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Recovering deformable surfaces is an interesting and beneficial

research problem for computer vision and image analysis. An
effective deformable surface recovery technique can be applied in
a variety of applications for surface reconstruction, digital enter-

tainment, medical imaging and Augmented Reality. While con-
siderable research efforts have been devoted to deformable sur-

face modeling and fitting, there are only few schemes available
to tackle the deformable surface recovery problem efficiently.

This thesis proposes a set of methods to effectively solve the
2D nonrigid shape recovery and 3D deformable surface track-

ing based on a robust progressive optimization scheme. The
presented techniques are also applied to a variety of real-world
applications.

To tackle the 2D nonrigid shape recovery problem, this the-
sis first presents a novel progressive finite Newton optimization

scheme, which is based on the local feature correspondences.
The key of this approach is to formulate the nonrigid shape

recovery as an unconstrained quadratic optimization problem
which has a closed-form solution for a given set of observations.

For the appearance-based method, a deformable Lucas-Kanade

algorithm is proposed which triangulates the template image
into small patches and constrains the deformation through the
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second order derivatives of the mesh vertices. It is formulated
into a sparse regularized least squares problem which is able

to reduce the computational cost and the memory requirement.
The inverse compositional algorithm is applied to efficiently solve

the optimization problem. Furthermore, we present a fusion ap-
proach to take advantage of both the appearance information
and the local features.

As for the 3D deformable surface recovery, the key challenge
arises from the difficulty in estimating a large number of 3D

shape parameters from noisy observations. In this thesis, 3D
deformable surface tracking is formulated into an unconstrained

quadratic problem that can be solved very efficiently by resolv-
ing a set of sparse linear equations. Furthermore, the robust

progressive finite Newton method developed for nonrigid sur-
face detection is employed to handle the large outliers.

Without resorting to an explicit deformable mesh model, the

nonrigid surface detection can be treated as a generic regres-
sion problem. A novel velocity coherence constraint is imposed

on the deformable shape model to regularize the ill-posed op-
timization problem. To handle the large outliers, a progressive

optimization scheme is employed.
In addition to the methodologies studied and evaluated in

computer vision, this thesis also investigates the nonrigid sur-

face recovery in some real-world multimedia applications, such
as Near-duplicate image retrieval and detection. In contrast to

conventional approaches, the presented technique can recover
an explicit mapping between two near-duplicate images with a

few deformation parameters and find out the correct correspon-
dences from noisy data effectively. To make the proposed tech-

nique applicable to large-scale applications, an effective multi-
level ranking scheme is presented that filters out the irrelevant
results in a coarse-to-fine manner. To overcome the extremely

small training size challenge, a semi-supervised learning method
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is employed to improve the performance using unlabeled data.
Extensive evaluations show that the presented method is clearly

effective than conventional approaches.
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可變形曲面恢復及應用 

論文摘要 

在計算機視覺和圖像分析領域，恢復可變形曲面是非常有意義同有價值的研究課

題。變形曲面恢復技術有著廣泛的應用，如非剛性表面重建、數字娛樂、醫學影

像和擴充現實。儘管過去已經有大量關於建立和擬合可變形曲面模型的研究，目

前仍然缺少比較有效而且快速的方法來解決這個問題。本論文提出了一系列方法

來解決二維非剛性形狀恢復和三維可變形曲面重構，而且這些方法皆基於魯棒的

漸進優化方法。同時這項技術被應用在包含多媒體檢索在内的許多現實問題中。 

本論文首先提出了新穎的漸進式有限牛頓優化方法來解決二維形狀恢復問題。這

個方法的關鍵是我們把二維形狀恢復問題闡明成無約束的二次優化問題，而且在

給定一組觀測值的前提下，可以得到閉合解。 

其次，本論文提出了基於外觀的可變形 Lucas‐Kanade 算法。該方法先將模板圖像

劃分成三角形小塊，然後用劃分三角網格的坐標的二階導數來約束變形模型的變

形幅度。而且相關優化問題被闡明成了稀疏正則最小平方問題，從而同時減少了

計算量和内存需求量。這個優化問題則可以用逆組成算法來高效地解決。另外，

我們也提出了融合算法用來同時利用外觀和局部特徵信息。 

對於三維曲面恢復問題，最大的困難來自于從有噪聲的觀測中估計出大量的三維

形狀參數。本論文將三維曲面重構問題闡述成無約束的二次優化問題，並通過解

一系列稀疏綫形方程組來得到最終優化解。進一步而言，用於二維形狀恢復的漸

進式有限牛頓優化方法可以用來處理觀測結果中的大量異常值。 

此外，本論文還將非常性形狀檢測闡明成一般性回歸問題，從而不需要訴諸于顯

性的可變形網格模型。爲了約束形狀變形和解決不適定問題，我們在這個一般性

回歸模型基礎上外加了新穎的速度一致約束。 

除了以上在計算機視覺領域的方法論研究和評估，本論文也探討非剛性曲面恢復

在一些實際多媒體領域的應用，比如近似副本圖像的檢索和檢測。跟傳統方法不

同，本論文提出的方法不但可以通過大量變形參數恢復出兩個近似副本圖像之間

的顯性映射關係，而且可以非常有效地從有噪聲的大量觀測中找出正確的點對點

對應關係。為了使提出的方法應用到大規模數據集上，我們提出了有效的多層排

序方案使用由粗到精的方式來過濾非相關中間結果。爲了克服小樣本訓練難題，

本論文提出了半監督學習方法，可以利用無標簽樣本的信息來提升檢索性能。 
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Chapter 1

Introduction

Deformable surface recovery is essentially a computer vision task
with a variety of applications in image alignment [116], sur-

face reconstruction, medial imaging, object detection [76], ob-
ject recognition [20], augmented reality [123], human computer
interaction and digital entertainment. In this chapter, we de-

scribe the main problem, the motivation of our research, and
the challenges of the research topic. The key contributions of

this thesis are also described.

1.1 Deformable Surface Recovery

Deformable surface recovery from images is always an interest-

ing research problem in computer vision and image analysis.
There are various kinds of input data sources in the deformable

surface recovery problem, such as single still image, multiple
uncalibrated image, monocular video, stereo video and photo-

metric stereo. Among these data acquisition methods, photo-
metric stereo [7] and structure light method [111] require either
the strict illumination configuration or the active input light,

which limit their scope of application. Without making the
strict assumption on the working environment, in this thesis,

we focus on the problem related to recovering the deformable

1



CHAPTER 1. INTRODUCTION 2

surface from single image and monocular video, which has at-
tracted increasing attention in recent years. As for the stereo-

based methods [16], they are able to take advantage of the ef-
fective deformable surface recovery algorithm developed for the

monocular video and still images.
To make it clear, the deformable surface recovery problem is

studied in 2D and 3D separately. 2D nonrigid shape recovery

only locates the landmark points, while 3D deformable surface
recovery deals with the more challenging problem of estimating

the 3D model from the 2D observations.

1.1.1 2D nonrigid shape recovery

The main goal of 2D nonrigid shape recovery is to extract the

deformable shape’s structure from a given input image. In gen-
eral, most of the current nonrigid shape recovery methods can
be divided into two categories.

The first group is dependent on the extracted salient features
in the image. In this group, there are two different methods to

estimate the nonrigid mapping function from the local feature
information. One is to take advantage of local feature matching

in order to find correspondences [123], and employ a smooth-
ing method to eliminate the false matches. The other directly

matches two salient point sets by treating nonrigid shape recov-
ery as a general graph matching problem [20, 26].

The second group is based on the appearance information,

which tries to minimize the residual image between the synthe-
sized template image and the input image [23].

Unlike nonrigid shape recovery, nonrigid surface detec-
tion [76] does not require any initialization or a prior pose in-

formation, which provides a fully-automatic solution. Note that
only the local feature correspondence-based methods are em-
ployed in the nonrigid surface detection task, while the global
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appearance-based approaches [124] usually require good initial-
ization to avoid stucking at the local minima.

1.1.2 3D deformable surface recovery

3D deformable models are extensively studied in computer graph-
ics and computer vision for modelling, visualization, simulation

and animation. Based on these models, 3D deformable surface
recovery aims to reconstruct the visible surfaces from the laser-
scanner data, stereo disparity map, image and video sequence.

Various approaches have been proposed in the literature.
First of all, 3D surface can be directly extracted from the

depth map data obtained by a laser-scanner, which usually con-
tains less outliers than many other methods. To build the trian-

gulated mesh surface, either the geometry-based triangulation
method [43] or the implicit surface model fitting [18, 117] can
be adopted in practice.

Without a dedicated device, the deformable surface can be
directly recovered from the images, which may contain a large

number of outliers. To fit the noisy disparity data obtained
from image stereo, a prior generic mesh model is employed to

constrain the surface deformation, which leads to a regularized
least square optimization problem [45, 47].

Structure from motion method shows the promising results on
recovering the 3D deformable shape from image sequences [19],
which directly factorizes the tracked 2D point locations. More-

over, the shape deformation is represented as a linear combina-
tion of the shape basis.

In terms of the online application, 3D deformable surface
tracking takes advantage of the temporal information from con-

secutive frames in a video clip, and imposes the temporal and
spatial consistence constraints to regularize the surface defor-
mation.
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1.2 Motivation

Given an annotated image example or a 3D textured mesh model,
it is interesting to find out some automatic methods to spatially

align the pre-defined model to the input image containing the
object. This process can be employed to locate the object from
the still image and extract the detailed structure information at

the same time. Moreover, the object classification performance
can be remarkably boosted by properly aligning the testing im-

ages to a predefined template. In addition, the motion of the
deformable surface can be captured by tracking through a video

sequence, and the results can be further used in computer an-
imation. Therefore, the main objective of this thesis is how to
effectively recover the deformable surface from images. However,

deformable surface recovery is known to be very challenging due
to involving the highly ill-posed optimization problem.

To tackle this critical problem, various deformable models
are introduced to make the problem tractable by constraining

the searching space of the deformation parameters. Generally
speaking, there are two steps to build a deformation model.

The first step is to find out an effective way to represent the
deformable surface, which could be either an explicit triangu-
lated mesh model or a set of points. In the second step, the

regularization is imposed on the deformable surface to model
and constrain the various kinds of deformation. Note that the

regularization method is vital to deformable surface recovery
which usually contains noisy observations and associates with

the ill-posed optimization.
In this thesis, we try to explore different deformation mod-

els and propose novel deformable surface recovery methods for
the real-world applications. We start from a local feature-based
method that facilitates an automatic solution to detect the non-

rigid surface. And then, the appearance is taken into account
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to exploit more information. For the even more challenging 3D
deformable surface tracking, the temporal motion models over

video sequences are employed to handle the ambiguity issue in
scene depth.

1.3 Challenges

As a computer vision task, there are lots of challenges. In the
following, we discuss the major aspects which have to be taken

into account to develop a robust deformable surface recovery
system.

(a) Paper (b) Bag

Figure 1.1: Example of the large bending deformations. (a) A piece of paper
is severely bended. (b) A bag is bended.

(1) Noisy data.

As only local feature descriptors are compared, the in-
correct matches cannot be avoided in the feature-based

method. On the other hand, the deformable surface is
usually highly dynamic and represented by a large num-

ber of deformation parameters. Thus, it is difficult to di-
rectly apply the robust techniques widely used in statistics

to remove the spurious matches. Furthermore, deformable
surface recovery requires a sufficient number of correct cor-
respondences in order to obtain high registration accuracy.
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(2) Deformations.
Deformation usually occurs in the real-world applications.

Fig. 1.1 shows a piece of paper and a bag under severe
bending. Although a surge of research efforts have been

devoted to the feature descriptors and matching, there is
still a lack of an effective descriptor or matching scheme to
handle the general deformations.

(3) Ambiguity.
Due to using the 2D observations only, solving the depth

ambiguity issue is a challenging problem in the 3D monoc-
ular deformable surface tracking.

Figure 1.2: An example of face images with different illuminations.

(4) Illumination changes.

Illumination change in images is an important issue to be
taken into account. Fig. 1.2 shows sample face images with

different illuminations from the CMU PIE dataset [85]. In
order to develop a robust system, we also consider that

it should be capable of recovering the deformable surface
under different illumination conditions.

(5) Perspective distortions.
Perspective distortions are mainly introduced by the cam-
era lens, which needs to be properly handled in practice.

Fig. 1.3(a) shows an example of perspective distortions.
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(a) Perspective distortion (b) Occlusion

Figure 1.3: (a) Magazine cover with perspective distortions. (b) Magazine
cover is occluded by hand.

(6) Occlusions.
Partial occlusion is always an issue to be concerned in ob-
ject detection and tracking. Fig. 1.3(b) shows that a mag-

azine cover is partially occluded by hand. Also, the non-
convex surface may encounter the self-occlusion issue which

requires to be properly handled.

1.4 Main contributions of the thesis

This thesis intends to develop the techniques that can effec-

tively build the deformation models and efficiently recover the
deformable surface. To this end, we have investigated both 2D

nonrigid shape recovery and 3D deformable surface tracking
problems respectively. A progressive finite Newton optimiza-

tion scheme is proposed to attack the nonrigid surface detection
problem. By taking advantage of the appearance information,
a deformable Lucas-Kanade algorithm is presented for image

alignment with large deformations. Furthermore, 3D deformable
surface tracking is formulated into an unconstrained quadratic

optimization problem which is reduced to a set of sparse linear
equations. The main contributions of this thesis can be further

summarized as follows:
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(1) Nonrigid surface detection.
There are two different methods for nonrigid surface detec-

tion that will be presented in this thesis:

First, a novel progressive finite Newton optimization scheme
for the nonrigid surface detection problem is proposed, which

is reduced to only solving a set of linear equations. The key
of this method is to formulate the nonrigid surface detec-
tion as an unconstrained quadratic optimization problem

that has a closed-form solution for a given set of observa-
tions. Moreover, a progressive active-set selection scheme

is employed, which takes advantage of the rank information
of the detected correspondences.

In contrast to the first method, the second approach to non-

rigid surface detection is formulated as a generic regression
problem which does not require an explicit deformable mesh
model. In addition, the proposed velocity coherence regres-

sion is equivalent to a special case of Gaussian Progress re-
gression. Furthermore, the velocity coherence constraints

are employed as the regularization term in this method.

(2) Image alignment.

The conventional Lucas-Kanade algorithm for image align-
ment only estimates either the affine transformation or the

homography between the template image and the target
image, which usually does not consider the local deforma-
tions. To deal with the image alignment with large defor-

mations, we propose a novel deformable Lucas-Kanade al-
gorithm which triangulates the template image into small

patches and constrains the deformation through the sec-
ond order derivatives of the mesh vertices. The presented

deformable Lucas-Kanade algorithm is further formulated
into a sparse regularized least squares problem, which is
able to reduce the computational cost and the memory re-
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quirement. To solve the optimization problem in the de-
formable Lucas-Kanade fitting, an efficient inverse compo-

sitional algorithm is employed.

(3) 2D shape recovery.

A fusion approach is presented to tackle the nonrigid shape
recovery problem, which is able to take advantage of both

the appearance information and the local feature corre-
spondences. Moreover, the inverse compositional algorithm
is also employed to deal with the associated optimization

problem.

