
Emerging App Issue Identification from User
Feedback: Experience on WeChat

Cuiyun Gao†, Wujie Zheng§∗, Yuetang Deng§, David Lo‡, Jichuan Zeng†, Michael R. Lyu†, Irwin King†
†Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, China

‡School of Information Systems, Singapore Management University, Singapore
§Tencent, Inc., China

{wujiezheng,yuetangdeng}@tencent.com, {cygao,jczeng,lyu,king}@cse.cuhk.edu.hk, davidlo@smu.edu.sg

Abstract—It is vital for popular mobile apps with large
numbers of users to release updates with rich features while
keeping stable user experience. Timely and accurately locating
emerging app issues can greatly help developers to maintain
and update apps. User feedback (i.e., user reviews) is a crucial
channel between app developers and users, delivering a stream
of information about bugs and features that concern users.
Methods to identify emerging issues based on user feedback have
been proposed in the literature, however, their applicability in
industry has not been explored. We apply the recent method
IDEA to WeChat, a popular messenger app with over 1 billion
monthly active users, and find that the emerging issues detected
by IDEA are not stable (i.e., due to its inherent randomness,
its results change when run multiple times even for the same
inputs), and there are other problems such as long running
time. To address these limitations, we design a novel tool, named
DIVER. Different from IDEA, DIVER is more efficient (it can
report real-time alerts in seconds), generates reliable results,
and most importantly, achieves higher accuracy in our practice.
After its deployment on WeChat, DIVER successfully detected
18 emerging issues of WeChat’s Android and iOS apps in one
month. Additionally, DIVER significantly outperforms IDEA by
29.4% in precision and 32.5% in recall.

Index Terms—Mobile apps, app reviews, emerging issue detec-
tion, anomaly

I. INTRODUCTION

In 2018, a bulk of apps have been published on app

markets (e.g., 3.8 million apps on Google Play and 2.0 million

on App Store [1]). For an app to become competitive and

prevalent, user-friendly design and rapid responsiveness are

crucial factors. Timely identification of bugs and unsatisfactory

features that affect many users is important for app developers

during app testing and maintenance process. For example,

in July of 2016, Pokémon Go, a popular game app, was

flooded with one-star ratings on app markets (e.g., 25,000

out of 55,000 in App Store), when an updated version was

released with tracking features removed [2]. Such situation

could be alleviated if thorough testing was implemented before

final release, or immediate fix was conducted after release.

For WeChat1, a highly popular messenger app (especially

among users of Chinese origins) released by Tencent, Inc., its

large audience (around 1.04 billion monthly active users [3]),

∗ Wujie Zheng is the corresponding author.
1https://www.wechat.com/en/

complex functionalities2, and frequent updates drive the need

for timely identification of emerging issues to ensure its

reliability and user satisfaction.

However, timely and accurate detection of critical app issues

is challenging in industrial scenario. Before app release, the

typical way to achieve a high-quality app is by performing

thorough testing [4], but the testing process tends to be labor-

intensive and time-consuming in practice [5]–[7]. According

to [8], popular apps usually update their versions on a bi-

weekly basis or more frequently. Also, due to the complicated

app functionalities and fragmentation issues, not all the fea-

tures or usage paths could be covered during testing [7].

Another way to detect issues is based on user feedback anal-

ysis. User feedback is directly written by users based on their

experience of an app, and reflects the app’s major bugs and

annoying features. Such resource can be easily collected either

from testing users during the beta testing phase or all the users

after release. There already exist some prior works on mining

user feedback for assisting app evolution and maintenance [9],

[10]. According to previous studies [11], [12], developers

who consider user reviews are rewarded in terms of higher

user ratings of their apps. Unfortunately, the large quantity of

user reviews (e.g., WeChat receives around 60,000 reviews

per day) makes manual analysis inefficient and unrealistic.

Moreover, reviews usually contain much noisy information

such as non-informative reviews [13]. These characteristics of

user feedback increase the difficulties of automatic detection

of emerging issues.

To our best knowledge, IDEA [14] is the most recent work

that can be directly applied to detect emerging issues from

user feedback. The input of IDEA is user reviews distributed

in consecutive app versions. Based on topic modeling, which

is a typical approach to infer topic structure of a collection

of documents, IDEA outputs emerging app issues in the level

of phrases and sentences. However, we met several problems

when applying it in practice in WeChat. The first problem is

the stability of the running results. Random initialization of

parameters in topic modeling makes the detected emerging

2WeChat has now evolved to be well beyond a messenger app: it also
provides functionalities such as banking, shopping, playing games, news
browsing, and serves as a platform for third parties to develop their own
apps.

279

2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP)

978-1-7281-1760-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-SEIP.2019.00040

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

issues not exactly the same after each run. Second, manually

choosing appropriate topic numbers for different datasets is

difficult, where the choice of topic number can easily impact

the accuracy of detected emerging issues [15], [16]. The third

problem is related to its efficiency. According to [14], IDEA

can process 160 reviews per second, meaning that analyzing

60,000 reviews generated by WeChat in one day may need at

least 6 minutes for each trial. For achieving good performance,

we usually need to tune hyper-parameters of topic modeling,

which requires processing the data many times [16]. Such

time cost is not ideal enough for popular apps, where more

time spent on detecting important issues usually means more

customer churn.

In this paper, we try to solve the above problems existing

in IDEA and build a new tool named DIVER, i.e., iDentifying

emerging app Issues Via usER feedback. The input of DIVER

is similar to that of IDEA, that is, user reviews posted in

different time slices or for different versions. One example of

DIVER’s output is shown in Fig. 1, with app issues explained

in related keywords and feedback sentences. To facilitate

developers’ issue checking and fixing, the emerging issues are

sent to developers by email and WeChat immediately after

being captured. After the deployment of DIVER on WeChat,

DIVER helped developers identify 18 emerging issues of

its Android app and iOS app in the January of 2018. To

further verify the effectiveness of DIVER, we conduct evalu-

ation experiments on the WeChat apps for Android and iOS.

