success rate on the target
model by the crafted adversarial examples to evaluate the
attacking performance.

Parameter. For a fair comparison, we follow the pa-
rameter setting in [33] to set the maximum perturbation of
ϵ = 16 and the number of iteration T = 10, so the step
length α = ϵ

T = 1.6. Furthermore, We set the decay factor
µ = 1.0 for all the baselines because all the baselines uti-
lize the momentum method as the optimizer. For the input
transformation methods, we set transformation probability
to be 0.7 for DIM. we take the amplification factor to be
2.5 and kernel size to be 3 for PIM. For our own method,
we follow [25] to implement the Integrated Attention and
we choose the middle layer to be the target layer. Specifi-
cally, we select to attack Mixed 5b for Inception-v3 (Inc-
v3), Mixed 5e for Inception-v4 (Inc-v4), Conv2d 4a 3x3
for Inception-Resnet-v2 (IncRes-v2) and the last layer of
block2 for Resnet-v2-152 (Res-v2). To compare with the
state-of-the-art baselines, we treat neuron attributions with
different polarities and values equally. Therefore, we let
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Attack R&P NIPS-r3 FD ComDefend RS PGD Fast Average
MIM-PD 22.4 28.8 62.5 59.5 31.4 42.6 33.6 40.1

NRDM-PD 16.9 23.9 43.2 43.8 28.0 41.8 34.0 33.1
FDA-PD 16.3 23.1 37.0 37.7 27.8 41.5 30.5 30.6
FIA-PD 36.4 51.2 76.7 74.3 38.4 44.9 42.3 52.0

NAA-PD 46.8 62.9 83.2 80.9 40.4 46.8 43.9 57.9
Table 3. The attack success rates (%) of the adversarial examples on seven advanced defense mechanisms. The adversarial examples are
generated on the Inc-v3 model. The best result is in bold.

Figure 2. The attack success rates (%) of NAA under different
target layer settings.

γ = 1 and the transformation functions degrade to the lin-
ear functions.

4.2. Attack Results

In this section, we analyze the performance of our ap-
proach against the undefended models, adversarially trained
models and models with advanced defenses respectively.
Specifically, we attack a given source model and directly
test the other different models by crafted adversarial exam-
ples, which is the black-box setting. We also test the adver-
sarial examples on the source model itself in a white-box
setting.

We can see from Table 1, our approach achieves nearly
100 percent attack accuracy under the white-box setting.
Our method outperforms all the baselines in the black-
box setting which illustrates the high transferability of our
method. Although our method has a similar white-box at-
tacking success rate with FIA and a little bit worse white-
box attacking success rate than MIM, our method is more
transferable with a high attack success rate under the black-
box setting.

Then, we study the performance of our proposed attack-
ing method against the adversarially trained models. As
also shown in Table 1, NAA outperforms all of the baselines
under all the settings with a large margin of 10.5 %, which
validates our method has a strong attacking ability against
adversarially trained models. Especially, our method has a
similar white-box attack success rate with FIA and a worse
white-box attack success rate than MIM, but our approach
is more transferable.

Furthermore, we compose all the attacking methods with

input transformation methods: PIM and DIM to further im-
prove the transferability as shown in Table 2. Our approach
combined with input transformation methods also outper-
forms all the baseline methods by a considerable margin of
10.7% on average under the black-box setting, which fur-
ther demonstrates the superiority of our method.

In addition, we assess the performance of our proposed
NAA and other baseline attacks against the models with ad-
vanced defense mechanisms. We first take inc-v3 as the
source model and generate adversarial examples for all the
baseline methods with transformation inputs methods: PIM
and DIM. Then we test the prediction accuracy of adver-
sarial examples on advanced defended models as shown in
Table 3. Our proposed method achieves 57.9 % attack suc-
cess rate on average and surpasses all of the baselines more
than a margin of 5.9%, which shows a strong threat to state-
of-the-art defense methods.