(4) 3D deformable surface tracking.

Referring to the recent Second Order Cone Programming
(SOCP) method [80], we first reformulate the 3D deformable

surface tracking into an unconstrained quadratic optimiza-
tion problem. Then, a closed-form solution for this problem

is proposed, which is reduced to only solving a set of sparse
linear equations. Based on this new framework, the pro-

gressive finite Newton optimization scheme is adopted to
handle large noisy observation.

(5) Near-duplicate keyframe retrieval and detection.
We apply the proposed nonrigid surface detection method
to retrieving the near-duplicate keyframes from real-world

video corpora, which is an important problem in the mul-
timedia domain. In contrast to the conventional meth-

ods, the proposed method takes consideration of the spa-
tial coherence between two near-duplicate images, which is

able to handle the local deformations. Moreover, this tech-
nique can recover an explicit mapping between two near-
duplicate images with a few deformation parameters and

find out the correct correspondences from noisy data ef-
fectively. To make this technique applicable to large-scale

applications, we suggest an effective multi-level ranking
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scheme that filters out the irrelevant results in a coarse-
to-fine manner. In order to overcome the extremely small

training size challenge in the near-duplicate keyframe re-
trieval, a semi-supervised learning method is employed to

improve the performance by taking advantage of unlabeled
data.

1.5 Thesis outline

This thesis reviews the main methodology in deformable surface
recovery, and proposes some approaches to tackle this challeng-

ing research topic. To solve the associated optimization prob-
lem, an effective coarse-to-fine scheme has been presented. In
addition to solving the conventional image registration and ob-

ject tracking problem in computer vision, this thesis also em-
ploys the proposed technique to tackle the problems rising in

multimedia domain, such as near-duplicate image retrieval and
detection. The rest of this thesis is organized as follows:

• Chapter 2.
This chapter reviews some background knowledge of the
recent work on deformable surface modelling and recovery.

Moreover, the main methodology and problems will be de-
scribed.

• Chapter 3.
In this chapter, we first introduce the feature-based ap-

proach to nonrigid surface detection, which offers a promis-
ing automatic solution. A novel progressive finite Newton

approach is proposed to attack the associated optimization
problem. Also, the 2D Finite Element Model is employed
to regularize the surface deformation. This method will

be evaluated on various applications, such as real-time re-



CHAPTER 1. INTRODUCTION 11

texturing the nonrigid surface and medical image registra-
tion.

• Chapter 4.
This chapter presents a fusion approach to recover 2D non-

rigid shape, which takes advantage of both the appearance
information and the local features. Moreover, a deformable
Lucas-Kanade algorithm is proposed for image alignment

with large deformations. Extensive evaluations on these
two methods will be illustrated.

• Chapter 5.
Deformable surface recovery in 3D environment is more

challenging than its 2D counterpart. In this chapter, we
propose an effective closed-form solution for the 3D de-

formable surface tracking problem. A novel unconstrained
quadratic optimization formulation is presented, which is
reduced to a set of sparse linear equations. Moreover, the

progressive finite Newton scheme described in Chapter 3 is
employed to gradually reject the outlier matches. Exten-

sive evaluations on both synthetic and real-world data will
be discussed.

• Chapter 6.
Instead of using the explicit triangulated mesh model in the

previous part of this thesis, this chapter presents a robust
velocity coherence regression method, in which the nonrigid
surface detection is formulated as a generic regression prob-

lem. The velocity coherence constraint is imposed to regu-
larize the surface deformation. Evaluations on this method

will be presented.

• Chapter 7.

In this chapter, we apply the proposed 2D nonrigid surface
detection method to tackle the near-duplicated keyframe
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retrieval problem, which catches more and more attention
in multimedia community. To accelerate the method for

large-scale data, a Multi-Level Ranking framework is pre-
sented, which takes advantage of the semi-supervised rank-

ing techniques. Extensive evaluations on keyframes from
TRECVID 2003 and TRECVID 2004 video corpora will be
studied.

• Chapter 8.
Finally, this chapter summarizes the whole thesis and ad-

dresses some directions to be explored in future work.

2 End of chapter.



Chapter 2

Background Study

During the past several decades, extensive research efforts in
the computer vision community have focused on the problem on

deformable object modeling and tracking [76, 116, 117, 122, 123].
There is a rich basis for deformable surface recovery. In this
chapter, we first take a brief overview of the deformable surface

modeling and recovery methods, and then review them in detail
in the subsequent sections.

2.1 Overview

The interests in deformable surface recovery are very closely
related to problems such as motion capture [99], simulation,

image registration [6], feature matching [69] and object recog-
nition [20]. Deformable models offer an attractive approach to

tackling such kind of problems. This is because these models are
able to represent the complex shapes and broad shape variabil-

ity of anatomical structures. Also, deformable models overcome
many of the limitations of conventional low-level image process-
ing techniques, which provide compact and analytical represen-

tations of object shape and incorporates anatomic knowledge.
Generally speaking, deformable surface models stem from the

fusion of geometry, physics, statistical machine learning, and

13
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optimization theory. Geometry is the main tool to represent the
object surface. Moreover, physics law imposes constraints on

how the shape may vary over space and time. Furthermore,
the statistical machine learning methods show excellent per-

formance on modelling the surface deformations directly from
examples and constraining the searching space of the deforma-
tion parameters. Finally, optimization approximation theory

provides a mathematical foundation to estimate the deforma-
tion parameters from the noisy observations. The continuous

development and refinement of these models should remain an
important area of research into the future.

Prior models are essential to making the ill-posed optimiza-
tion in deformable surface recovery trackable. Numerous de-

formable models have been proposed in the literature, which
can be roughly divided into several categories. First of all, since
surface deformation is essentially a natural phenomena, it is

intrinsically studied from the geometry aspect. Thus, lots of
physics-based models have been presented. The finite element

method [91] is the most representative physical model used in
deformable surface recovery. Second, the underlying problem

for deformable surface recovery is to find out an optimal map-
ping function that fits to the input data. This can be tackled by
the general data interpolation technique [98], which wins suc-

cess in the point set matching problem. Third, the deforma-
tions are able to be directly modeled from examples by taking

advantage of the advance in data embedding. Moreover, the
statistical regularization theory provides a convenient tool to

constrain the search space of the deformation parameters. Fi-
nally, the factorization method [19] makes use of both temporal

motion information and linear subspace assumption, and simul-
taneously recovers the object motion and nonrigid shape from
the video sequence. These models will be introduced in the fol-

lowing sections.
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2.2 Physics-based Model

Physics-based model has been extensively investigated in the
past two decades. In general, the physical interpretation views

deformable models as elastic bodies which respond naturally
to applied forces and constraints. Typically, deformation en-
ergy functions defined in terms of the geometric degrees of free-

dom are associated with the deformable model. The energy
grows monotonically as the model deforms away from a speci-

fied natural shape, and often includes the terms that constrain
the smoothness of the model. Taking a physics-based view of

classical optimization, external energy functions are usually de-
fined in terms of the data to be fitted, which give rise to external
forces to deform the model.

From the above studies, Kass et. al [51] introduced Ac-
tive Contour Models (or ’Snakes’) which are energy minimizing

curves. In the original formulation, the energy has an internal
term which aims to impose smoothness on the curve, and an ex-

ternal term which encourages movement toward image features.
They are often used to approximate the locations and shapes of

object boundaries in images based on the reasonable assumption
that boundaries are piecewise continuous or smooth. Later, this
method was extended to 3D surface modelling by deformable su-

perquadrics [91] and elastically deformable ballon model [22, 66].
However, since no deformable model other than the second order

smoothness term is imposed, they are not optimal for the ob-
jects which have a known shape. This problem can be alleviated

by incorporating the data-driven model that will be introduced
in Section 2.4.

The finite element method is one of the most representative
physics-based model, which comes from the mechanical engi-
neering field and provides an analytic surface representation.

In [45], the triangulation facets are treated as C0 finite elements,
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which approximates the sum of square of the derivatives of dis-
placements across the surface. This leads to an effective regu-

larization term to prevent deformations at neighboring vertices
of the mesh facets from being too different. Furthermore, the

mesh model with hexagonally connected vertices has been suc-
cessfully used in 3D reconstruction [32] and real-time nonrigid
surface detection [76, 123]. This model mainly imposes the pe-

nalization of the squared second-order derivative of the mesh
vertex coordinates.

Besides the explicit mesh representation, Free Form Deforma-
tion enables the researchers to parameterize an arbitrary mesh

that may be irregular or with a large number of vertices, in
terms of a relatively small number of control points and there-

fore parameters. By taking advantage of the Free Form De-
formation representation, the implicit surfaces method [46, 47]
shows promising results on fitting 3D deformable surface from

the quite noisy image stereo data.
In addition to the above physics-based models, physical con-

straint plays a very important role in regularizing the deformable
surface. For example, the temporal motion information is com-

monly used in nonrigid shape recovery from video sequences [19].
Moreover, Salzmann [82] synthesizes the paper-like deformable
surface examples by strictly enforcing the degree of freedom for

each mesh vertex.

2.3 Interpolation

Generally speaking, deformable surface recovery can be formu-
lated as a problem of correspondence: finding an optimal map-
ping between one set of points and another set of points. Such

mapping can be found by the interpolation method [98] which
is highly effective to search for the optimized nonlinear map-

ping function between the source and the target. Also, such
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nonlinear mapping function shown to be very promising in rep-
resenting various image distortions induced by different kinds

of deformations. Therefore, lots of nonrigid shape recovery ap-
proaches are developed on top of the data interpolation method,

such as Radial Basis Functions [6] and Thin-Plate Spline [20],
which are originally used in regression analysis.

Thin-Plate Spline is the most popular mapping function used

in point set matching problem. Formally, Thin-Plate Spline is
defined by the centers and coefficients as follows:

f(u) =

n∑

i=1

[
wx

i

wy
i

]
φ(|u− ui|) + Au + t (2.1)

where φ(r) = r2 log r and u = [ x y ]⊤. A and t are affine

transformation parameters. The matrix W ∈ Rn×2 is defined as
below:

W =

[
wx

1 wx
2 . . . wx

n

wy
1 wy

2 . . . wy
n

]⊤
,

which specifies the nonlinear mapping with n centers.
Thin-Plate Spline is mainly penalized by bending energy Eb,

which is defined as the integral of the squares of the second
derivatives [89]:

Eb =

∫ ∫
(f 2

xx + 2f 2
xy + f 2

yy)dxdy

Usually, the point set matching problem minimizes the sum
of residual errors and penalty term. To deal with the associ-
ated optimization problem and the noisy observations, various

approaches have been proposed in the literature. Several rep-
resentative methods are described in the following part of this

section.
Chui et al. [20] present a coarse-to-fine approach to jointly

determine the correspondences and nonrigid transformation be-
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tween two point sets through deterministic annealing and soft-
assign. Moreover, shape-context feature is used to find the local

point correspondences. Additionally, an iterative algorithm is
employed to estimate both the correspondences and the nonlin-

ear mapping function.
In the most recent studies, the probabilistic approach for the

nonrigid point set matching is attracting increasing research in-

terests [49, 67, 71]. The point set matching is interpreted as
a mixture density estimation problem [38], where one point set

represents the centers of Gaussian mixture models and the other
represents sample data. This problem is usually solved by the

Expectation Maximization (EM) algorithm. Another idea is to
model each of the two point sets by a kernel density function and

then measure the similarity. In [96], Tsin and Kanade proposed
a kernel correlation based approach to register the nonrigid point
set, which minimizes the L2 norm between the distributions.

Later, Jian and Vemuri [49] extended this approach via repre-
senting the density by Gaussian mixture models. Furthermore,

Myroneko et al. [71] presented a coherent point drift method for
nonrigid point set registration, which does not make an explicit

assumption of the transformation model.
The point set matching problem can also be simply viewed as

a graph-matching problem [26], in which graph nodes represent

feature points extracted from either an input image or a model
image and graph edges represent relationships between feature

points. The problem of graph matching is to find a mapping be-
tween the two node sets that preserves as much as possible the

relationships between nodes. Because of its combinatorial na-
ture, graph matching is either solved exactly in a very restricted

setting or approximately.
In contrast to the point set matching method, Bartoli and

Zisserman [6] present an intensity-based scheme, which directly

minimizes the registration residual errors. In this scheme, both
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control point positions and transformation coefficients are opti-
mized simultaneously.

2.4 Data Embedding

As a data-driven method, data embedding is intensively studied
in the statistical machine learning community, which is widely

used in image processing, computer vision and computer graph-
ics. There are three important approaches in data embedding:

Principal Component Analysis [33], ISOMAP [90] and Locally
Linear Embedding [79]. In this thesis, we only focus our atten-

tion on the conventional Principal Component Analysis-based
methods.

Benefiting from the excellent reconstruction and projection

characteristics, Principal Component Analysis is employed to
build deformable model directly from the examples [23, 82, 13].

Among the various data-driven approaches, Active Appearance
Model and 3D Morphable Model win great success in recent

years, which take into account of both the structure and appear-
ance information. In this section, we first introduce Principal
Component Analysis. Then, two representative approaches, Ac-

tive Appearance Model and 3D morphable model, are presented
respectively. Finally, the factorization method is introduced.

2.4.1 Principal Component Analysis

Principal Component Analysis is commonly used in signal pro-
cessing, statistics, machine learning and image analysis. The

fundamental idea in Principal Component Analysis is to find the
components so that they explain the maximum amount of vari-
ance possible by some linear transformed components. There-

fore, Principal Component Analysis is mainly used to remove
the redundancy from the data. The representation given by
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Principal Component Analysis is an optimal linear dimension
reduction technique in the mean-square sense, and noises may

be reduced.
Given a set of data {x1,x2, . . . ,xl} taking values in an n di-

mensional feature space, the Principal Component Analysis of
a random vector x factorizes its covariance matrix by eigen-
decomposition. An important property of Principal Component

Analysis is its optimal signal reconstruction in the sense of min-
imum mean-square-error when only a subset of principal com-

ponents is used to represent the original signal. Therefore, the
data x ∈ Rn can be projected on the low dimension space:

b = P⊤(x− x̄) (2.2)

where P ∈ Rn×m is the projection matrix that is made of the
eigenvectors corresponding to the m largest eigenvalues. More-

over, the low dimensional vector b ∈ Rm captures the most
expressive features of the original data.

2.4.2 Active Appearance Model

Active Appearance Model [1, 23, 24] has been proven to be
a very successful method in fitting statistical models of appear-
ance onto new images. Active Appearance Model is taking the

analysis-through-synthesis approach to the extreme, which has
been successfully applied in numerous different applications [1,

23]. It establishes a compact parameterizations of object vari-
ability, as learnt from a training set by estimating a set of latent

variables. The modeled object properties are usually shape and
pixel intensities. If only considering the shape variations, this
degenerated model is named as Active Shape Model [25] which

manipulates a shape model to describe the location of structures
in a target image. In contrast to Active Shape Model, Active

Appearance Model is able to synthesize novel photo-realistic
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images. Therefore, we will only introduce Active Appearance
Model in detail in the following part of this section.