Experimental results demonstrate that DIVER significantly

outperforms IDEA by 29.4% in precision and 32.5% in recall

on average. Moreover, DIVER can process thousands of user

reviews in seconds, which is more applicable for the agile

development mode in industry.

The paper makes the following contributions: (1) We build a

tool called DIVER to identify emerging app issues from user

feedback more effectively and efficiently. The tool can help

the beta testing process before official release or the main-

tenance process after release; (2) We conduct comprehensive

experiments on industry apps to verify the effectiveness of

DIVER; and (3) We have implemented and deployed DIVER

to monitor reviews of popular apps in the Tencent company,

especially WeChat apps.

The rest of this paper is organized as follows. In Section II,

we introduce the motivation and background of this work. We

present related work in Section III. The detailed methodology

of DIVER is described in Section IV, with experiment setup

elaborated in Section V and experimental results presented in

Section VI. In Section VII, we provide a qualitative analysis of

successful and unsuccessful cases when DIVER was applied to

industry apps. We discuss limitations and conclude this paper

in Section VIII and Section IX, respectively.

II. MOTIVATION AND BACKGROUND

In practical app development, managers must manage well

the time interval between issue detection and version update

to ensure enough time for app modification. According to

our industrial partners’ experience, although the automated

2018-02-10 10:03, Version ID 232, User No.: 3234
Warning 1
Keywords: Sound, Video
Feedback No.: 5
Sample Related Feedback:

The video sound cannot be closed, crash! (from user_1)
Why isn’t there any sound in the video sent by my friends? I’ve

already set it in my phone. (from user_2)
There is no sound in my video and voice messages. (from user_3)
The video sent from my friends doesn’t have any sound. (from user_4)

Fig. 1: Example warning captured by DIVER.

testing process in WeChat can cover around 80% of critical

app features, these app testing methods can be limited due

to the complicated functionalities in WeChat, wide range of

devices to test, and many versions to be tested at the same

time. Developers can well monitor crashes and performance

issues by analyzing logs related to crashes and Application Not

Responding (ANR) issues. But the functionality- and interface-

related issues are not easy to be identified. Different from app

logs, user feedback contains various app facets that concern the

users. Thus, analyzing user feedback is an important activity

to ensure that developers are not ignorant of user needs.

To assist readers in better understanding the industrial

scenario of DIVER, in this section, we first briefly introduce

what user feedback is, and then explain the importance of

identifying emerging app issues.

A. User Feedback

Developers can collect user feedback through apps or app

markets (e.g., Google Play and App Store). Fig. 2 illus-

trates the feedback submission forms of WeChat and Skype

respectively. For WeChat, users can first choose a relevant

topic and then write detailed problems encountered or submit

screen shots (e.g., the feedback tree shown on the left in

Fig. 2). WeChat also provides a channel for users to write their

comments without choosing a topic, similar to Skype feedback

submission style (shown on the right in Fig. 2). Besides

review texts, user reviews are generally accompanied by other

attributes, such as user name or identifier, post time, app

version, device type, and system type (e.g., iOS or Android).

Review texts can describe everything that users care about,

including user requirements, potential app bugs, and features

to improve. For example, one user of the Instagram app, which

is a social networking app, complains about a crash issue

by writing that “App is absolute trash. Crashes every three
seconds on a flagship stock Pixel 2 XL with zero problems
with any other quality app.”

B. Emerging App Issues

For an app, the numbers or proportions of app issues

reflected in user feedback are normally stable over time. But

when a new version is released, the number or proportion

of feedback associated with certain functionalities or bugs

may sharply increase. Such functionality- or bug-related issues

are emerging app issues. An example of emerging issue is

depicted in Fig. 3. After releasing WeChat version X on July

280

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

(a) Feedback tree (b) Feedback form

Fig. 2: Feedback submission forms of WeChat (left) and Skype

(right).

5, 2017, the volume of user comments3 related to “sound”

rises abruptly. This is because version X had a functionality

error in sharing sound and pictures which was not fixed when

it was released. Before the issue was detected on July 7, the

issue has been raised as feedback by a large number of users

(from around 1,000 to 2,000+). We can see that the longer the

delay in finding emerging issues, the more risk an app faces,

as some users may uninstall the app during the period. Finally,

the issue was solved in a revised version on July 7, and the

number of feedback related to “sound” started to decline.

As WeChat Android and iOS apps receive a large number

of feedback by many users during beta testing and release

phases, some functionality issues may take a long time to be

spotted by developers. Thus, additional tool support is needed

to accurately identify emerging app issues in a timely fashion

which is critical to ensure user satisfaction.

0

500

1000

1500

2000

2500

29
-Ju

n

30
-Ju

n
1-

Ju
l

2-
Ju

l
3-

Ju
l

4-
Ju

l
5-

Ju
l

6-
Ju

l
7-

Ju
l

8-
Ju

l

Anomaly

U

se
r

R
ev

ie
w

s

Fig. 3: Number of user reviews related to “sound” for all

WeChat versions from June 29 - July 8, 2017.

III. RELATED WORK

Two threads of work on user feedback analysis inspire

the design of our proposed approach DIVER, including user

intention mining and emerging issue detection.

A. User Intention Mining

App reviews serve as a communication bridge between de-

velopers and users. However, review mining task is inherently

challenging due to the noisy nature of user review data.

3Note that the user comments considered are from all the current versions.

User intention mining aims at accurately understanding the

topics delivered by reviews, e.g., whether the user is complain-

ing about the interface or performance cost of an app. There

already exist many attempts on analyzing user intentions from

user reviews, as summarized by Martin et al. [17]. Iacob et
al. [18] manually analyze 3,278 reviews of the apps in Google

Play and summarize nine recurring themes among feedbacks.