From the above experiments, our proposed method has
more transferability compared with all of the baselines. We
conclude the reasons why NAA has strong transferability
are two-folded. First of all, the neuron attribution provides
a simple but effective way to model the importance of neu-
rons, which reflects the real attribution to the output. Fur-
thermore, the independent assumption simplifies the repre-
sentation of neuron attribution and improves the transfer-
ability of generated adversarial examples at the same time.
To illustrate, we consider a simple scenario when we attack
the target models that only change the later networks of the
source model. If we assume the former networks and later
networks of source models are related, the generated ad-
versarial examples will overfit the source model. Transfer
attack between the source model (Inc-v3) and source model
variants (Inc-v4) as the target model can partially validate
the reasons.

4.3. Ablation Study

In this section, we do ablation studies to analyze the three
factors in our proposed NAA. The first factor is the target
feature map layer to figure out which layer (shallow layer,
middle layer or deep layer) is prone to craft transferable ad-
versarial examples. The second factor is the integrated steps
number n to find its relationship with transferability. The
last factor is the weighted attribution including γ, fp(·) and
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Figure 3. The attack success rates (%) of NAA with different n
values.

fn(·) to examine the importance of neuron attributions with
different polarities and values.

Target Layer. We utilize NAA on different target lay-
ers to craft adversarial examples and observe the transfer-
ability. We choose Inc-v3 as the source model and differ-
ent target layers based on the network structure stages. As
shown in Figure 2, attacking the deep layers (Mix6a/Mix7a)
achieves the best white-box attack performance. However,
attacking middle layers (Mix4a/Mix5b) achieves the higher
transferable performance compared with the shallow lay-
ers (Conv1a/Conv2b) and deep layers (Mix6a/Mix7a). We
believe the shallow layers contain low-level features which
exert less influence on the output. Similarly, the deep layers
contain high-level features but the attack on the deep lay-
ers overfits the source model failing to craft transferable ad-
versarial examples. As a result, attacking the middle-level
features achieves the best performance.

Integrated Steps. We measure the transferability of ad-
versarial examples generated from the Inc-v3 model by al-
tering integrated steps. We observe from Figure 3 that with
the increase of integrated step, the transferability boosts.
Although the performance is improved, the computation
cost increases with n. In order to balance the performance
and computation cost, we choose n = 30 to achieve ade-
quate performance.

Weighted Attribution. We study the neuron attribution
from two sides: the polarity of neuron attribution and the
value of neuron attribution to figure out the significance.
We first analyze the importance between the positive attri-
bution and negative attribution by altering the value of γ in
Equation 3. As shown in Figure 4, the attack success rate
rises when we increase γ and it decreases when γ is greater
than 1. Therefore, γ = 1 achieves the best performance,
which implies the negative attributions are as significant as
positive attributions. Hence, positive attributions and nega-
tive attributions are equally important.

After that, we try different transformation functions to
measure the neuron attributions with different values, like
the exponential function that focuses more on the high value
and the logarithm function which focuses more on the low
value. We attack the Inc-v3 model to generate adversar-

Figure 4. The attack success rates (%) of NAA with different γ
values.

Undefended Models Adversarially Trained Models
Figure 5. Heat map of the average attack success rate on unde-
fended models and adversarially trained models under different
combinations of transformation functions.

ial examples based on different combinations of fp(·) and
fn(·) in Equation 3. We choose five transformation func-
tions: logarithm function, square root function, linear func-
tion, square function and exponential function. As shown
in Figure 5, the combination of linear functions has the best
performance, which implies the attributions with different
values have the same importance. All in all, we should treat
all attributions with different polarities or values equally.

5. Conclusion
In this paper, we propose the Neuron Attribution-based

Attack (NAA) to craft transferable adversarial examples.
Specifically, we first employ neuron attribution to more ac-
curately estimate the neuron importance. To reduce the
computation time, we then derive an approximation scheme
for neuron attribution. Finally, we minimize the weighted
combination of the positive and negative neuron attribution
values to generate adversarial samples. Experimental re-
sults corroborate that our method can outperform state-of-
the-art baselines by a considerable margin.
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