Building Active Appearance Model

The main idea in modeling the shape variations is to perform

Principal Component Analysis on a set of aligned shapes. Then,
a new shape instance s ∈ R2n with n landmark points can be
synthesized by:

s = s̄ + Psbs (2.3)

where s̄ represents the mean shape, and projection matrix Ps ∈

R2n×m contains the m eigenvectors corresponding to the largest
eigenvalues. bs is a vector formed by a set of deformation pa-
rameters, which controls the shape variations. Thus, we can

manipulate the shape model by changing bs. Given a shape
instance s, bs can be estimated as below:

bs = P⊤s (s− s̄) (2.4)

Similarly, the appearance model is built by applying Principal

Component Analysis on the pixel intensities. To align the train-
ing samples, all the images are mapped into the reference frame
by piecewise-affine mapping or Thin-Plate Spline in Eqn. 2.1.

Fitting Algorithm

The objective of Active Appearance Model fitting is to directly

minimize the residual error between the sampled input image
and the synthesized model instance. Generally speaking, there

are three different approaches to fitting Active Appearance Model
onto a still image.

Multi-linear regression for Active Appearance Model fit-

ting [23, 88] is a statistical approach, which mainly learns the
relation between the displacements of model parameters and

residual images. This method requires a separate learning step
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in order to build the Gram matrix from a large collection of the
training samples. Under this framework, canonical component

analysis [29] can also be employed to estimate the update of the
shape and appearance parameters.

Lucas-Kanade framework provides a general solution for
an image alignment problem. As the objective of Active Appear-
ance Model fitting is exactly same as the goal of Lucas-Kanade

algorithm, it can be treated as an image alignment problem.
In [65], Baker and Matthew thoroughly investigate Active Ap-

pearance Model fitting under the Lucas-Kanade framework, and
propose a very efficient inverse composition algorithm. Based

on Baker and Matthews’ work, several more specific problems
are studied, such as occlusion [36] and mutiview fitting [56].

Similar to the original Lucas-Kanade algorithm, these meth-
ods employ the steepest descent optimization scheme. Among
the algorithms described in [65], the inverse composition algo-

rithm is the most efficient one, and can reduce the computational
cost by pre-computing the Hessian matrix. Comparing to multi-

linear regression, Lucas-Kanade algorithm-based approaches do
not require a training phase, and can take advantage of the ad-

vance in steepest descent optimization, such as line search and
Levenberg-Marquardt method [15].

Discriminative methods impose Active Appearance Model

fitting problem as a classification task. In [27], Constrained Lo-
cal Model directly searches the surrounding patches to locate the

facial landmark points. Moreover, a discriminative appearance
model [61] utilizes the weak-classifier to extract the shape from

a still image. Similar to Active Shape Model, the discrimina-
tive method is optimized for the local feature locality accuracy

rather than the reconstruction error.
As many other appearance-based image alignment methods,

Active Appearance Model fitting tends to stuck at local minima,

and requires good initialization. A remedy is to employ either
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the multiple-resolution fitting [23] or a feature-based initializa-
tion method [124].

Application

Numerous interesting applications are developed on top of the
Active Appearance Model fitting, such as face alignment [23],
head tracking [1, 122], facial expression analysis, gaze estima-

tion [105] and Augmented Reality [116]. Fig. 2.1 demonstrates
an application based on the Active Appearance Model tracking.

we roughly describe the main methodology in the following. In
this example, a two-stage scheme is employed for online non-

rigid shape recovery toward Augmented Reality applications.
First, 3D shape models are built from Active Appearance Model

tracking results offline, which does not involve processing of the
3D scan data. Based on the computed 3D shape models, an effi-
cient online algorithm is employed to estimate both 3D pose

and non-rigid shape parameters via local bundle adjustment
for building up point correspondences. This approach, without

manual intervention, can recover the 3D non-rigid shape effec-
tively from either real-time video sequences or a single image.

The estimated 3D pose parameters can be used for Augmented
Reality registrations, as illustrated in Fig. 2.1.

2.4.3 3D Morphable Model

3D morphable model is first presented by V. Blanz and T. Vet-

ter [13] to synthesize and analyze the facial images, which has
been successfully used in a large number of applications, such

as face recognition [14, 110], facial expression analysis, face re-
construction and exchanging faces in still images [12].

Similar to Active Appearance Model, 3D morphable model
employs Principal Component Analysis to learn a sophisticated
statistical model and regularize the deformation parameters. In-
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Tracking faces using proposed method in the augmented video
sequences, the axis in the displayed frames indicates the current 3D pose of
tracked subject.

stead of a sparse 2D mesh model used in Active Appearance

Model, 3D morphable model adopts a dense 3D mesh model in
order to synthesize the photo-realistic facial image.

By taking advantage of its 3D representation and the ren-
dering techniques in computer graphics, 3D morphable model
enjoys several merits. First of all, it offers a promising approach

to tackling the pose variations problem in face recognition and
head tracking. Second, the lighting problem can be properly

handled through introducing some illumination models, such
as Phong illumination model [13, 14] and spherical harmonic

model [8, 110]. When the light source position is available, cast
shadows and specular reflections can be correctly modeled. Fi-

nally, this method is able to render photo-realistic image with
fewer artifacts.

As another appearance-based fitting method, this technique

requires a good initialization for pose and illumination param-
eters in order to avoid stucking at local minima during the op-
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(a) Input image (b) Fitting result

Figure 2.2: An example of 3D face fitting using 3D mophable model. (a)
Original input image. (b) The estimated 3D face is overlaid on the input
image.

timization process. Moreover, the regularization is essential to

tackling the overfitting issue, which is properly handled by Prob-
abilistic Principle Component Analysis. Fig. 2.2 demonstrates

a 3D face fitting example, which employs a gradient-based op-
timization method [115] to estimate the 3D pose, illumination

and model parameters.

2.4.4 Factorization Method

Usually, the factorization method first tracks the feature points
across the whole video sequence, and then recover both the mo-

tion parameters and the nonrigid shape simultaneously.
Bregler et al. [19] proposed a solution for recovering 3D non-

rigid shape models from image sequences. Their technique is
based on a non-rigid model, in which the 3D shape in each

frame is a linear combination of a set of basis shapes. By ana-
lyzing the low rank of the image measurements, they proposed
a factorization-based method that enforces the orthonormality

constraints on camera rotations for reconstructing the non-rigid
shape and motion. Later, Torresani et al. [93] extended the

method in [19] to initialize the optimization process in the fac-
torization method.
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Xiao et al. [105] presented a non-rigid structure-from-motion
algorithm that is able to convert an Active Appearance Model

into a 3D face model. They described how a non-rigid structure-
from-motion algorithm is able to be employed to compute the

corresponding 3D shape models from an Active Appearance
Model. Their method does not require 3D range data in [14]
and also shows fast fitting speeds. They then show how the 3D

modes could be used to constrain the Active Appearance Model
so that it not only can generate model instances, but also can

be generated with the 3D modes. In [116], a similar technique
is employed to recover the 3D shape basis for an online tracking

application.
Note that these methods [19, 93] have been successfully used

in offline non-rigid shape recovery from image sequences through
performing factorization analysis on the 2D tracked points. How-
ever, it is difficult to directly extend the above methods to an

online tracking application.

2.5 Convex optimization

In most recent work, 3D deformable surface recovery is formu-

lated as the convex optimization problems [80, 121] without re-
sorting to a deformation model. These convex problems can

be optimally solved very efficiently. The remaining part of this
section reviews several major convex optimization problems as-

sociated with this thesis. More details on convex optimization
theory can be found in [15].

2.5.1 Linear Program

Definition 1. Linear Program (LP): A convex optimization

problem is called a linear program when the objective and con-
straint functions are all affine. The LP is generally expressed as
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follows:

min
x

c⊤x + d

s. t. Gx � h,

Ax = b, (2.5)

where x ∈ Rn is the optimization variable, G ∈ Rm×n and A ∈
Rp×n.

2.5.2 Quadratic Program

Definition 2. Quadratic Program (QP): A convex optimiza-
tion problem is called a quadratic program if the objective func-

tion is convex and quadratic, and constraint functions are all
affine. The QP has the following form:

min
x

1

2
x⊤Px + c⊤x + d

s. t. Gx � h,

Ax = b, (2.6)

where P ∈ Sn
+, G ∈ Rm×n and A ∈ Rp×n.

Obviously, linear program can be viewed as a special case of
quadratic program when matrix P = 0.

The problem of minimizing the convex quadratic function

‖Ax− b‖22 = x⊤A⊤Ax− 2b⊤x + b⊤b

is an unconstrained QP. It arises in many fields and has many

names, e.g., regression analysis or least-squares approximation.
This problem is simple enough to have the well known analytical

solution x = A†b, where A† is the pseudo-inverse of A.

2.5.3 Cone Program

In addition to the standard forms of the convex optimization

problem, the generalized inequality constraints are another rep-
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resentation. One of the most representative case is the Cone
Program (CP), which is defined as below:

Definition 3. Cone Program (CP): A convex optimization
problem with generalized inequalities is called a Cone Program
if the objective is linear, and the inequality constraint functions

are all affine. The CP has the following general form:

min
x

c⊤x + d

s. t. Fx + g �K 0,

Ax = b, (2.7)

where K ⊆ Rk is a proper cone.

2.5.4 Second Order Cone Program

Definition 4. Second Order Cone Program (SOCP): A
second order cone program is closely related to quadratic pro-

gram, which has the following general form:

min
x

f⊤x

s. t. ‖Aix + bi‖2 ≤ c⊤i x + di, i = 1, . . . , m

Fx = g, (2.8)

where A ∈ Rni×n and F ∈ Rp×n.

A constraint of the form:

‖Ax + b‖2 ≤ c⊤x + d

is named as a second-order cone constraint, since it is the same

as requiring the affine function (Ax + b, c⊤x + d) to lie in the
second-order cone in Rk+1.

When Ai = 0, i = 1, . . . , m, the SOCP is equivalent to a
general LP. Similarly, if ci = 0, i = 1, . . . , m, then SOCP reduces

to a quadratic constrained quadratic program (QCQP).

2 End of chapter.



Chapter 3

Progressive Finite Newton
Optimization

In this chapter, we will introduce the feature-based nonrigid
shape recovery technique. A novel progressive finite Newton

optimization scheme is proposed for the nonrigid surface detec-
tion problem, which is reduced to only solving a set of linear
equations. Extensive experiments have been conducted for per-

formance evaluation on various environments, whose promising
results show that the proposed algorithm is more efficient and

effective than the existing iterative methods.

3.1 Motivation

The detection and tracking of the nonrigid objects in images and

videos is an interesting and beneficial research issue for computer
vision and image analysis [6, 75, 95]. The goal of nonrigid surface

detection is to extract the deformable shape’s structure from an
input image. The difference between nonrigid surface recovery

and detection is that the latter does not require any initializa-
tion or a priori pose information. An effective nonrigid surface
detection technique can be applied in a variety of applications

for digital entertainment, medical imaging [6] and Augmented
Reality, such as the re-texturing of images and videos [100, 101].

29
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Nonrigid surface detection can usually be treated as the prob-
lem of recovering the explicit surface with a few deformation

parameters and finding out the correct correspondences from
noisy data simultaneously. Many applications have been inves-

tigated for deformable object tracking and registration, such as
face tracking and modelling [14, 23, 28, 105, 116], and also more
generic and more deformable objects [6]. The major problem of

these methods is that they tend to be computationally expen-
sive and mainly aim at object recognition and image segmenta-

tion tasks rather than the nonrigid surface recovery. However,
a real-time and automated solution [75] has recently been pro-

posed, which takes advantage of an iterative robust optimization
scheme.

Unlike the rigid object pose estimation, it is difficult to di-
rectly employ a robust estimator, such as RANSAC [31] or
Hough transform [39], to remove the spurious matches for non-

rigid surface detection. Because the nonrigid surface is usually
highly dynamic and represented by many deformation param-

eters, the problem is far more complex than the rigid object
detection. Moreover, it requires a sufficient number of correct

correspondences in order to obtain high registration accuracy.
An alternative strategy is to iteratively solve for both the cor-
respondence and the transformation [10, 75]. However, these

methods are either sensitive to initial conditions and parame-
ter choices, or involve too many iterations and a complex opti-

mization procedure. Consequently, they are neither efficient nor
effective for real-time applications.

In this chapter, we propose a novel progressive finite New-
ton optimization scheme for nonrigid surface detection, which

has the advantage of solving only a fixed number of linear equa-
tions. Moreover, a progressive sample scheme far more efficient
than RANSAC is proposed to initialize the optimization process.

The previous method [75] is generally accepted as the most ef-
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(a) Starbucks pad (b) T-shirt

(c) Cover (d) Paper

Figure 3.1: Detecting nonrigid surfaces in real-time video (a-d). (a) The
contour is overlaid on the Starbucks pad. (b) T-shirt with shadow. (c) The
cover of a magazine. (d) A piece of paper with specular reflection.

fective state-of-the-art method in solving this kind of problem.

It employs an implicit iterative scheme for the first order partial
differential equation; however, this requires a large number of

iterations to solve the problem and remove the outliers simulta-
neously. We tackle this critical problem from two angles. First,

the nonrigid surface detection is formulated as an unconstrained
quadratic optimization problem, which inherits a closed-form so-
lution for a given set of observations. Thus, it can be efficiently

solved through LU factorization. Then, a progressive sample
scheme [21] is employed to initialize the optimization scheme,

which can decrease the number of trials significantly. There-
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fore, the proposed approach requires much fewer iterations than
the semi-implicit iterative optimization scheme [76], and it is

very efficient for real-time nonrigid surface recovery tasks. To
evaluate the performance of the proposed algorithm, extensive

experiments have been conducted on such diverse objects as a
Starbucks pad, a T-shirt, and the cover of a magazine, as shown
in Fig. 3.1.

3.2 Methodology and Overview

Although nonrigid surface detection in general is not new to re-

searchers in the computer vision domain, only a few approaches
are automatic and can achieve real-time results. Some appearance-
based approaches directly minimize the residual image between

the input image and the synthesized model image [23]. More-
over, optical flow information [6, 28] can be incorporated into

the optimization scheme to obtain better results. However, the
major limitation of these methods is that they tend to become

stuck at a local minimum and hence require good initialization.
In addition, it is usually difficult to handle the partial occlusion
for an appearance-based method. Well-designed markers widely

used in motion capture are also applied to recover the structure
of a nonrigid surface, such as cloth and paper [100, 101]. As

these methods rely on the physical markers, they require the
placing of pre-defined patterns on the target surface. Never-

theless, they are capable of high accuracy. On the other hand,
feature-based methods [10, 75] try to find out the transforma-

tion from the correspondences built by feature matching meth-
ods. Thus, these methods can benefit from the recent advances
in the feature detection and matching. In [75, 76], J. Pilet et al.

proposed an iterative approach to attack the fast nonrigid sur-
face recovery problem. Physical constraints based on the Finite

Element Model [95] are employed for regularization. A semi-
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implicit iterative scheme is proposed to solve the optimization
problem.