They find that major bugs usually trigger additional negative

feedback, which can support app testing. Khalid et al. [19]

manually tag 6,390 low star-rating reviews from iOS apps

and reach the conclusion that the most frequent complaints

are related to functionality errors, feature requests, and app

crashes. Driven by the increasing amount and importance of

user reviews, there exists research effort [9], [20]–[24] aiming

at automating the review tagging process. For example, Iacob

and Harrison [25] automatically extract the reviews related

to feature requests based on predefined linguistic rules. Chen

et al. [13] focus on prioritizing the informative reviews by

employing topic modeling methods. Maalej and Nabil [22]

supervisedly classify reviews into four types such as bug

reports and feature requests. As labeling reviews usually cost

lots of manual labor, Di Sorbo et al. [24] propose an unsu-

pervised method to classify reviews to predefined topics. To

deeply understand users’ attitude towards specific app issues,

Guzman et al. [26] automatically extract keyphrases from

user reviews, and predict their sentiment based on existing

sentiment analysis techniques. Similarly, Gu and Kim [27]

improve the performance of aspect opinion extraction. In spite

of the effectiveness of these prior studies on user review

understanding, reviews’ version-sensitive characteristics are

not well or deeply explored [14], [28], [29].

B. Emerging Issue Detection

Identifying emerging app issues from user reviews is a

challenging task due to the lack of real-word datasets with

labels. Most current work focuses on observing the trends

of app issues over time [30], and determining the emerging

issues based on traditional anomaly detection methods [31].

For example, Vu et al. [32] detect sudden issues by counting

the most related keywords. Since single word may be am-

biguous without contexts, their follow-up work [33] proposes

a phrase-based clustering approach, where the phrase template

mining process is time-consuming and labor-intensive due

to the manual validation of part-of-speech (PoS) sequences.

To explore the effects of user reviews on version changes,

Gao et al. [14] introduce IDEA to detect emerging issues of

current versions based on statistics of previous versions. They

present a topic labeling approach to automatically interpret

topics with phrases and sentences. Although the method is

free of labor cost, the performance of their work could be

easily influenced by the inborn limitations of topic modeling,

such as the predefined topic numbers, random initialization of

topic centers, and review quantity [15]. We can also follow the

methods in [22]–[24], [34] to classify reviews first and then

observe the trends of these topics. However, these methods

need either labeled reviews for training or predefined topics. In

281

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

practice, developers usually require more detailed and flexible

topics to guide their issue checking and fixing.

IV. METHODOLOGY AND IMPLEMENTATION OF DIVER

In this section, we elaborate the workflow of DIVER. Fig. 4

presents a high-level architecture of DIVER, which includes

five major steps: (1) preprocessing user reviews, (2) extracting

word collocations, (3) identifying emerging word collocations,

(4) grouping emerging collocations with similar topics and

ranking representative feedback for each topic, and (5) issue

visualization. The details of each step are provided as follows.

Raw App Reviews

Emerging Issue Report

Review Preprocessing

Word Segmentation
Normalization
Noise Filtering

Word Collocation Extraction

Emerging Word
Collocation Detection

Issue Summarization

A B

CDE

Fig. 4: The overview of DIVER.

A. Review Preprocessing

The collected reviews in WeChat are written mainly in Chi-

nese and English. In the light of structure difference between

the two languages (e.g., Chinese sentences do not contain

spaces to separate single words), we conduct slightly dif-

ferent preprocessing procedures according to language types.

For Chinese feedback, we first employ word segmentation

tool jieba [35] to produce segmented sentences. Then we

format/normalize texts for both languages by removing punc-

tuation and stop words provided by NLTK4, filtering noisy

words, such as predefined non-informative words (e.g., “hello”

in English or “你好” in Chinese), and emotional words (e.g.,
“amazing” in English or “不错” in Chinese). We use the list of

non-informative English words defined in [14] and manually

create a similar list of meaningless Chinese words. To further

guarantee the quality of word collocations extracted in the

subsequent procedure, we also remove consecutively duplicate

words, e.g., “Very very new” is converted into “Very new”.

B. Word Collocation Extraction

The meaning of a single word may be ambiguous. For

example, the word “sound” in a comment can indicate “sound
notification” or “audio sound” for social media apps such as

WhatsApp, Line and WeChat. In contrast, issues presented

via phrases are semantically more accurate. However, user

reviews are usually short and unstructured, thus extracting

consecutive words as phrases is sensitive to the caprices of

various writing styles [36]. For instance, consider two app

4https://www.nltk.org/

reviews, one containing “The audio has no sound” and the

other containing “Can’t hear the audio sound”, it is clear that

they are discussing the same topic “audio sound”. Although

“audio” and “sound” are not two consecutive words in the

first review example, “audio sound” is a meaningful phrase.

Within the context of this task, we define the phrase as an

unordered set of words appearing in the same review.

As shown in Fig. 5, we employ frequent pattern mining

approach here to extract the frequently co-occurring words,

i.e., phrases, together with all the frequent words as candidate

terms for the next step.

Traditional frequent pattern mining algorithms, such as

Apriori [37], are computational expensive and hard to scale.

For WeChat, there are over 60,000 reviews received every day

and over 500,000 unique words in those reviews. It is difficult

or even impossible to directly apply Apriori to retrieve all

the co-occurring words in the industry scenario because of

the huge search space involved in finding them. Therefore,

we employ ECLAT (Equivalence Class Transformation) [38],

a depth-first search algorithm for pattern mining that is

considered much faster and memory efficient than Apriori

algorithm. With the help of ECLAT, we can obtain all the

candidate phrases whose frequencies are larger than a user-

defined support threshold.

({small},3) ({program},3) ({sent},1) ({can’t},2) ({open},2) ({crash},2) ({black},3) ({screen},3) ({video},1)

({small, program},2) ({black, screen},3) ({can’t, open},2)

({small, program, can’t, open},2) ({crash, black, screen},2)

R1. Small program can’t open. It’s black screen now!
R2. Small program crash. Black screen.
R3. Small program can’t open anything. Why?
R4. When I sent WeChat online video, it’s black screen. The program crash.

Fig. 5: Example of word collocation extraction. The hierarchi-

cal word collocation structure is built from the reviews (R1-

R4), based on the co-occurrences of words in the reviews. The

number after each word collocation (inside the brace) indicates

the occurrence frequency of the collocation.