Recently, several sophisticated feature descriptors [62, 69]
have been proposed to handle the wide-baseline matching prob-

lem, including images with large deformation [60]. In addi-
tion, machine learning methods, such as random classification
trees [58], are also employed to find the point correspondences.

These methods can take advantage of shifting part of the com-
putational load from the matching phase to the training phase.

It is more complex to handle a large amount of deformation
parameters for detecting the nonrigid surface rather than only a

few pose parameters used in the rigid object detection. There-
fore, there are several challenges when applying conventional

robust estimators, such as RANSAC and M-estimator, for the
nonrigid surface detection task. One is the lack of a concise func-
tion which can estimate the deformed mesh from the correspon-

dences directly; instead, one may need to use a large number
of free variables, which can lead to a high computational cost

for each prediction step. Obviously, the semi-implicit iterative
approach [75] is not efficient enough to deal with this problem.

Another challenge is that the RANSAC-based approach requires
a large number of trials. This makes the problem even more
complex. Moreover, to the best of our knowledge, there is still a

lack of criteria for selecting the number of samples for each trial
in nonrigid surface detection. In rigid object pose estimation,

the sample number is usually set according to the number of
free parameters. However, the number of deformation parame-

ters for a nonrigid surface may be larger than the total number
of observations. This initialization problem is tackled through

a modified RANSAC method. The key is to draw from pro-
gressively larger sets of top-ranked correspondences [21], rather
than to treat all correspondences as equal and draw random

samples uniformly from the full set in RANSAC. Thus, the pro-
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gressive sample scheme affords large computational savings, and
the conventional robust estimator can be engaged for initializing

the nonrigid surface detection.
In contrast to the previous work, the proposed approach is

based on a progressive finite Newton scheme, in which the opti-
mization problem can be solved very efficiently by a factorization
method. In addition to offering computationally highly competi-

tive performance, the proposed modified RANSAC initialization
method can further reduce the number of Newton optimization

steps.
The rest of this chapter is organized as follows. In Sec-

tion 3.3, we present the proposed progressive finite Newton so-
lution. Section 3.3.1 describes the nonrigid surface model and

mapping function for a feature matching-based method. Sec-
tion 3.3.2 presents the object function which minimizes the cor-
respondence errors and surface energy. A robust estimator is

introduced to deal with the large outliers. In Section 3.3.3,
the nonrigid surface detection is formulated as an unconstrained

quadratic optimization problem, which is efficiently solved using
the factorization method. Section 3.3.4 presents the progressive

finite Newton optimization scheme to remove the spurious cor-
respondences, and the progressive sampling method to initialize
the optimization. Section 3.4 provides the details of the exper-

imental implementation and describes the experimental results.
Limitations are discussed in Section 3.5. Section 3.6 summarizes

this chapter.

3.3 Nonrigid Surface Detection

In this section, we describe the present progressive finite Newton

optimization scheme for detecting and recovering the nonrigid
surface. For tackling the challenges, a mapping function is used

to associate the feature correspondences with a mesh model.
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Therefore, the nonrigid surface detection turns out to be a prob-
lem which minimizes the correspondence error and the surface

energy. Moreover, the nonrigid surface detection is formulated
into an unconstrained quadratic optimization problem. A pro-

gressive scheme is proposed to deal with outliers and find out as
many correct correspondences as possible. Finally, a modified
RANSAC scheme is introduced to select the initial active set for

the optimization scheme.

3.3.1 2D Nonrigid Surface Model

The nonrigid surface is usually explicitly represented by triangu-

lated meshes. As shown in Fig. 3.1(c), a triangulated 2D mesh
with N hexagonally connected vertices is employed, which are

formed into a shape vector s as below:

s =
[

sx sy

]⊤

=
[

x1 x2 . . . xN y1 y2 . . . yN

]⊤

where x and y are the vectors of the coordinates of mesh ver-
tices. Assuming that a point m lies in a triangle whose three
vertices’ coordinates are (xi, yi),(xj, yj) and (xk, yk) respectively,

and {i, j, k} ∈ [1, N ] is the index of each vertex. The piecewise
affine transformation is used to map the image points inside the

corresponding triangle into the vertices in the mesh. Thus, the
mapping function W (m, s) is defined as below:

W (m, s) =

[
xi xj xk

yi yj yk

] [
ξ1 ξ2 ξ3

]⊤
(3.1)

where (ξ1, ξ2, ξ3) are the barycentric coordinates for the point

m.
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3.3.2 Nonrigid Surface Recovery

In general, the nonrigid surface detection problem approximates

a 2D mesh with 2N free variables, which is usually ill-posed.
One effective way to attack this problem is to introduce regular-

ization, which preserves the regularity of a deformable surface.
The following object function is widely used in deformable sur-

face fitting [47, 51, 75, 76] for energy minimization:

E(s) = Ec(s) + λrEr(s) (3.2)

where Ec(s) is the sum of the weighted square error residuals for
the matched points. Also, Er(s) is the regularization term that

represents the surface deformation energy, and λr is a regular-
ization coefficient.

A set of correspondences M between the model and the in-
put image can be built through a point matching algorithm.
Therefore, a pair of matched points is represented in the form of

m = {m0,m1} ∈M , where m0 is defined as the 2D coordinates
of a feature point in the training image and m1 is the coordi-

nates of its match in the input image. Then, the correspondence
error term Ec(s) is formulated as below:

Ec(s) =
∑

m∈M

ωmV(δ, σ) (3.3)

where V(δ, σ) is a robust estimator, and ωm ∈ [0, 1] is a weight
linked with each correspondence.

The regularization term Er in Eqn. 3.2, also known as internal
force in Snakes [51], is composed of the sum of the squared
second-order derivatives of the mesh vertex coordinates.

As the mesh is regular, Er(s) can be formulated through a
finite difference:

Er = s⊤Ks (3.4)
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where matrix K ∈ R2N×2N is defined as below:

K =

[
K 0

0 K

]

Note that K is a sparse and banded matrix which is determined
by the structure of the explicit mesh model [32].

3.3.3 Finite Newton Formulation

In this thesis, we employ a robust estimator V(δ, σ) with com-

pact support size σ. Moreover, δ is the residual error, which is
defined as follows:

δ = m1 −Ws(m0) (3.5)
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Figure 3.2: The robust estimator that assesses a fixed penalty to residuals
larger than a threshold σ.

The robust estimator function V(δ, σ) that assesses a fixed

penalty for residuals larger than a threshold σ is employed in
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the present work; this approach is relatively insensitive to out-
liers [15]:

V(δ, σ) =

{
‖δ‖
σn , M1 = {m| ‖δ‖ ≤ σ2}

σ2−n, M2 = M1

(3.6)

where the set M1 contains the inlier matches, and M2 is the set
of the outliers. In addition, the order n determines the scale of
the residual. As shown in Fig. 3.2, the most correspondences

are included when the support σ is large. As σ decreases, the
robust estimator becomes narrower and more selective.

Since the robust estimator function is not convex, the asso-
ciated penalty function approximation problem becomes a hard

combinational optimization problem. This problem can be tack-
led under the finite Newton optimization framework. An aug-

mented vector t ∈ RN containing the barycentric coordinates is
defined as below:

ti = ξ1 tj = ξ2 tk = ξ3

while the remaining elements in the vector t are all set to zero.

Therefore, the residuals for the inlier correspondences can be
rewritten as follows:

‖δ‖ = (u− t⊤x)2 + (v − t⊤y)2

= u2 + v2 − 2(ut⊤x + vt⊤y) + x⊤tt⊤x + y⊤tt⊤y

where (u, v) are the coordinates of m1. Therefore, the error term

in Eqn. 3.3 turns out to be

Ec =
∑

m∈M1

ωm

σn


u2 + v2 − 2

[
ut

vt

]⊤
s+

s⊤

[
tt⊤ 0

0 tt⊤

]
s

)
+ qσ2−n
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where q is the number of outliers.
Let b ∈ R2N be defined as below:

b =

[
bx

by

]
=
∑

m∈M1

ωm

σn

[
ut

vt

]
(3.7)

and a matrix A ∈ RN×N is equal to

A =
∑

m∈M1

ωm

σn
tt⊤ (3.8)

Thus, the energy function in Eqn. 3.3 is formulated into an
unconstrained quadratic optimization problem, which can be

solved by the modified finite Newton method [55, 64].

E = s⊤

[
λrK + A 0

0 λrK + A

]
s− 2b⊤s

+
∑

m∈M1

ωm

σn
(u2 + v2) + qσ2−n

The finite gradient of the energy function E with respect to s
can be derived as below:

∇ = 2

([
λrK + A 0

0 λrK + A

]
s−

[
bx

by

])
(3.9)

and the Hessian [15] can also be computed by

H = 2

[
λrK + A 0

0 λrK + A

]
(3.10)

Thus the gradient can be rewritten as below:

∇ = Hs− 2b

Each Newton step will perform the following operation:

s← s− γH−1∇ (3.11)
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where γ is the step size. Substituting Eqn. 3.9 into Eqn. 3.11,
the equation can be rewritten as follows:

s← (1− γ)s + 2γH−1b

Thus, the update equation can be computed by

x← (1− γ)x + γ[λrK + A]−1bx

y← (1− γ)y + γ[λrK + A]−1by

In the experiment, γ is simply set to one, and no convergence

problem occurs in the experiments. Therefore, the new update
equation can be derived as below:

Hs = b (3.12)

Substituting Eqn 3.10 into Eqn 3.12, the update of the state

vector s can be computed by the following linear equation:
[

λrK + A 0

0 λrK + A

]
s =

[
bx

by

]

Since K is regular, the problem can be further simplified
into two linear equations which can be efficiently solved via LU

decomposition:

sx = (λrK + A)−1bx (3.13)

sy = (λrK + A)−1by (3.14)

The overall complexity is thus the complexity of one Newton

step. Note that the complexity of one step for the proposed
method is the same as [48].

3.3.4 Progressive Finite Newton Optimization

Generally speaking, the incorrect matches cannot be avoided in

the first stage of the matching process where only local image
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Algorithm Progressive Finite Newton Approach To Nonrigid Surface Detec-
tion
Input

• Parameters: ν, λr, σ0

• Template image

Pre-compute

1: Build mesh model s0 for the template image
2: Compute K and (ξ1, ξ2, ξ3) for each keypoint m0

Nonrigid Surface Detection:

For a given input image

Obtain M by feature matching

Select active set by modified RANSAC

While σ > 2

Compute A and b

Solve linear system: Eqn. 3.13 and Eqn. 3.14

Calculate residual error δ and inlier set M1

σ = ν · σ

Output

• mesh vertices s and total number of inlier matches

End

Figure 3.3: Progressive Newton approach to nonrigid surface detection.

descriptors are compared. A coarse-to-fine scheme is introduced

to deal with those outliers. The support σ of robust estimator
V(δ, σ) is progressively decayed at a constant rate α. Since the
derivatives of V(δ, σ) are inversely proportional to the support

σ, the regularization coefficient λr is kept constant during the
optimization. For each value of σ, the object function E is mini-

mized through the finite Newton step and the result is employed
as the initial state for the next minimization. The minimiza-

tion of E is directly solved through Eqn. 3.13 and Eqn. 3.14
for a given initial state, and one step is enough to achieve con-
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vergence. The optimization procedure stops when σ reaches a
value close to the expected precision, which is usually one or two

pixels. The algorithm reports a successful detection when the
number of inlier matches is above a given threshold. Thus, the

whole optimization problem can be solved within a fixed number
of steps. This is in contrast to the semi-implicit optimization
scheme [76], which involves a few iterations for each σ, and at

least 40 iterations in total to ensure the convergence.
In order to select most of the correspondences into the initial

active set and avoid getting stuck at local minima, the initial
value of σ is usually set to a sufficiently large value. However,

this requires a fixed initial state. The method is dependent on
the object position, and needs a few iterations to compensate for

the errors generated by the pose variations. In the present work,
this problem is solved through a modified RANSAC approach.
Taking advantage of the concise finite Newton formulation and

closed-form solution, the explicit mesh can be directly estimated
from a given set of correspondences. Moreover, samples are pro-

gressively drawn from larger sets of top-ranked correspondences,
which decreases the number of trials significantly. In the experi-

ments, the sampling process stopped within 5 trials. In the worst
case, such as when an object does not appear in the scene, it still
converges towards RANSAC. Therefore, the output of the pro-

posed progressive sample can be employed as the initial state for
the finite Newton optimization. Since the result of progressive

sample estimation is quite close to the solution, σ is relatively
small. Thus, the proposed progressive scheme requires fewer

stages, and is somewhat invariant to the initial position.
From above all, the whole algorithm can be summarized into

Fig. 3.3.
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3.4 Experimental Results

In this section, we discuss the details of the experimental im-
plementation and report the results of performance evaluation

on nonrigid surface detection. It can be concluded that the pro-
posed approach is very efficient for real-time tracking, and can
be easily employed for Augmented Reality applications. In ad-

dition, same convincing results are obtained for medical image
registration, even with missing data.

3.4.1 Experimental Setup

In order to register the mesh model conveniently, a model image
is acquired when the nonrigid surface contains no deformation.

In order to facilitate real-time Augmented Reality applications,
a random-trees based method [58] is used to build the corre-
spondences between the model image and the input image.

Since the number of free variables for nonrigid surface re-
covery is usually quite large (even up to one thousand), the

sample size of each RANSAC iteration becomes a tricky issue.
We compare the performance with different sample sizes. In

the experiments, the support σ is empirically set to 30, and λr

is set to a large value to ensure the regularity of the nonrigid
surface. Interestingly, the best sample size is found to be three.

This is because the nonrigid surface degenerates into a rigid one,
and only three points are necessary to determine the position of

a rigid surface. Moreover, when the sample size increases, the
probability of selecting the inlier data is decreased. Thus, three

is the best choice for the sample size.
In the finite Newton optimization, the weighting scheme is

beneficial for a single step. However, it changes the scale of
the error term in the object function, and so the regularization
coefficient λr is no longer kept constant during the optimiza-

tion. In the experiments, all weight coefficients ω are set to one.
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A set of synthetic data is used to select the parameters, and
the reference mesh is manually registered. The performance is

evaluated by the percentage of mesh vertices within 2 pixels of
those in the reference mesh. The best regularization coefficient

is found to be around 3× 10−4 by grid searching. Similarly, the
initial support σ0 is set to 80, and decay rate α is 0.5. Fig. 3.4
plots the success probability with different orders n of the robust

estimator function. Based on these results, n is set to 4.
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Figure 3.4: Probability of success with different order n of the robust esti-
mator function.

All the experiments reported in this chapter are carried out

on a Pentium-4 3.0GHz PC with 1GB RAM, and a DV camera
is engaged to capture videos. We also implement a semi-implicit
iterative method [76], which is regarded as the state-of-the-art

approach.
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(a) Model image (b) Result (c) Result

Figure 3.5: A Starbucks pad is used as the deformable object. The model
image is shown in (a) the contour of the model image is extracted using a
simple gradient and filling operator, which is overlaid on the input image.
(b) and (c) show the results. The model contains 120 vertices, and the whole
process, including image capturing and rendering, runs around 18 frames per
second.