C. Emerging Word Collocation Detection

In order to detect the emerging issues, we need to figure

out the word collocations for which the volume of reviews

containing them increases significantly.

At an immediate time period after version release, some

common words describing app updating may increase dramat-

ically in quantity or proportion (e.g., “update” and “down-
load”), but they are not emerging issues and may lead to

false positive results. Here, we propose a multidimensional

emerging word collocation detection, which can detect word

collocation changes at a fine granularity and avoid the above-

mentioned false positives. We organize our review data consid-

ering three dimensions: word collocation, version, and time.

As shown in Fig. 6, for each word collocation, we extract

the proportion of feedback containing it for each version, at

each time unit (e.g., day) after the version release date. We

282

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

then determine emerging word collocations by comparing the

changes in the proportions comparing prior versions (for the

same time unit) and prior time units (for the same version).

To mitigate the bias of considering just one previous version

or time unit, we introduce a moving window to involve

more historical versions (indicated by the dark green block

in Fig. 6), or more historical time units (indicated by the

light orange block in Fig. 6). In the following paragraphs,

we introduce the comparison methods from version and time

dimensions respectively.

Fig. 6: Illustration of determining whether one collocation is

emerging or not. The horizontal axis is the version release

time (time unit = day here). The vertical axis of each bar

chart is the proportion of the collocation. The light orange

rectangle is the moving time window w involving records

of the first four release days for Version 5.2.4, i.e., w = 4.

The dark green rectangle shows the moving version window

τ including statistics of the fourth release day for the three

example versions, i.e., τ = 3. We can see that the collocation

is deemed as an emerging one on the fourth release day for

Version 5.2.3, but not for Version 5.2.4, since the proportion

for Version 5.2.3 is significantly larger than that of its previous

version 5.2.2, and its previous release days.

1) Version-Based Comparison: We denote the percentage

of the collocation at the t-th release time unit and for version

v as Pv(t), and the average percentage in all the considered

historical versions as Pτ (t), where τ is the version window

size. A collocation is considered to be potentially emerging if

it satisfies the following inequality:

Pv(t)− Pτ (t)

σ(t)
> γ, (1)

where σ(t) is the standard deviation of the percentages in the

version window, and γ indicates a user-defined threshold. The

threshold γ determines how far the collocation’s percentage

for the current version differs from the expected percentage

as compared to the typical difference (i.e., the standard devi-

ation). In statistics, a relative deviation of 1.2 (i.e., an actual

difference of 1.2 standard deviations) is significant, which has

11.6% acceptance rate5 [39] and works well in our application.

5Acceptance rate 11.6% means that we accept 11.6% of the total word
collocations as emerging ones.

Therefore, if γ > 1.2, DIVER will regard the collocation as

one that potentially has a sudden and significant change in the

trend for the corresponding version. The value of this threshold

(which is set by default to 1.2) can be adjusted by users.

2) Time-Based Comparison: For time-based comparison,

we compute the average percentage in all the considered

historical time units and denote it as Pw(t), where w is the

time window size. We use a similar formula for detecting

emerging collocations as shown in Eq. 1, but replace Pτ (t)
with Pw(t).

Word collocations that are identified as emerging based on

both version- and time-based comparisons are outputted to the

next step.

D. Issue Summarization

The emerging issues detected from the last procedure may

contain semantically similar collocations. The redundancy of

word collocations often results in semantically-incomplete

anomaly warnings. For instance, both words “data” and

“recovery” exhibit emerging trends in one version. Without

grouping the words, developers would feel confused about the

issue meaning when observing each emerging issue separately.

To condense the emerging issue descriptions, we first cluster

the words delivering the same topic and then rank the reviews

in each topic for facilitating developers’ observation.

1) Emerging Collocation Clustering: To cluster emerging

collocations, we need to first compute semantic representation

of each word collocation and then measure the relevance

among them. Basically, words’ semantics are embodied by

their contexts. Thus, the word representations can be learned

by the subordinate reviews intuitively. Our approach is based

on vector space model [40], widely-used to represent textual

documents in information retrieval systems.

Based on vector space model, we represent each word

collocation by a vector, where the vector length is determined

by the review number in the collection. For each review,

corresponding to each element in the vector, we calculate

the tf.idf (term frequency - inverse document frequency [40])

value. The term frequency (tf) of one collocation in a review

is the number of its occurrences in that review, while the

document frequency (df) of a collocation is the number of

reviews containing it in the collection. We compute the tf.idf
weight for a collocation as:

tf.idf =
tf

log(df + 1)
. (2)

Based on the calculated tf.idf weights for all reviews, we

obtain a representative vector for each collocation. Similarity

measurement between collocation is calculated by their cosine

distance.

To automatically determine the cluster number, we exploit

agglomerative hierarchical clustering approach. We denote

each detected emerging collocation as p, and distance matrix

D = 1 − M , where M is the cosine similarity matrix of

collocations. The clustering process is depicted in Algorithm 1.

We start by initializing an active set A, in which each cluster

283

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

comprises one collocation. Then we merge two clusters that

present minimum distance m, where the distance between two

clusters is calculated as the minimum distance between the

collocation pairs in the clusters. The clustering process will

stop when minimum distance m achieves a defined threshold

ε (which is empirically set to 0.1 in our implementation) or

all the emerging issues are fused into one cluster.

Algorithm 1: Anomaly Clustering Algorithm

1 function Clustering ({pi}Ni=1, D, ε);

2 A ← ∅, m ← 1
3 for i ← 1 · · ·N do
4 A ← A ∪ {{pi}}
5 end
6 while |A| > 1 and m > ε do
7 c�1, c

�
2 ← argmin

c1,c2∈A,c1 �=c2

Mc1,c2

8 m ← Mc�1 ,c
�
2

9 c� ← c�1 ∪ c�2
10 for c ∈ A do
11 Mc�,c = Mc,c� = min(Mc�1 ,c

,Mc�2 ,c
)

12 end
13 Del Mc�1 ,·,Mc�2 ,·,M·,c�1 ,M·,c�2
14 A ← (A \ c�1) \ c�2
15 A ← A ∪ c�

16 end
17 return Cluster A

2) Review Ranking: Due to limited contextual informa-

tion, words or phrases are usually not able to completely

deliver users’ intents. To assist developers in understanding the

emerging issues efficiently, we also recommend representative

user reviews for each emerging issue cluster. We treat the

collocations in one cluster as query q, and employ vector space

model to retrieve most relevant user reviews. For each review

d, we compute its proximity Score(d) to query q by

Score(d) =
∑

w∈q∩d
tf.idfw,d, (3)

where tf.idfw,d is obtained by Equation (2). Reviews with

larger scores are more relevant to the anomaly cluster, and

will be ranked higher. We choose top five user reviews for

developers’ reference.

E. Emerging Issue Report

The last step of DIVER is to visualize the detected emerging

issues and prioritized user feedback. For explicitly illustrating

the topics that users are talking about in reviews, we employ

word cloud to present commonly-used words, where word

sizes are determined by their proportions in the collected

data. Fig. 7 depicts an example of commonly-used words

written by users, with the emerging words highlighted in red.

When developers move their mouse over specific words, they

can observe the corresponding proportions and growth rate

comparing the current time slot with the previous time slot,

Fig. 7: Visualization of DIVER’s results. Larger-sized fonts in

the word cloud indicate that the corresponding words appear

more often in the collection, and red fonts denote the detected

emerging issues.

where the duration can be customized. The table below the

word cloud presents the statistics of words in the collection. By

clicking one emerging word, they can view the change history

in line chart (e.g., Fig. 3) and most relevant user comments

for reference (e.g., Fig. 1). To help developers get an overview

of all the emerging issues, we also provide a list of emerging

issues along with the clustered emerging word collocations

and the corresponding prioritized user comments.

V. EVALUATION SETUP

A. Research Questions

To evaluate our tool, we set up some research questions to

guide our evaluation. The research questions are as follows:

• RQ1: How effective is DIVER in detecting emerging app

issues based on user feedback analysis?

• RQ2: How good is the quality of clustered word colloca-

tions for each emerging issue? Are their semantic mean-

ings consistent enough for developers’ understanding?

• RQ3: How efficient is DIVER in detecting emerging app

issues in practice?

The baseline methods compared against DIVER to answer

the above three research questions include: 1) the original

IDEA method [14]; and 2) DIVER involving only the version

dimension, denoted as DIVER-T.

B. Datasets and Ground Truth

We deployed DIVER to the WeChat apps for Android and

iOS. During the deployment, the apps were updated according

to the emerging issues identified by DIVER. Meanwhile,

we recorded the false and missing critical issues that were

confirmed by WeChat senior developers. DIVER has been

deployed to WeChat for more than one year and is still being

used to monitor the emerging app issues. To measure the

performance of DIVER, we take the total of 181,679 user

reviews in early 2018 as our evaluation dataset. Details of

these reviews are shown in Table I. Each user review has

four attributes, including user identifier, operating system,

post time, and review texts. We use the 18 emerging issues

284

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

identified by WeChat senior developers (using our tool and

their own manual investigation) in early 2018 as our ground

truth.

C. Evaluation Metrics

To answer RQ1, we adopt Precision, Recall, and F-measure
as metrics to measure the effectiveness of DIVER, which are

defined as below:

Precision = TP
TP+FP , Recall = TP

TP+FN

F −measure = 2∗Precision∗Recall
Precision+Recall

(4)

where TP (true positive) indicates the number of issues that

are correctly recognized as emerging issues, and FP (false

positive) means the number of issues that are fasely identified

as emerging issues. FN (false negative) is the number of

emerging issues that are not identified by DIVER. The metric

values range from 0 to 1, and a higher value signifies that a

better performance is achieved.

To answer RQ2, we utilize the typical Normalized Point-

wise Mutual Information (NPMI) metric [41] as the in-

dicator to evaluate the semantic coherence of the words

{w1, w2, · · · , wn} (where n is total number of the words) for

describing one emerging issue.

NPMI(wi) =

T−1∑

j

logP (wi,wj)
P (wi)P (wj)

− logP (wi, wj)
, (5)

where the probabilities are derived from a 10-word sliding

window over an external corpus following the standard [41].

A higher NPMI score indicates that the words in one emerging

issue are more semantically coherent and easier for under-

standing.

VI. RESULTS AND ANALYSIS

A. Answer to RQ1: Effectiveness of DIVER

Fig. 8 and Table II illustrate the results of Precision, Recall,
and F-measure for the benchmarks and proposed tool.

1) DIVER vs. IDEA: Comparing DIVER with IDEA, we

discover that DIVER consistently outperforms IDEA on all

the datasets (as shown in Fig. 8), increasing Precision, Recall,
and F-measure by 29.4%, 32.5%, and 29.5% respectively.

Focusing on the metric F-measure, DIVER achieves 60.0%-

94.9% scores on the subject apps, while IDEA’s performance is

only at 41.3%-54.5%. For WeChat iOS, which has a relatively

smaller number of reviews among the two subject apps,

DIVER increases the performance of IDEA by 5.5%. The

results indicate that DIVER can better detect emerging app

issues. We also find that DIVER can capture all the emerging

issues in WeChat (including the Android and iOS apps), with

recall at 100%. This mean that DIVER can help WeChat

developers detect all important issues.

We further adopt analysis of variance (ANOVA) [42], a

statistical hypothesis test for significance analysis, to examine

whether DIVER can significantly outperform the benchmark

method IDEA. We run both DIVER and IDEA on the subject

apps for three times, and compute the p-value of ANOVA on

the Precision results at 0.005. Sine the p-value is much less

than 0.05, we obtain that DIVER can significantly better detect

precise emerging issues than IDEA.