3.4.2 Computational Efficiency

The complexity of the proposed method is mainly dominated

by the order of Eqn. 3.13 and Eqn. 3.14, which is equal to the
number of vertices N in the mesh model. Another important

factor is the number of inlier matches, which affects the sparse-
ness of matrix A. This usually differs from one frame to another.

For the Starbucks pad with 120 vertices, as shown in Fig. 3.5,
the proposed method runs at 18 frames per second on real-time

video with the size of 720×576. Fig. 3.6 illustrates the initializa-
tion results by the modified RANSAC. We can observe that the
proposed method is effective to reject the large outlier matches.

Although there are large number of the incorrect matches using
the fast random-tree based point matching algorithm [58], which

is still far more effective than the conventional normalized cross
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(a) Result (b) Plastic cup

Figure 3.6: The first row shows the initialization results using the modified
RANSAC method, and the second row shows the results.

correlation method. As depicted in Table 3.1, the proposed op-

timization scheme requires around 8 iterations and only takes
half of the time of the feature matching algorithm, which is
the bottleneck of the whole system. Our implementation 1 of

semi-implicit iterative approach [76] needs around 40 iterations
to reach the convergence, and runs about 9 frames per second.

The improvement is more significant for high resolution mesh.
Thus, the proposed method requires far less iterations, and is

efficient for real-time applications. We also conduct the exper-
iments without using the modified RANSAC initialization, and
start the optimization scheme from a sufficiently large support

σ = 1000. This requires 11 iterations, and the fitting accuracy
is worse than the proposed method. In addition, the modi-

fied RANSAC initialization can also be used for a semi-implicit
method, in which case the number of iterations is reduced to

1We use the same parameters setting as [76]. The convergence condition is set to
0.9995, with at most 5 iterations for each support value σ.
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around 25.

Table 3.1: Computational time of proposed method at each step.

Total Match Optimization Iteration Other

57ms 27ms 14ms ∼ 1.9ms 16ms

3.4.3 Performance of Nonrigid Surface Recovery

A Starbucks pad is employed as the deformable object. As
shown in Fig. 3.5, the proposed method is robust to large defor-

mations and perspective distortion. In practice, the whole pro-
cess runs at around 18 frames per second. Fig. 3.8 describes the

result of detecting a piece of paper, where similar performance is
achieved. As another feature-based method, the performance of

the proposed method is closely related to the texture of objects.
Better results can be obtained for objects with more texture,

because it is easy to find more correct correspondences than
with those lacking texture. This problem can be dealt with via
incorporating global appearance into the optimization scheme,

which will be presented in the next chapter.

3.4.4 Augmented Reality

Once the nonrigid surface is recovered, an immediate application

is to re-texture an image. In order to obtain realistic results,
the texture should be correctly relighted. As suggested in [76],

a re-textured input image is generated by directly multiplying
a blank shaded image, which is the quotient of the input image
and the warped reference image. The reference image is acquired

when the nonrigid surface is lighted uniformly. Moreover, the
quotient image is normalized through multiplying the intensity

of white color in the reference image. This relighting procedure
is easily done by the GPU and requires only a short OpenGL
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Figure 3.7: Re-texturing of a shirt print. The first row and third row show
the 720× 576 images captured by a DV camera. The second row and forth
row show the results of replacing the bunny with the CVPR logo.
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shading language program; and the whole process runs at about
17 frames per second. Fig. 3.7 shows the results of re-texturing

a T-shirt with a Lambertian surface. It is difficult to estimate
a blank shaded image due to dividing near zero intensity values

and the use of an uncontrolled optical sensor. However, the
visual effect is that the bunny in the input video is re-textured
by the CVPR logo. For a specular surface, Fig. 3.8 describes the

results on a piece of paper with a saturated region. In addition,
the right two columns of Fig. 3.8 show the results in a cluttered

environment.

3.4.5 Medical Image

The proposed approach is also evaluated for medical image reg-

istration. A pair of sagittal images [74] with size of 256 × 256
from two different patients are used in the experiments. The
source and target images differ in both geometry and intensity.

The results are plotted in Fig. 3.9; it can be seen that the source
image is successfully registered. In comparison with the locally

affine but globally smooth method [74], which takes about 4 min-
utes, the proposed method only needs 0.2 seconds. Moreover,

the sparse correspondences based method can naturally handle
the missing data and partial occlusion problem. As shown in

Fig. 3.10, the source images with a region removed, the nonrigid
shape can still be recovered.

3.5 Discussions

A novel scheme has been proposed for non-rigid surface detec-
tion by progressive finite Newton optimization. In compari-
son with semi-implicit optimization methods [76], the proposed

method has several advantages. First, the presented method
needs not solve the optimization iteratively for every σ, be-
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Figure 3.8: Re-texturing a picture on a piece of paper. The first row is the
720× 576 images captured by a DV camera. The second row is the results
of replacing the picture with the CVPR logo.
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(a) Source (b) Target (c) Before

(d) Registered (e) Registered (f) After

Figure 3.9: Applying the proposed method to medical image. A pair of
sagittal images from two different patients is shown. (a,b,e) are the source,
target and registered source respectively. (d) is the registered source with
mesh model. (c) and (f) are the overlaid images before and after registration.

cause it can be solved in one step directly. Second, the iterative

method starts from a sufficiently large support value in order
to estimate the location and pose of an object, which leads to
a large number of iterations. Thus, the proposed method is

far more efficient than the semi-implicit method. Additionally,
it is easy to implement the proposed approach, which only in-

volves solving the sparse linear equation, and does not require
tuning the viscosity parameters and a sophisticated Levenberg-

Marquardt optimization algorithm.
Although promising experimental results have validated the

efficiency of the methodology, some limitations should be ad-
dressed. First of all, some jitter and errors may occur due to
the point matching algorithm or the lack of texture information,
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(a) Source (b) Target (c) Before

(d) Registered (e) Registered (f) After

Figure 3.10: Applying the proposed method to medical image registration
for the synthetic example with missing data.

as shown in Fig. 3.11. Second, the proposed method may fail
in the case of severe folding and self-occlusion. Two failure ex-

amples are depicted in Fig. 3.11. Also, the presented method is
mainly focused on single deformable surface detection, whereas

it is also interesting to study the multiple surfaces case.

Figure 3.11: Results with large errors and some failure cases.
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3.6 Summary

This chapter presents a novel progressive scheme to solve the
non-rigid surface detection problem. In contrast to the pre-

vious approaches involving iterative and explicit minimization,
a progressive finite Newton algorithm is proposed, which di-
rectly solves the unconstrained quadratic optimization problem

by an efficient factorization method. Moreover, the modified
RANSAC scheme takes advantage of the concise formulation and

progressive sampling of the top-ranked correspondences, and can
handle high-dimensional spaces with noisy data.

Extensive experimental evaluations have been conducted on
diverse objects with different materials. The proposed method
is very fast and robust, and can handle large deformations and

illumination changes. It has been tested in several applications,
such as real-time Augmented Reality and medical image reg-

istration. The promising experimental results show that the
algorithm is more efficient than previous methods.

2 End of chapter.



Chapter 4

Fusing Features and
Appearance

In this chapter, we present a fusion approach to tackle the non-
rigid shape recovery problem, which takes advantage of both the

appearance information and the local features. This method can
greatly reduce the jittering problem in the previous chapter.
Moreover, a deformable Lucas-Kanade algorithm is proposed,

which triangulates the template image into small patches and
constrains the deformation through the second order derivatives

of the mesh vertices. It is further formulated into a sparse regu-
larized least squares problem which is able to reduce the compu-

tational cost and the memory requirement. The inverse compo-
sitional algorithm is applied to efficiently solve the optimization

problem.

4.1 Motivation and Methodology

Image alignment or registration has been an important research

topic in computer vision for the past few decades [2], finding a
variety of applications in object tracking [70, 76], facial image
analysis [23, 65, 105], medical imaging and digital entertain-

ment.
Most of the current nonrigid shape recovery methods can

54
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be divided into two categories. The first is dependent on local
feature correspondences [75, 82]. The second is based on the ap-

pearance, which directly minimizes the residual image between
the synthesized template image and the input image [23, 83,

116].
As for the feature-based image alignment methods, we have

already throughly reviewed them in Chapter 3. The major lim-

itation of these methods is that they are dependent on the ge-
ometric locations of a set of carefully selected salient features,

which do not always cover the whole image. Therefore, it is
difficult to guarantee the registration accuracy in the regions

lacking texture. In addition, it is still hard to handle the feature
matching problem involving with large deformations and severe

perspective distortions [60].
On the other hand, the appearance-based approach can ex-

ploit more of the texture information, and therefore achieves

better registration accuracy. In fact, a large number of the
appearance-based methods [23, 28, 65, 83] can be viewed as ex-

tensions of the original Lucas-Kanade algorithm [2, 3] which has
been one of the most widely used techniques in computer vision.

These approaches directly minimize the residual image between
the input image and the synthesized model image [23, 65].

An inverse compositional method [2] has recently been pro-

posed to efficiently solve the optimization problem in the con-
ventional Lucas-Kanade algorithm, reducing the computational

cost by pre-computing the Hessian matrix. The original Lucas-
Kanade algorithm [4, 11, 63] for image alignment usually es-

timates either the affine transformation or the homography be-
tween the template image and the input image. In order to han-

dle the image alignment problem involved in the deformations,
such as facial feature movements, the Lucas-Kanade algorithm
has been extended to incorporate linear shape and appearance

variations [65]. This extension has been referred to Active Ap-
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pearance Model. In [34], a feature-driven method is described
to make use of the compositional algorithms for the paramet-

ric warps. In addition, optical flow information [6, 28] can be
incorporated into the optimization scheme to obtain better re-

sults. The major limitation of these methods is that they tend
to become stuck at a local minimum and hence require good
initialization.

As described in Section 2.4.2, Active Appearance Model [23,
65] requires building the statistical shape and appearance mod-

els from manually annotated examples. However, relatively few
of the appearance-based methods can handle deformable ob-

jects using a single template. One such method is the Active
blob [83], which mainly employs the Finite Element Model to

build the shape variations. Another, proposed by Gumerov et
al. [37], requires that the whole outline can be detected. In a
more recent study, the repeating properties of a near regular tex-

ture are exploited to track new texture tiles in video frames [59].
As discussed in Chapter 2, the appearance-based method

tends to be computationally expensive and requires good ini-
tialization to avoid the local optima, and only a few automated

solutions have been proposed in the literature. Since both the
feature and appearance based methods have limitations, there
is a need for an automated method which can make use of both

the appearance information and the local features.
In this chapter, we propose a novel automated approach to

efficiently handle the image alignment with very large non-affine
deformations, as shown in Figure 4.1. The major contribution

of this chapter is the proposed deformable Lucas-Kanade algo-
rithm, which triangulates the template image into small patches

and preserves the regularity of the mesh through the second or-
der derivatives of the mesh vertices. Moreover, the optimization
of the proposed deformable Lucas-Kanade algorithm is formu-

lated into a sparse regularized least squares problem, which is
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able to reduce the computational cost and the memory require-
ment. The inverse compositional algorithm [2] is applied to ef-

ficiently solve the optimization problem. Furthermore, the op-
timization for the fusion approach is solved through a modified

deformable Lucas-Kanade algorithm.
The rest of this chapter is organized as follows. In Section 4.2,

we present the proposed fusing features and appearance ap-

proach for nonrigid shape recovery. Section 4.3 provides the
details of the experimental implementation and describes the

experimental results. We discuss limitations of the approach in
Section 4.4. Section 4.5 summarizes this chapter.

(a) Cover (b) Paper

Figure 4.1: Recovering nonrigid shapes. (a) The cover of a magazine. (b) A
piece of paper.

4.2 Fusing Features and Appearance

4.2.1 Overview

In this section, we describe the fusion approach to dealing with

the nonrigid shape recovery, which takes advantage of both the
local features and appearance information. For tackling the

challenges, the 2D nonrigid shape model in Chapter 3 is in-
troduced. The proposed algorithm is formulated into an op-
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timization problem which minimizes the correspondence error,
the texture difference and the surface energy. The key of the

fusion approach is to solve this problem in the following. First,
we employ the progressive finite Newton method using the fea-

ture correspondences to detect the nonrigid surface. Then, a
novel deformable Lucas-Kanade algorithm is proposed to han-
dle the appearance error. Based on these two algorithms, the

optimization scheme for the fusion approach is formulated.

4.2.2 Mesh Model

(a) Model mesh s0 (b) Reference image

Figure 4.2: (a) The mesh model with 216 vertices and 374 triangles. (b) The
reference image size of 403× 516.

As described in Section 3.3 of Chapter 3, the nonrigid shape
is explicitly represented by triangulated meshes, which is shown

in Fig. 4.2(a). Instead of treating the template image as a whole
block, as in [4, 63], this 2D deformable mesh model is employed
to triangulate it into small patches, as shown in Fig. 4.2(a).

Then, the mesh associated with the model image is defined as
the reference mesh s0. Also, the piecewise affine warp W (m, s)

defined in Eqn. 3.1 is used to map the input image into the
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reference frame s0. Fig. 4.2(b) shows an example of the template
image in the reference frame.

Based on this triangulated mesh model, we describe in de-
tail the proposed approach to nonrigid shape recovery in the

following.

4.2.3 Fusing Features and Appearance Approach

Proposed Algorithm

The aim of the fusion approach is to make use of both the local
features and the appearance information.

• Local feature correspondences. The correspondence

error term Ec(s) is the sum of the weighted square error
residuals for the matched points, which is introduced in

Section 3.3.

• Appearance. In this chapter, we try to handle the ap-

pearance error under the Lucas-Kanade framework. The
objective of the Lucas-Kanade algorithm is to minimize the

sum of the squared errors between the template image T
and the input image I warped back onto the coordinate
frame of the template. Baker and Matthews [2] have pro-

posed an inverse compositional algorithm which switches
the role of the template image T and input image I in the

computation of the incremental warp. Using this approach,
the computational cost can be reduced by pre-computing

the Hessian matrix. Instead of using the affine transfor-
mation or homography, as in [4, 63], we directly employ
the parameterization of the mesh model vertices s in this

paper. Due to the direct parameterization, ∆s is defined
as the increments to the mesh vertices. The inverse com-

positional method is employed to formulate the energy for
the appearance Ea. Following the notation in [2, 65], Ea is
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defined as follows:

Ea(s) =
∑

x

[T (W (x; ∆s))− I(W (x; s))]2 (4.1)

In general, the nonrigid shape recovery problem approximates

a 2D mesh with 2N free variables, which is usually ill-posed.
One effective way to attack this problem is to introduce regular-

ization, which preserves the regularity of a deformable surface.
This leads to the following energy function:

E(s) = Ea(s) + αEc(s) + λrEr(s) (4.2)

where α is a weight coefficient, and λr is a regularization coeffi-
cient. The regularization term Er(s) is composed of the sum of

the squared second-order derivatives of the mesh vertex coordi-
nates, which is defined in Eqn. 3.4.