2) DIVER vs. DIVER-T: We compare DIVER with

DIVER-T to observe whether involving history information

from both time and version dimensions benefits emerging issue

detection. As shown in Table II and Fig. 8, DIVER consistently

achieves better average performance on the subject apps, with

improvements in Precision, Recall, and F-measure at 4.2%,

0%, and 4.1%, respectively. Without considering the time di-

mension, DIVER-T may even achieve poorer performance than

IDEA, e.g., for the WeChat iOS app. Focusing on the metric

Precision, we find that DIVER-T achieves inferior results on

the subject app with relatively fewer versions (i.e., WeChat

iOS). This may be because that DIVER-T only considers

the version dimension, and the small number of versions

makes it harder for DIVER-T to learn to differentiate between

true emerging issues and false positives. Thus, considering

both time and version dimensions is helpful for accurately

identifying emerging app issues.

B. Answer to RQ2: Word Collocation Quality Validation

We use the semantic consistency of the words in one

emerging issue to access the comprehensibility of the issue.

We adopt NPMI, introduced in V-C for evaluation. Table III

illustrates median and average NPMI scores computed for

the results of DIVER and IDEA. As shown in Table III,

the words generated by DIVER for describing one emerging

issue are more semantically coherent than those obtained from

IDEA, with an average increase of NPMI scores of 2.15 times.

According to [43], the word semantics in one topic are much

coherent with NPMI score larger than 0.12. This indicates that

the words for describing one emerging issue in DIVER (with

avg. NPMI at 0.190) are semantically consistent.

Table IV presents two example issues produced by DIVER

and IDEA respectively. We discover that although using

phrases (i.e., more than one word) to describe issues may be fa-

vorable for issue understanding [14], the semantic consistency

of these phrases is not guaranteed. For example, the “sent by
friend” and “unread message” are not related to the emerging

issue “cannot hear sound”. Such semantic inconsistency will

confuse developers if phrases in one emerging issue convey

several meanings. Overall, the words generated by DIVER

are more understandable for developers, which has also been

confirmed by developers in WeChat.

C. Answer to RQ3: Efficiency of DIVER

To evaluate the efficiency of DIVER in detecting emerging

issues, we measure the execution time of DIVER on the

subject apps, and compare it with IDEA. For illustration, we

randomly select an increasing percentage of 1,000 reviews

from the WeChat Android dataset, and run both DIVER and

IDEA until all the 1,000 reviews are selected. We run on

a PC with Intel(R) Xeon E5-2620v2 CPU (2.10 GHz, 6

cores) and 16GB RAM. Fig. 9 displays the comparisons of

285

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Experimental Datasets.

App Name Category Platform #Ratings Time Period #Reviews #Versions #Avg. Reviews

WeChat Communication Google Play 5,313,722 Jan. 2018∼Feb. 2018 155,883 16 9,742

WeChat Social Networking App Store 38,497 Jan. 2018∼Feb. 2018 25,796 5 5,159

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WeChat (Android) WeChat (iOS)

IDEA DIVER-T DIVER

P
re

ci
si

on

Apps

(a) Comparison on Precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WeChat (Android) WeChat (iOS)

IDEA

DIVER-T

DIVER

R
ec

al
l

Apps

(b) Comparison on Recall.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WeChat (Android) WeChat (iOS)

IDEA DIVER-T DIVER

F
-m

ea
su

re

Apps

(c) Comparison on F-measure.

Fig. 8: Answer to RQ1: Effectiveness of DIVER.

TABLE II: Average results of the effectiveness of DIVER.

Framework Precision Recall F-measure

IDEA 0.372 0.675 0.479

DIVER-T 0.624 1 0.731

DIVER 0.665 1 0.774

TABLE III: Comparison of semantic consistency of words.

Metric IDEA DIVER

Med. NPMI 0.045 0.139
Avg. NPMI 0.059 0.190

time consumed on different data sizes for the two methods.

According to Fig. 9, the time consumed by DIVER can be less

influenced by the data sizes, while IDEA shows a dramatic

increase on the time spent as the data size increases. We

also find that DIVER can process 1,000 reviews in less than

10 seconds. Therefore, DIVER is much more efficient to

detect emerging app issues and is more applicable for industry

scenario where every second counts.

0
20
40
60
80
100
120
140
160
180
200
220
240
260

20 40 60 80 100

IDEA DIVER

#
tim
e
(s
ec
on
ds
)

Percentage of data size (%)

Fig. 9: Efficiency of DIVER and IDEA on different data sizes

of 1,000 reviews.

VII. QUALITATIVE ANALYSIS

In this section, we present two successful cases and some

failing ones of DIVER, from which we can further understand

and identify how we can improve the performance of DIVER.

TABLE IV: Terms generated by IDEA and DIVER for the

issues “Cannot hear sound” and “Chatting records return too
slow” respectively. Red underlined fonts highlight the terms

that are not semantically related to the issue topic.

Cannot hear sound Chatting records return too slow
(WeChat Android) (WeChat iOS)

IDEA DIVER IDEA DIVER

sent by friend sound full chatting records fix

cannot hear sound hear publish content slow

unread message cannot customer service chatting records

- voice - -

A. Successful Case I

Here, we demonstrate an emerging issue that was initially

missed by developers, and could have been successfully

detected if DIVER had been deployed. This is the issue

highlighted in Section II-B. Specifically, DIVER could capture

the issue “cannot hear sound” from the user feedback of an

earlier beta test version of version X, published on June 30,

2017. The numbers of related user feedback between June 30

to July 7, and the corresponding proportions (comparing to all

user feedback) are shown in Fig. 10. Although only 10 users

complained about this issue on July 1, these reviews accounted

for more than 30% of the whole feedback, and DIVER can

identify it as an emerging issue. Thus, if DIVER were used

at that time, the developers could detect the emerging issue

effectively and in a timely manner.

B. Successful Case II

Another successful case of DIVER is the red packet is-

sue occurred in WeChat iOS app. Specifically, on January

17, 2018, DIVER detected an emerging issue about “send
red packets” in WeChat app for iOS, with the number and

proportion changes of associated feedback shown in Fig. 11.

According to the prioritized reviews relevant to the issue,

developers quickly diagnosed the problem and localized the

root case, i.e., the backend payment environment in the testing

version. DIVER enabled the development team to quickly

286

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

0
5

10
15
20
25
30
35
40

30
-Ju

n
1-

Ju
l

2-
Ju

l
3-

Ju
l

4-
Ju

l
5-

Ju
l

6-
Ju

l
7-

Ju
l

Number Proportion

Pr
op

or
tio

n
(%

)

U

se
r

R
ev

ie
w

s

Fig. 10: Number and proportion changes of reviews related

to “cannot hear sound” for one testing version of version X.

June 30 is the release date of the testing version.

pinpoint and fix this emerging issue, thus reducing the cost

for manually handling complaints and improving customer

satisfaction.

0

10

20

30

40

50

0

5

10

15

20

16
-Ja

n

17
-Ja

n

18
-Ja

n

19
-Ja

n

20
-Ja

n

21
-Ja

n

22
-Ja

n

User Feedback Percentage

U

se
r

R
ev

ie
w

s

Pr
op

or
tio

n
(%

)

(a) Number and proportion changes of reviews related to “send red
packets” for one testing version of WeChat iOS. January 16 is the
release date of that testing version.

Related Feedback:
Can’t send red packets. What’s wrong with this? (from user_1)
Don’t know what happened. Can’t send red packets. (from user_2)
Can’t send red packets. What’s the matter? (from user_3)
Can’t send red packets and transfer money. (from user_4)⑤ Can’t send red packets. Why do we have to mark? (from user_5)

(b) Prioritized reviews related to “send red packets”.

Fig. 11: The emerging issue “send red packets” detected in

WeChat iOS app.

C. Error Case Analysis

We have also analyzed the error cases generated by DIVER.

We find that most of the error cases (50%) are caused by

non-informative user reviews. For example, DIVER detected

one issue related to “greeting people nearby” from WeChat

Android in January 2018, which corresponds to 18 user

reviews. We illustrate the prioritized reviews of the issue in

Fig. 12. This issue is later considered as a false positive by

developers, since receiving replies from people nearby is not

guaranteed for users sending out a greeting message. Such

feedback is usually written by idle users, and cannot provide

developers actionable information for app development.

Other error cases are either caused by non-informative

single words that display significant increase (25%) or by the

lower alarm threshold used during word collocation extrac-

tion (25%). Such cases can be alleviated by trying different

Keywords: Greet, Receive, See
Feedback No.: 18
Sample Related Feedback:

People nearby can’t see me. I greet them with a message but nobody seems
to receive it. Please help to solve this problem. (from user_1)

Greet nearby people but can’t receive their replies. (from user_2)

Fig. 12: Prioritized reviews related to “greeting people nearby”

for WeChat Android app.

anomaly threshold for single words and word collocations.

Note that all emerging issue detection methods require the

definition of thresholds, and such errors are not unique to our

proposed tool.

VIII. THREATS TO VALIDITY

Experimental Subjects: We select two industry apps for

verification, which represent a small portion of the whole

app markets and may lead to biased results. Such threat is

unavoidable due to limited available apps with manually-

labeled ground truth. In practice, DIVER has been deployed

to monitor many other apps in Tencent, such as QQ music and

Tencent browser6, and its performance has been approved by

the developers of these apps.

Parameter Influence: Similar to the topic modeling

method, whose performance can be impacted by its predefined

topic number, etc., DIVER can also be affected by its hyper-

parameters, including the window size and the threshold for

determining emerging issues. Different from the methods

based on topics, whose results can be greatly impacted by the

random initialization of topic modeling, the outputs of DIVER

are much more stable. Also, the hyper-parameters of DIVER

can be estimated more easily in practice.

IX. CONCLUSION

For popular apps, app developers need to release and

update their apps with fewer bugs and unsatisfactory features.

For those apps, detecting emerging issues with delay would

possibly adversely impact their users’ experience and cause

customer churn. Thus, we believe it is crucial to identify

emerging app issues timely and accurately.

To address this need we have proposed a tool named DIVER

and deployed it within Tencent. The proposed tool DIVER

exploits the attributes (e.g., post time and version) of user

feedback, and conducts time-series analysis to detect emerging

app issues. DIVER only needs to record the frequencies of

app issues, which means that DIVER is easy to deploy for

a new app. Also, experiments verify the effectiveness and

efficiency of DIVER in emerging issue detection. As future

work, we plan to conduct more industrial studies on user

feedback analysis.

ACKNOWLEDGMENT

This work was fully supported by the Research Grants

Council of the Hong Kong Special Administrative Region,

China (No. CUHK 14210717 of the General Research Fund).

6These apps serve hundreds of millions of users worldwide.

287

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Number of apps in app market,” https://bit.ly/2dycQpS.
[2] “Pokemango got a lot of bad reviews,” https://bit.ly/2MWuv81.
[3] “Wechat monthly active users,” https://bit.ly/2DTAOos.
[4] C. Sharma, S. Sabharwal, and R. Sibal, “A survey on software testing

techniques using genetic algorithm,” CoRR, vol. abs/1411.1154, 2014.
[5] N. Leicht, I. Blohm, and J. M. Leimeister, “Leveraging the power of the

crowd for software testing,” IEEE Software, vol. 34, no. 2, pp. 62–69,
2017.

[6] T. Xie, “Transferring software testing tools to practice,” in 12th
IEEE/ACM International Workshop on Automation of Software Testing,
AST@ICSE 2017, Buenos Aires, Argentina, May 20-21, 2017, 2017, p. 8.

[7] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated test input generation for android:
Towards getting there in an industrial case,” in 39th IEEE/ACM Inter-
national Conference on Software Engineering: Software Engineering in
Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28,
2017, 2017, pp. 253–262.

[8] S. McIlroy, N. Ali, and A. E. Hassan, “Fresh apps: an empirical study
of frequently-updated mobile apps in the google play store,” Empirical
Software Engineering, vol. 21, no. 3, pp. 1346–1370, 2016.