Figure 4.3: Overview of the 2D shape recovery algorithm.

Optimization Framework

To enable an automated solution, we employ the result of min-

imizing the feature correspondences error to initialize the opti-
mization for the fusion approach. This is because Ec(s) is inde-

pendent of the image during the optimization, and so it can be
computed very efficiently. More specifically, the initial result is
obtained by the nonrigid surface detection method, which deals

with the following energy minimization problem:

EF (s) = Ec(s) + λrEr(s) (4.3)
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The details of the solution for the above optimization problem
have been described in Section 3.3.

In this chapter, the optimization for the fusion approach is
based on the Lucas-Kanade framework. To simplify the formu-

lation, we start from only taking consideration of the texture
difference Ea(s). Also, the regularization term Er(s) is intro-
duced to preserve the surface regularity. Thus, the following

regularized least squares problem can be obtained:

EA(s) = Ea(s) + λrEr(s) (4.4)

We name this approach the deformable Lucas-Kanade algorithm,
which can be used to solve the optimization for the fusion ap-

proach with slight modification.
Therefore, the essence of the fusion approach is to first detect

the nonrigid shape using feature correspondences, and then solve

the fusion optimization based on the modified deformable Lucas-
Kanade algorithm. We will describe it in detail in the following

subsections. The overview of the method is shown in Fig. 4.3
where each step is highlighted using a shaded box.

4.2.4 Deformable Lucas-Kanade Algorithm

Taking consideration of appearance information only, we try to
solve the optimization problem in Eqn. 4.4 using the inverse

compositional method. The deformable Lucas-Kanade algo-
rithm is summarized in Fig. 4.4.

The warp update equation can be defined as follows:

W (x)← W (x) ◦W (x; ∆s)−1

Performing the first order Taylor expansion on the Eqn. 4.4

gives:

∑

x

[
T (W (x; s0)) +∇T

∂W

∂s
∆s− I(W (x; s))

]2

+λr(s + ∆s)⊤K(s + ∆s) (4.5)
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Algorithm Deformable Lucas-Kanade Algorithm
Input

• Parameters: s0, λr

• Template image T

Pre-compute

• 1: Build mesh model s0 for the template image

• 2: K, ∇T ∂W
∂s

, and the Hessian matrix H2

Iterate:

Warp I with W (x; s) to compute I(W (x; s))

Compute the residual image I(W (x; s)) − T

Compute ∆s using Eqn. 4.6

Update the shape vector s← s−∆s

Until ‖∆s‖ < threshold

Output

• mesh vertices s

End

Figure 4.4: Deformable Lucas-Kanade Algorithm.

where ∇T is the gradient of the template image evaluated at
W (x; s0), and ∂W

∂s
is the Jacobian of the warp parameters eval-

uated at s. Note that ∇T ∂W
∂s

is the gradient, and s0 is the
reference mesh shown in Fig. 4.2(a).

Assuming that W (x; s0) is the identity warp, the gradient of

Eqn. 4.5 with respect to ∆s can be derived as below:

∑

x

[
∇T

∂W

∂s

]⊤[
T (W (x; s0)) +∇T

∂W

∂s
∆s− I(W (x; s))

]

+λrK(s + ∆s)

As the above gradient vanishes for optimality, this leads to the
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following closed-form solution:

∆s = H−1
2

∑

x

[
∇T

∂W

∂s

]⊤
[I(W (x; s))− T (W (x; s0))]

−λrH
−1
2 Ks (4.6)

where H2 is the 2N × 2N Hessian matrix:

H2 =
∑

x

[
∇T

∂W

∂s

]⊤ [
∇T

∂W

∂s

]
+ λrK (4.7)

Note that the Hessian matrix H2 is independent of the parameter
vector s, and H2 is kept constant across iterative optimization

and can be pre-computed. It is also independent of the gra-
dient matrix ∇T ∂W

∂s
. Therefore, the warp update of the shape

parameters ∆s can be computed very efficiently.

(a) ∂W
∂x1

and ∂W
∂y1

(b) ∂W
∂x2

and ∂W
∂y2

Figure 4.5: The Jacobian ∂W
∂xi

with respect to the mesh vertices (x1, y1) and
(x2, y2). Only the non-zero part is plotted, and the inverted images are used
for better illustration.

Since the coordinates of the mesh vertices s are directly em-
ployed as the warp parameter in the deformable Lucas-Kanade

algorithm, the computation of the warp inversion becomes much
easier than the linear combination model method in Active Ap-

pearance Model [65]. Specifically, the shape vector s is updated
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by:
s← s−∆s (4.8)

Link to Lucas-Kanade algorithm: The proposed method

can be viewed as a natural extension of the Lucas-Kanade al-
gorithm, which is able to handle the deformations rather than

the affine transformation. Since the 2D coordinates of the mesh
vertices s is employed as the parameters in deformable Lucas-
Kanade algorithm, the degree of freedom is increased. This is

useful for handling the image alignment when the deformation
is large. Furthermore, the efficient optimization methods for the

Lucas-Kanade algorithm [2] can also be applied for the proposed
method.

Link to Active Appearance Model [65]: The deformable
Lucas-Kanade algorithm can be treated as a kind of Active Ap-
pearance Model. It employs a single training example along with

certain physical constraints, while Active Appearance Model
needs to build both texture and shape models to constrain the

searching space.

Computing Gradient ∇T ∂W
∂s

Recall that the destination of the pixel x under the piecewise
affine warp W (x; s) depends on the vertices of the mesh s. Ac-

cording to the definition of W (x; s) in Eqn. 3.1, the Jacobian of
the warp W (x; s) with respect to the mesh vertices v(xi, yi) can

be derived as below:

∂W

∂xi

=
[

ξ1 0
]⊤

and
∂W

∂yi

=
[

0 ξ1

]⊤

It can easily be found that the non-zero parts of ∂W
∂xi

and ∂W
∂yi

are equal. As shown in Fig. 4.5, the Jacobians can be illustrated

as the images with the same size of reference frame; in fact, each
image is the Jacobian with respect to the vertex v. Moreover,

it can also be observed that the warp Jacobian is quite sparse,
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(a) ∇T ∂W
∂x1

(b) ∇T ∂W
∂y1

(c) ∇T ∂W
∂x2

(d) ∇T ∂W
∂y2

Figure 4.6: The gradient ∇T ∂W
∂s

with respect to the mesh vertices (x1, y1)
and (x2, y2).

having non-zero values only in the triangles around the vertex
v. Next, we compute ∇T ∂W

∂s
by multiplying the gradient of the

template image with the warp Jacobian matrix, resulting in the
images plotted in Figure 4.6.

Remark Since the dimensionality of the texture is usually
very high, the gradient ∇T ∂W

∂s
becomes quite a large matrix.

Fortunately, both the gradient and the Hessian H2 are the sparse

matrices in the proposed deformable Lucas-Kanade algorithm,
and this can greatly reduce the computational cost and mem-

ory requirement and make the problem tractable. Moreover,
this also leads to a sparse regularized least squares problem in

Eqn. 4.4.
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Lighting

In order to minimize the effect of global lighting variation, we

apply a scaling a and an offset o to the template image T . There-
fore, the energy function of the proposed deformable Lucas-

Kanade algorithm can be rewritten as follows:
∑

x

[aT (W (x; ∆s)) + o · 1− I(W (x; s))]2 + λrs
⊤Ks (4.9)

Similarly, we can employ an extended inverse compositional

algorithm [4, 5] to solve this optimization problem. See Ap-
pendix A for details.

4.2.5 Fusion Approach Optimization

Based on the deformable Lucas-Kanade algorithm, we describe
the optimization scheme for the proposed fusion approach in

Section 4.2.3.
Let us define a matrix B ∈ R2N×2N , which is equal to

B =
1

σn

[
A 0

0 A

]
(4.10)

Therefore, we can rewrite Ec as below:

Ec = s⊤Bs− 2b⊤s + qσ2−n +
∑

m∈M1

1

σn
(u2 + v2)

Performing the first order Taylor expansion on the energy

function Eqn. 4.2 gives:

∑

x

[
T (W (x; s0)) +∇T

∂W

∂s
∆s− I(W (x; s))

]2

+α(s + ∆s)⊤B(s + ∆s)− 2αb⊤(s + ∆s) + qσ2−n

+
∑

m∈M1

1

σn
(u2 + v2) + λr(s + ∆s)⊤K(s + ∆s) (4.11)



CHAPTER 4. FUSING FEATURES AND APPEARANCE 67

The solution to this problem is:

∆s = H−1
3

∑

x

[
∇T

∂W

∂s

]⊤
[I(W (x; s))− T (W (x; s0))]

−αH−1
3 (Bs− b)− λrH

−1
3 Ks (4.12)

where H3 is the Hessian matrix:

H3 =
∑

x

[
∇T

∂W

∂s

]⊤ [
∇T

∂W

∂s

]
+ αB + λrK (4.13)

Again, we can compute the warp update through Eqn. 4.8.
In order to reduce the computational cost, the gradient and

part of the Hessian for the deformable Lucas-Kanade algorithm
is pre-computed. Since the inlier set is slightly changed in the fu-
sion optimization phase, matrix B can be viewed as a constant.

Therefore, the Hessian H3 is computed once for each input im-
age through Eqn. 4.13. The optimization procedure stops when

‖∆s‖ is close to the given threshold or the number of iterations
exceeds the limit.

To tackle the lighting variations, we only need to make slight
modification on the method described in Fig 4.4. Specifically, we

add the initialization step, and pre-compute the matrix B and
H3 for each input image. Furthermore, Eqn. 4.12 is employed
to compute the update for the shape vector s.

4.3 Experimental Results

In this section, we discuss the details of the experimental imple-

mentation and report the results of performance evaluation on
nonrigid shape recovery. First, the various evaluations are per-
formed on the the deformable Lucas-Kanade algorithm. Then,

the fusion approach is tested.
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4.3.1 Experimental Setup

In order to register the mesh model conveniently, a model image

is acquired when the nonrigid surface contains no deformation.
In order to facilitate real-time augmented reality applications,

a random-trees based method [58] is used to build the corre-
spondences between the model image and the input image. The

semi-implicit iterative method [76] is implemented as the state-
of-the-art approach. All the experiments reported in this paper

are carried out on a Pentium-4 3.0GHz PC with 1GB RAM, and
a DV camera was engaged to capture videos.

4.3.2 Evaluation on the Deformable Lucas-Kanade Al-
gorithm

Deformable Lucas-Kanade Fitting

The parameters for deformable Lucas-Kanade algorithm are found

by grid searching; and the regularization parameter λ is set to
105. Moreover, the texture mapping is efficiently performed by

OpenGL. Fig. 4.7 shows an example of the proposed deformable
Lucas-Kanade algorithm fitting to a single image, which em-

ploys the template image and mesh model illustrated in Fig. 4.2.
Fig. 4.7(a) displays the initial configuration, Fig. 4.7(b) the re-
sult after 30 iterations, and Fig. 4.7(c) the final converged result

after 58 iterations.
The conventional Lucas-Kanade algorithm is also evaluated

with the inverse compositional method, using the same initial
position as the method. However, it fails to converge in this

case due to the the large non-affine deformation. Fig. 4.8 plots
the root mean square error (RMSE) curve for the proposed

method. In the case of the deformable Lucas-Kanade algorithm,
the RMSE is relatively large (28.5), which is mainly due to the
difference between the optical sensor and the printing device.

However, it can be observed that the mesh is accurately reg-
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(a) Initialized (b) 30 iterations (c) Converged

Figure 4.7: An example of the deformable Lucas-Kanade fitting to a single
image. The first row is the result mesh overlaid on the input image. The
second row displays the residual images; the inverted image is used for better
illustration.

istered on the input image in Fig. 4.7(c). Since the lighting

variations are considered in the proposed method, the RMSE
drops rapidly in the first few iterations .

Computational Efficiency

The complexity of the proposed method is mainly dominated
by the size of the template image and the number of the ver-

tices N in the mesh model. Another factor is the number of
inlier feature matches, which affects the sparseness of matrix

B. In the experiments, three models are built to perform the
evaluation, as summarized in Table 4.1. The mesh model C1 is
shown in Fig. 4.2. C2 is obtained by increasing the edge length,

giving fewer mesh vertices than C1. C3 is built by reducing
both the template image and the mesh size to 75% of C1. We

evaluate the computational cost of the proposed method for the
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Figure 4.8: The Root Mean Square Error between the template and input
images against the number of iterations.

nonrigid surface recovery task on realtime videos with the size
of 720 × 576. Table 4.1 summarizes the experimental results

on different models. We observe that the dimensionality of the
appearance determines the time complexity of the deformable

Lucas-Kanade algorithm. Therefore, gray images are easier to
track. The number of mesh vertices N has a great influence on

the initialization step, but posts a limited impact on the com-
putational time in the optimization.

Table 4.1: Computational time of the deformable Lucas-Kanade algorithm
on different 2D mesh models.

Vertices Size FPS Initialization Iteration

C1 (color) 216 198660 2.4 84ms ∼ 35.7ms

C1 (gray) 216 198660 4.4 84ms ∼ 16.7ms

C2 (gray) 96 194670 4.7 68ms ∼ 16.2ms

C3 (gray) 216 109538 6.1 77ms ∼ 10.2ms
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Figure 4.9: The Root Mean Square Error (RMSE) with given regulariza-
tion parameter λr and weight coefficient α. Two sets of data are used for
evaluation.
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(b) Paper video sequence

Figure 4.10: The Root Mean Square Error (RMSE) comparison of the pro-
gressive finite Newton (PFN) method, the semi-implicit method [75], the de-
formable Lucas-Kanade (DLK) method and fusion approach on two videos.
(a) As the model image and input video are from different stheces, RMSE
for the feature-based method is much larger than that for the fusion method.
(b) Both the model image and input video are captured by the same device
and under similar lighting conditions, so RMSE is relatively low. Sample
frames are shown in Fig. 4.11 and Fig. 4.12.



CHAPTER 4. FUSING FEATURES AND APPEARANCE 72

4.3.3 Fusion Approach

It is shown that the proposed fusion approach is able to be used

for nonrigid shape recovery tasks.

Parameter Settings

Two datasets are engaged for searching the parameters. One is

the magazine cover as illustrated in Fig. 4.11, and the other is
a piece of paper in Fig. 4.12. For each dataset, we select ten

testing images containing deformations, and then evaluate the
proposed fusion approach using different λr and α. In the exper-
iment, RMSE is used as the performance measurement. Also,

a condition (‖∆s‖ < 2.0) is employed as the success criteria,
and the failure cases are set to the highest RMSE. Fig. 4.9 plots

the mean RMSE of ten tests. It can be observed that there is
a broad area with low RMSE for selecting λr and α; the lowest

RMSE is found in the middle dark region. Therefore, the local
features are useful to improve the fitting accuracy, and there
is a large range for choosing the weight coefficient α. When

α becomes larger, the result is more similar to those from the
feature-based method; and there is a constant ratio between λr

and α. It can also be found that the optimization seldom con-
verges with small λr. Furthermore, as shown in the upper part

of each figure, large λr may lead to over-smoothing. λr = 2×104

and α = 106 are used in the following experiments.