[9] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Proceedings of the 21st IEEE International Conference on
Requirements Engineering Conference (RE). IEEE, 2013, pp. 125–
134.

[10] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta, “Release
planning of mobile apps based on user reviews,” in Proceedings of the
38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, 2016, pp. 14–24.

[11] F. Palomba, M. L. Vásquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia, “User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps,” in 2015
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2015, Bremen, Germany, September 29 - October 1, 2015, 2015,
pp. 291–300.

[12] M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile
apps - what do users and developers think?” in IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, 2016, pp.
552–562.

[13] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software Engi-
neering (ICSE). ACM, 2014, pp. 767–778.

[14] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for
identifying emerging issues,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE). ACM, 2018, pp. 48–58.

[15] A. Agrawal, W. Fu, and T. Menzies, “What is wrong with topic
modeling? (and how to fix it using search-based SE),” CoRR, vol.
abs/1608.08176, 2016.

[16] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia, “How to effectively use topic models for software engineering
tasks? an approach based on genetic algorithms,” in ICSE. IEEE
Computer Society, 2013, pp. 522–531.

[17] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE Trans. Software Eng.,
vol. 43, no. 9, pp. 817–847, 2017.

[18] C. Iacob, V. Veerappa, and R. Harrison, “What are you complaining
about?: a study of online reviews of mobile applications,” in Proceedings
of the 27th International BCS Human Computer Interaction Conference
(BCSHCI). British Computer Society, 2013, p. 29.

[19] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile
app users complain about? a study on free ios apps,” IEEE Software,
vol. 10, 2015.

[20] E. Platzer, “Opportunities of automated motive-based user review analy-
sis in the context of mobile app acceptance,” in Proceedings of the 2011
Central European Conference on Information and Intelligent Systems
(CECIIS), 2011.

[21] Y. Man, C. Gao, M. R. Lyu, and J. Jiang, “Experience report: Under-
standing cross-platform app issues from user reviews,” in 27th IEEE
International Symposium on Software Reliability Engineering, ISSRE
2016, Ottawa, ON, Canada, October 23-27, 2016, 2016, pp. 138–149.

[22] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
on automatically classifying app reviews,” in Proceedings of the 23rd

International Conference on Requirements Engineering (RE). IEEE,
2015, pp. 116–125.

[23] F. Palomba, M. L. Vásquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia, “Crowdsourcing user reviews to
support the evolution of mobile apps,” Journal of Systems and Software,
vol. 137, pp. 143–162, 2018.

[24] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,”
in Proceedings of the 24th SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). ACM, 2016, pp. 499–
510.

[25] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, San Francisco,
CA, USA, May 18-19, 2013, 2013, pp. 41–44.

[26] E. Guzman and W. Maalej, “How do users like this feature? A fine
grained sentiment analysis of app reviews,” in IEEE 22nd International
Requirements Engineering Conference, RE 2014, Karlskrona, Sweden,
August 25-29, 2014, 2014, pp. 153–162.

[27] X. Gu and S. Kim, “”what parts of your apps are loved by users?” (T),”
in 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, 2015,
pp. 760–770.

[28] C. Gao, B. Wang, P. He, J. Zhu, Y. Zhou, and M. R. Lyu, “Paid:
Prioritizing app issues for developers by tracking user reviews over
versions,” in Proceedings of the 26th International Symposium on on
Software Reliability Engineering (ISSRE). IEEE, 2015, pp. 35–45.

[29] W. Martin, F. Sarro, and M. Harman, “Causal impact analysis for app
releases in google play,” in SIGSOFT FSE. ACM, 2016, pp. 435–446.

[30] C. Gao, H. Xu, J. Hu, and Y. Zhou, “Ar-tracker: Track the dynamics
of mobile apps via user review mining,” in 2015 IEEE Symposium on
Service-Oriented System Engineering, SOSE 2015, San Francisco Bay,
CA, USA, March 30 - April 3, 2015, 2015, pp. 284–290.

[31] B. Fu, J. Lin, L. Li, C. Faloutsos, J. I. Hong, and N. M. Sadeh, “Why
people hate your app: making sense of user feedback in a mobile app
store,” in KDD. ACM, 2013, pp. 1276–1284.

[32] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining
user opinions in mobile app reviews: A keyword-based approach (t),”
in Proceedings of the 30th International Conference on Automated
Software Engineering (ASE). IEEE, 2015, pp. 749–759.

[33] P. M. Vu, H. V. Pham, T. T. Nguyen, and T. T. Nguyen, “Phrase-based
extraction of user opinions in mobile app reviews,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, 2016, pp. 726–
731.

[34] J. Zeng, J. Li, Y. Song, C. Gao, M. R. Lyu, and I. King, “Topic memory
networks for short text classification,” CoRR, vol. abs/1809.03664, 2018.

[35] “Jieba toolkit,” https://github.com/fxsjy/jieba.
[36] M. Danilevsky, C. Wang, N. Desai, X. Ren, J. Guo, and J. Han,

“Automatic construction and ranking of topical keyphrases on collections
of short documents,” in Proceedings of the 2014 SIAM International
Conference on Data Mining, Philadelphia, Pennsylvania, USA, April
24-26, 2014, 2014, pp. 398–406.

[37] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, 1994, pp. 487–499.

[38] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, 2000.

[39] “Gaussian distribution z table,” https://bit.ly/2Ru7eeH.
[40] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-

tion retrieval. Cambridge University Press, 2008.
[41] J. H. Lau, D. Newman, and T. Baldwin, “Machine reading tea leaves:

Automatically evaluating topic coherence and topic model quality,” in
Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, EACL 2014, April 26-30,
2014, Gothenburg, Sweden, 2014, pp. 530–539.

[42] “Anova,” https://en.wikipedia.org/wiki/Analysis of variance.
[43] Y. Miao, E. Grefenstette, and P. Blunsom, “Discovering discrete latent

topics with neural variational inference,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, 2017, pp. 2410–2419.

288

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:31:18 UTC from IEEE Xplore. Restrictions apply.