Performance Evaluation

Two videos were captured for performance evaluation, which are

the magazine cover and a piece of paper. To investigate the oc-
clusion problem, the magazine cover is occluded by hand in some

frames. For simplicity, the feature-based method in Section 3.3
is denoted as “PFN”. The deformable Lucas-Kanade algorithm

in Section 4.2.4 is denoted as “DLK”, which is equivalent to the
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(a) Frame 80 (b) Frame 229

(c) Frame 249 (d) Frame 271

Figure 4.11: Comparison of the deformable Lucas-Kanade (DLK) method
(blue) and Fusion approach (red) on the magazine video. The magazine
cover is occluded by hand in (c-d).

fusion approach with α = 0. The proposed fusion approach is

denoted as “Fusion”. Fig. 4.10 shows the results of the compari-
son between two feature-based methods (PFN and J. Pilet [75])

and two appearance-based methods (DLK and Fusion). From
the experimental results, it can be first observed that fusion ap-
proach consistently obtains the lowest RMSE. Second, it can be

found that PFN is slightly better than the own implementation
of the J. Pilet [75]. Further, comparing the two appearance-

based methods, DLK may suffer drift problem in some frames
as shown in Fig. 4.11 and Fig. 4.12. For those frames contain-

ing small deformations, the two methods obtain very similar
results. Also, the proposed fusion approach and DLK method
are able to handle the partial occlusion well without other treat-

ment such as the robust loss functions, which is mainly due to
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the direct parameterizations and the regularization method. In
addition, a piece of paper is used to occlude the patterns on the

paper, and the results are shown in Fig. 4.13. Since the inverse
compositional optimization starts from a good initialization, the

optimization for the fusion approach usually requires around 8
iterations.

(a) Frame 251 (b) Zoomed region

Figure 4.12: Comparison of the deformable Lucas-Kanade (DLK) method
(blue) and Fusion approach (red) on the paper video. Results are shown at
frame 251.

Fig. 4.14 illustrates the results of recovering the nonrigid

shape from a real-time video. It can be observed that the fusion
method is robust to large deformations and perspective distor-

tions. In Fig. 4.15, it shows the results of erasing the patterns
on the recovered surfaces using the method in [76]. It can be

seen that both the shadows and the specular regions are also
correctly estimated. In addition, the artifacts in the resulting

images are mainly due to an uncontrolled optical sensor.

4.4 Discussions

4.4.1 Deformable Lucas-Kanade algorithm

We discuss several major differences of the proposed deformable
Lucas-Kanade algorithm compared with the previous work. In
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(a) Detected (b) Failed

Figure 4.13: Pattern occluded by a piece of paper.

contrast to the conventional Lucas-Kande algorithm for image
alignment [2], the proposed deformable Lucas-Kanade algorithm
can handle the large deformations rather than the affine trans-

formation or the homography. Different from the Active Ap-
pearance Model [23, 65], the proposed approach does not require

a set of representative training examples to build the shape and
the texture models. Comparing to other deformable template

matching methods, such as Active blob [83], the proposed de-
formable Lucas-Kanada algorithm has several advantages. First,
the deformable model is more flexible. Second, the optimization

of the proposed approach is an efficient sparse problem, which
can reduce the computational cost by pre-computing the gradi-

ent and Hessian.

4.4.2 Fusion Approach

In contrast to the feature-based image alignment methods pre-

sented in Chapter 3, the fusion approach can deal with large
deformations and perspective distortions, in which correct fea-
ture correspondences are difficult to obtain. Also, the jitter is

greatly reduced in the fusion approach. Furthermore, the pro-
posed fusion method can handle the partial occlusion, which is

mainly due to the triangulated mesh model and the regular-
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Figure 4.14: Recovering the cover of a magazine in a real-time video with
the size of 720 × 576. The first row shows the initialization results using
feature correspondences only. The second row shows the results with the
fusion approach. Moreover, Root Mean Square Error (RMSE) is shown at
the left corner in each image.

ization method. In this thesis, however, we have not discussed

the illumination issue for the appearance and fusion approaches,
which may be tackled by employing illumination model in the
literature, such as Phong model used in [14].

4.5 Summary

This chapter presents a fusion approach to solve the nonrigid

shape recovery problem, which takes advantage of both the ap-
pearance information and the local features.

In contrast to the conventional Lucas-Kanade algorithm, the

proposed approach employs a deformable mesh model and can
handle image alignment when the deformation is large. The pro-

posed deformable Lucas-Kanade algorithm is formulated into a
sparse regularized least squares problem, which can be efficiently



CHAPTER 4. FUSING FEATURES AND APPEARANCE 77

Figure 4.15: Diminishing a picture on a piece of paper. The first row shows
the 720× 576 images captured by a DV camera. The second row shows the
results of diminishing the texture on the paper.

solved by the inverse compositional method. Finally, the opti-

mization problem for the fusion approach is tackled under the
deformable Lucas-Kanade algorithm framework.

Extensive experiments have been conducted on the proposed
deformable Lucas-Kanade algorithm and fusion approach, which

evaluate them in image alignment and nonrigid surface recovery
tasks. The experimental results demonstrate that these algo-
rithms are promising for image alignment and nonrigid object

tracking.

2 End of chapter.



Chapter 5

3D Deformable Surface
Tracking

Compared with 2D nonrigid shape recovery in the previous two
chapters, this chapter presents an effective approach to 3D de-

formable surface tracking, which is able to estimate the depth
information from the 2D observations. In contrast to the recent
Second Order Cone Program method [80], we reformulate the

problem into an unconstrained quadratic optimization problem.
The new formulation can be solved very efficiently by resolving

a set of sparse linear equations. Based on the new framework,
the progressive finite Newton optimization scheme described in

Chapter 3 is employed to handle large outliers. An extensive
set of experiments have been conducted to evaluate the per-

formance on both synthetic and real-world testbeds, from which
the promising results show that the proposed algorithm not only
achieves better tracking accuracy, but also executes significantly

faster than the previous solution.

5.1 Motivation

3D deformable surface modeling and tracking has attracted ex-

tensive research interest due to its significant role in many com-
puter vision applications [6, 82, 95, 101, 116, 124]. This work

78
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is mainly motivated from the SOCP method [80], the convex
optimization [50] and quasiconvex optimization [52] to the tri-

angulation problem. Moreover, it is important to note that
this work is closely related to previous work on structure from

motion [19] as well as nonrigid surface detection and track-
ing [76, 101, 123, 124].

Factorization methods are widely used in 3D deformable sur-

face recovery. Bregler et al. [19] proposed a solution for recover-
ing 3D nonrigid shapes from video sequences, which factorizes

the tracked 2D feature points to build the 3D shape model. In
this approach, the 3D shape in each frame is represented by a

linear combination of a set of basis shapes. A similar method
was applied to the Active Appearance Models fitting results in

order to retrieve the 3D facial shapes from video sequences [105].
Based on the factorization method, a weak constraint [81] can
be introduced to handle the ambiguities problem by constrain-

ing the frame-to-frame depth variations. In addition, machine
learning techniques have also been applied to building the linear

subspace from either the collected data or the synthetic data.
Although some promising results have been achieved in 3D face

fitting [14] and deformable surface tracking [82], these methods
usually require a large number of training samples to obtain
sufficient generalization capability.

As for 2D nonrigid surface detection, we have investigated
in the previous two chapters. J. Pilet et al. [76] proposed a

real-time algorithm which employs a semi-implicit optimization
approach to handle noisy feature correspondences. In contrast,

several image registration methods [6, 20] tend to be computa-
tionally expensive and are mainly aimed at object recognition.

Since the deformable surface is usually highly dynamic and
represented by many deformation parameters, the prior mod-
els are often engaged in dealing with the ill-posed optimization

problem of deformable surface recovery. As described in Chap-
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(a) Sharply folded (b) Bending

(c) Bag (d) Cloth

Figure 5.1: Recovering highly deformable surfaces from video sequences (a-
d). (a) A piece of paper with well-marked creases. (b) Severely bending. (c)
Bag surface. (d) A piece of cloth.

ter 2, a variety of methods have been proposed to create these
models, such as the interpolation method [6, 20], the data em-

bedding method [82, 105, 116] and physical models [32, 47, 76].
The major problem of these models is that their smoothness

constraints usually limit their capability of accurately recover-
ing sharply folded and creased surfaces.

Instead of using the strong prior models, M. Salzmann et al.
recently formulated the problem generally as a Second Order
Cone Programming (SOCP) problem without engaging the un-

wanted smoothness constraints [80]. Although they have demon-
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strated some promising results on tracking deformable surfaces
from 3D to 2D correspondences, their approach is computation-

ally expensive while handling a large number of SOCP con-
straints for a large set of free variables. In this chapter, we

apply the principles they have described, and investigate new
techniques to address the shortcomings.

Specifically, we propose a novel unconstrained quadratic opti-

mization formulation for 3D deformable surface tracking, which
requires only the solution of a set of sparse linear equations. In

the proposed approach, we first show that the SOCP formula-
tion can be viewed as a special case of a general convex optimiza-

tion feasibility problem. Then, a slack variable is introduced to
rewrite the SOCP formulation into a series of Quadratic Pro-

gramming (QP). Furthermore, the SOCP constraints are con-
verted into a quadratic regularization term, which leads to a
novel unconstrained optimization formulation. Finally, we show

that the resulting unconstrained optimization problem can be
solved efficiently by the robust progressive finite Newton op-

timization scheme introduced in Chapter 3, which can handle
large outliers. Hence, not only is the proposed solution highly

efficient, but also it can directly handle noisy data in an effective
way. To evaluate the performance of the proposed algorithm, ex-
tensive experiments have been conducted on both synthetic and

real-world data, as shown in Fig. 5.1.
The rest of this chapter is organized as follows.Section 5.2

presents the proposed 3D deformable surface tracking solution
using a novel unconstrained quadratic optimization method. Sec-

tion 5.3 shows the details of the experimental implementation
and evaluates the experimental results. Section 5.4 discusses

some limitations and sets out the conclusion.
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5.2 Fast 3D Deformable Surface Tracking

In this section, we first formally define the 3D deformable sur-
face tracking problem. Then, an optimization framework is pre-

sented for treating the 3D deformable surface tracking problem
as a general convex optimization feasibility problem. We then
revisit previous SOCP work that can be viewed as a special case

of the general convex optimization framework. With a view to
improving the efficiency of the optimization, we present tech-

niques to relax the SOCP constraints properly and propose two
new optimization formulations. One is a QP formulation and

the other is an efficient unconstrained quadratic optimization.

5.2.1 Problem Definition

The 3D deformable surface is explicitly represented by triangu-
lated meshes. As shown in Fig. 5.1, a triangulated 3D mesh

with n vertices is employed in this chapter, and the vertices’
coordinates are formed into a shape vector s as below:

s =
[

x1 . . . xn y1 . . . yn z1 . . . zn

]⊤

in which vi = (xi, yi, zi)
⊤ is defined as the coordinates of the ith

mesh vertex. The shape vector s is the variable to be estimated.
Given a set of 3D to 2D correspondences M between the

surface points and the image locations, a pair of matched points
is defined as m = (mS,mI) ∈ M, where mS is the 3D point
on the surface and mI is the corresponding 2D location on the

input image.
Assuming that the surface point mS lies on a facet whose

three vertices’ coordinates are vi,vj and vk respectively, and
{i, j, k} ∈ [1, n] is the index of each vertex. The piecewise affine

transformation is used to map the surface points mS inside the
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corresponding triangle into the vertices in the mesh:

mS =




x

y

z


 =




xi xj xk

yi yj yk

zi zj zk



[

ξ1 ξ2 ξ3

]⊤

where (ξ1, ξ2, ξ3)
⊤ are the barycentric coordinates for the surface

point mS.

As in [80], the 3×4 camera projection matrix P is assumed to
be known and remains constant. This does not mean that the

camera is fixed, since the relative motion with respect to the
camera can be recovered during the tracking process. Hence,
with the projection matrix P, we can compute mI = [ u v ]⊤,

the 2D projection of the 3D surface point mS, as follows:
[

u

v

]
=

[
P1,1x+P1,2y+P1,3z+P1,4

P3,1x+P3,2y+P3,3z+P3,4

P2,1x+P2,2y+P2,3z+P2,4

P3,1x+P3,2y+P3,3z+P3,4

]
(5.1)

In order to directly represent the projection by the variables
s, an augmented vector a ∈ R

3n is defined as below:

ai = ξ1P1,1 ai+n = ξ1P1,2 ai+2n = ξ1P1,3

aj = ξ2P1,1 aj+n = ξ2P1,2 aj+2n = ξ2P1,3

ak = ξ3P1,1 ak+n = ξ3P1,2 ak+2n = ξ3P1,3

The remaining elements of the vector a are all set to zero. Sim-
ilarly, we define other two vectors b, c ∈ R

3n accordingly, and

then rewrite Eqn. 5.1 as follows:
[

u

v

]
=

[
a⊤s+P1,4

c⊤s+P3,4

b⊤s+P2,4

c⊤s+P3,4

]
(5.2)

Definition 5. The 3D deformable surface tracking problem is

to estimate the 3D shape (or mesh) s from a set of 3D to 2D
correspondencesM in a video sequence, in which the projection

formula is based on Eqn. 5.2.
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5.2.2 Convex Optimization Formulations

General Convex Formulation

Since it is impossible to find a perfect projection that can ide-
ally match all the 3D to 2D correspondences in practice, let

γ denote the upper bound for the reprojection error of each
correspondence pair m ∈ M. As a result, for each 2D image

observation mI = [ û v̂ ]⊤, the following inequality constraint
will be satisfied:∥∥∥∥

a⊤s + P1,4

c⊤s + P3,4
− û,

b⊤s + P2,4

c⊤s + P3,4
− v̂

∥∥∥∥
p

≤ γ for m ∈M, (5.3)

where p ≥ 1 is a constant integer and the inequality constraint

is known as a p-norm cone constraint [15]. As a result, the
3D deformable surface tracking problem can be formulated as a
general convex optimization problem:

min
γ≥0,s

γ

s. t.

∥∥∥∥
a⊤s + P1,4

c⊤s + P3,4
− û,

b⊤s + P2,4

c⊤s + P3,4
− v̂

∥∥∥∥
p

≤ γ

for each m ∈M.

In the above optimization, γ is usually set by the bisection algo-

rithm [50, 80]. Hence, the tracking problem can be regarded as
a feasibility problem for the above general convex optimization.

When p = 2, the p-norm cone constraint above reduces to
the well-known SOCP constraint. In the following discussion,

we will show that a recently proposed SOCP formulation can be
viewed as a special case of the above general convex optimization

feasibility problem.

SOCP Formulation

The recent work in [80] formulates the 3D deformable surface

tracking problem as an SOCP feasibility problem, which can be
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viewed as a special case of the above general convex optimization
with p = 2:

min
γ≥0,s

γ

s. t.

∥∥∥∥
a⊤s + P1,4

c⊤s + P3,4
− û,

b⊤s + P2,4

c⊤s + P3,4
− v̂

∥∥∥∥ ≤ γ

for each m ∈M. (5.4)

where the 2-norm notation ‖ · ‖2 is by default written as ‖ · ‖
without ambiguity. To handle the outliers, the method described

in [84] is employed to remove the set of matches whose repro-
jection errors equal the minimal γ.

In practice, to regularize the deformable surface, an addi-
tional constraint is introduced to prevent irrational changes of
the edge orientations between two consecutive frames [80]. As-

suming that the shape st at time t is known, and that the orien-
tation of the edge linking the vertices vt

i and vt
j will be similar

at time t + 1. For each edge in the triangulated mesh, the cor-
responding constraint can be formulated as below:

∥∥vt+1
i − vt+1

j − θ
t
ij

∥∥ ≤ λLi,j (5.5)

where Li,j is the original length of the edge. θ
t
ij is the difference

of the two vertices vt
i and vt

j at time t normalized by the original
edge length, namely

θ
t
ij = Li,j

vt
i − vt

j

‖vt
i − vt

j‖

Also, λ is a coefficient to control the regularity of the deformable
surface. Again, the above inequality constraint is also an SOCP

constraint. As a result, the tracking problem is formulated as an
SOCP feasibility problem 1 with a number of SOCP constraints,

which can be solved by some bisection algorithm [50, 80].

1The SOCP optimization problem is solved by Sedumi: http://sedumi.mcmaster.ca.
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A major problem of the above formulation is that the number
of correspondences |M| is often much larger than the number

of variables for ensuring sufficient correct matches, and thus
the SOCP formulation has to engage a large number of SOCP

constraints. Specifically, if ne denotes the number of edges
in the mesh model, the above SOCP formulation should have
(|M|+ne) SOCP constraints in total. Solving the above SOCP

optimization directly leads to very high computational cost in
practice.

QP Formulation

The drawback of the SOCP formulation lies in the large number

of SOCP constraints. In this part, we present a QP formulation
by removing the SOCP constraints. Specifically, for each of the

SOCP constraints in Eqn. 5.4, we can rewrite it equivalently as

[(a− ûc)⊤s + du]
2 + [(b− v̂c)⊤s + dv]

2 ≤ γ(c⊤s + dw)2

where dw = P3,4, du = P1,4−ûdw, and dv = P2,4−v̂dw. Further, a

slack variable ǫ(m) can be introduced for each m ∈M and the
inequality constraint can be rewritten as the following equality:

[(a− ûc)⊤s + du]
2 + [(b− v̂c)⊤s + dv]

2 + ǫ(m)2 = γ(c⊤s + dw)2

In addition, the SOCP constraints can be replaced in Eqn. 5.5

with 1-norm cone constraints. As a result, the original formula-
tion can be rewritten by a min-max optimization formulation:

min
γ≥0

max
s

∑

m∈M

ǫ(m)2

s. t.
∥∥vt+1

i − vt+1
j − θ

t
ij

∥∥
1
≤ λLi,j

for each edge (vi,vj) in the mesh.

in which the objective function can be expressed as:
∑

m∈M

ǫ(m)2 = −(s⊤Hs + 2g⊤s + d) (5.6)
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where H ∈ R
3n×3n, g ∈ R

3n×1 and d ∈ R are defined as:

H =
∑

m∈M

(a− ûc)(a− ûc)⊤ + (b− v̂c)(b− v̂c)⊤ − γcc⊤

g =
∑

m∈M

du(a− ûc) + dv(b− v̂c)− γc

d =
∑

m∈M

d2
u + d2

v − γd2
w

It is clear that the above objective function is quadratic. For

the tracking task to be an optimization feasibility problem, γ
is assumed to be known. Hence, the min-max optimization be-
comes a standard QP problem. To solve it, we also employ the

bisection algorithm and engage an interior-point optimizer 2.

5.2.3 Unconstrained Quadratic Optimization

The QP formulation still has to include a number of 1-norm

cone constraints. To address it, we present an unconstrained
quadratic optimization formulation that completely relaxes all

constraints. Specifically, instead of engaging the SOCP con-
straints in Eqn. 5.5, we integrate such constraints into the objec-
tive function by treating it as a weighted penalty function, which

converts the complex SOCP constraints into a simple quadratic
term. This leads to the following unconstrained minimization

formulation:

min
γ,s
−
∑

m∈M

ǫ2 + µ

ne∑

k=1

η2
k (5.7)

where µ is a regularization coefficient, and ηk is a variable to

constrain the regularity of the kth edge:

ηk =
∥∥vt+1

i − vt+1
j − θ

t
ij

∥∥
2http://www.mosek.com/
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Moreover, the edge regularization term can be expressed as:

ne∑

k=1

η2
k = s⊤Qs− 2f⊤s + ϕ (5.8)

where Q ∈ R
3n×3n, f ∈ R

3n×1 and t ∈ R are defined as:

Q =

ne∑

k=1

ãã⊤ + b̃b̃⊤ + c̃c̃⊤

f =

ne∑

k=1

θxã + θyb̃ + θzc̃,

ϕ =

ne∑

k=1

‖θk‖

where θk = (θkx, θky, θkz)
⊤ is used to denote θ

t
ij. For the kth

edge with vertices vi and vj, three augmented vectors ã, b̃ and
c̃ ∈ R

3n are defined as follows:

ãi = 1 b̃i+n = 1 c̃i+2n = 1

ãj = −1 b̃j+n = −1 c̃j+2n = −1

and the remaining elements in ã, b̃ and c̃ are all set to zero. By
substituting Eqn. 5.6 and Eqn. 5.8 into Eqn. 5.7, thus, this leads

to the following unconstrained minimization formulation:

min
γ≥0,s

s⊤(H + µQ)s + 2(g− µf)⊤s + d + ϕ (5.9)

Remark In the above formulation, H, g and d are all re-

lated to the upper bound variable γ, which seems like a compli-
cated optimization problem. Fortunately, we find that the upper
bound γ plays the same role as the support of the robust estima-

tor in [76, 123], which is able to handle large outliers. Therefore,
the above problem can be perfectly solved by the progressive fi-

nite Newton method as proposed in Chapter 3, which makes the
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proposed method capable of handling large outliers. Specifically,
the upper bound γ starts at a large value, and then is progres-

sively decreased at a constant rate. For each value of the upper
bound γ, we can simply solve the following linear equation:

(H + µQ)s = −g + µf (5.10)

where H and g are computed with the inlier matches only. We

employ the results from the previous step to compute the inlier
set. Obviously, the square matrix Q is kept constant for the

given triangulated mesh, and f only needs to be computed once
for each frame. Since both H and Q are sparse matrices, the
above linear system can be solved very efficiently by a sparse

linear solver. Owing to its high efficiency, the proposed solu-
tion enables us to handle very large scale 3D deformable surface

tracking problems with high resolution meshes.

5.3 Experimental Results

In this section, we present the details of the experimental im-

plementation and report the empirical results on 3D deformable
surface tracking. First, an evaluation is performed on synthetic

data for comparison with the convex optimization method. Then,
results of the proposed approach are demonstrated in various en-

vironments, which indicate that the presented method is both
efficient and effective for 3D deformable surface tracking.

5.3.1 Experimental Setup

All the experiments reported in this chapter are carried out

on an Intel Core2 Duo 2.0GHz Notebook Computer with 2GB
RAM, and a DV camera was engaged to capture the videos. For

simplicity, the QP formulation is denoted as “QP”, and the pro-
posed unconstrained quadratic optimization method is denoted
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as “QO”. All the methods are implemented in Matlab, in which
some routines were written in C code. Instead of relying on

the 2D tracking results as in [80], we directly employ the SIFT
method [62] to build the 3D to 2D correspondences by matching

the model image and the input image. The planar surface with
a template image is used due to its simplicity. Moreover, the
non-planar surface can be employed by embedding the texture

into 2D space.
For the SOCP method, the similar parameters settings are

used as given in [80]. Specifically, in the experiments, λ is set to
0.1, and the bisection algorithm stops when the maximal repro-

jection error is below one pixel. For the proposed QO method,
the regularization parameter µ is found by grid searching, which

is set to 5×104 for all experiments. The decay rate for the upper
bound γ is set to 0.5.

To initialize the 3D tracking, the first frame is registered by

the 2D nonrigid surface detection method described in Chap-
ter 3, and then estimate the camera projection matrix P from

3D to 2D correspondences. In fact, the tracking usually starts
from a surface that is slightly deformed. This method works well

in practice, and it can automatically fit to the correct positions
even when the initialization is not very accurate.

Figure 5.2: Synthetic meshes with 96 vertices for evaluation. The 2D obser-
vations corrupted by noise having a normal distribution with σ = 2. Results
for SOCP (black) and QO (blue) are shown with ground truth (red), at frame
94, 170 and 220.
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5.3.2 Synthetic Data Comparison

A sequence of 350 synthetic meshes is generated by simulating

a surface bending process as shown in Fig. 5.2. The total size of
the mesh is 280mm × 200mm. Given a perspective projection

matrix P, the 2D correspondences are obtained by projecting
the 3D points defined by piecewise affine mapping, where the

barycentric coordinates are randomly selected. Two sets of ex-
periments are conducted on the synthetic data. Firstly, we con-

duct the experiments on 2D observations with a small amount
of added noises. Secondly, the performance of SOCP and QO
methods are evaluated on data with large outliers. The number

of correspondences in each facet is set to 5 for the first experi-
ment, and 10 for the second one.

Experiment I

In the first experiment, two cases of noisy data are evaluated, for
which the noise is added to all the 2D observations based on a
normal distribution with different standard deviations σ = 1, 2.

Fig. 5.3 shows the results of the comparison between the QO, QP
and SOCP methods. It can be observed that the proposed QO

method achieves the lowest re-projection errors for both cases.
When σ = 1, both QO and SOCP are more effective than the QP

formulation in 3D reconstruction performance. Indeed, there is
some large jittering for the QP method in 3D reconstruction.

This may be due to the L1 norm relaxation of the constraints
that may cause ambiguities in depth. Also, the SOCP method
slightly outperforms the QO method when the surface is highly

deformed, as observed around frame 170 in Fig. 5.2. When the
standard deviation of the noise increases, we found that the

proposed QO method achieves better and more steady results
than the other two methods. This shows that the QO method

is more resilient to noises.
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(b) σ = 2

Figure 5.3: The performance comparison of the QO, QP and SOCP methods
on the 350 synthetic meshes with little added noise. The first row shows the
average distance between ground truth and recovery results. The second row
is the mean reprojection errors.

Experiment II

In the second experiment, the experiments are conducted on the

synthetic data partially corrupted by noises (40% and 60% re-
spectively) with standard deviation σ = 10. The experimental

results shown in Fig. 5.4 demonstrate that the proposed QO ap-
proach is very robust, and more effective than the SOCP method

in dealing with large outliers. Furthermore, we observe that the
results achieved by the QO approach are rather smooth. In con-
trast, large jittering is observed in the results from the SOCP

method. In the experiments, the number of inliers for the QO
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Figure 5.4: Comparison of the performance of the QO and SOCP on the
synthetic data with large outliers. The first row shows the average distance
between ground truth and recovery results. The second row is the mean
reprojection errors.

method is larger than that for the SOCP method. Specifically,
when the percentage of outliers is 60%, the average inlier rate is

around 39% for QO, and below 30% for the SOCP method.

Computational Efficiency

The complexity of the proposed QO method is mainly domi-
nated by the order of Eqn. 5.10, which is equal to 3n. Another

important factor is the number of inlier matches, which affects
the sparseness of the system matrix. This number usually dif-

fers from one frame to another. For the synthetic data with
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96 vertices, as shown in Fig. 5.2, the proposed method runs at
about 29 frames per second on the synthetic data. As shown

in Table 5.1, the proposed QO method takes 0.034 seconds per
frame. On the other hand, the QP and SOCP methods require

10 seconds and 5 seconds per frame respectively. On average,
the proposed QO method is over 140 times faster than the SOCP
method.

Table 5.1: Average computational time per frame (seconds)

Quadratic Optimization (QO) Quadratic Programming (QP) SOCP [80]

0.034 10.0 5.0

5.3.3 Performance on Real Data

Next, we investigate the 3D deformable surface tracking per-
formance on some real deformable surfaces based on a piece of

paper, a bag and a piece of cloth. Since only the QO method
is efficient enough in practice, we evaluate only the QO method

on the real data. To ensure that a sufficient number of correct
correspondences are found, all the objects are well-textured.

Paper

As shown in Fig. 5.5, the proposed method is robust in handling
large bending deformations. In practice, the whole process runs
at around one frame per second on the DV size video sequence

with a 187-vertex mesh model. The SIFT feature extraction
and matching takes most of the time, whereas the optimization

procedure only requires 0.1 seconds for each frame. Fig. 5.7
shows that a sharply folded surface is retrieved, and the well-

marked creases can be accurately recovered.
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Figure 5.5: We use a piece of paper as the deformable object. The deformable
surface is recovered from a 300 frame video. The first row shows the images
captured by a DV camera size of 720 × 576 overlaid by the reprojection of
the recovered mesh. The second row is a different projective view of the
recovered 3D deformable surface.

Figure 5.6: Tracking the deformable surface with waveform deformation.
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Figure 5.7: Tracking the deformable surface with two sharp folds in it. The
creases are correctly recovered.

Bag and Cloth

To evaluate the performance on materials less rigid than a piece

of paper, we reconstruct the surfaces of a bag and a piece of cloth
with the proposed method. For the high efficiency of the pro-

posed solution, we can handle real-world objects with high reso-
lution mesh very fast. Fig. 5.8 shows the tracking results of the

bag surface. The optimization procedure only takes about 0.2
seconds to process a mesh with 289 vertices. Similarly, Fig. 5.9
shows the tracking results of a piece of cloth. From these re-

sults, it can be concluded that the proposed method is able to
recover the deformable surfaces accurately with the high resolu-

tion mesh.
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Figure 5.8: Recovering the deformation of a bag.

Figure 5.9: Recovering the deformation of a piece of cloth.
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5.4 Summary

We have proposed a novel solution for the 3D deformable sur-
face tracking by formulating the problem into an unconstrained

quadratic optimization. Compared with previous convex opti-
mization approaches, the proposed method enjoys several major
advantages. Firstly, the presented method is very efficient with-

out involving complicated SOCP constraints. Secondly, the pro-
posed approach can handle large outliers and is more resilient

to noises. Compared with the previous SOCP method, we have
improved both the efficiency and robustness performance sig-

nificantly. Furthermore, different from the previous SOCP ap-
proach that usually requires a sophisticated SOCP solver, the
proposed method can be implemented easily in practice, requir-

ing the solution of only a set of linear equations. Also, the
optimization method used in this chapter might be applicable

to other similar problems solved by SOCP. Extensive experi-
mental evaluations are performed on objects made of different

materials. The experimental results demonstrate that the pro-
posed method is significantly more efficient than the previous

approach, and is also rather robust to noises. Promising track-
ing results show that the proposed solution is able to handle
large deformations that often occur in real-world applications.

Although promising experimental results have validated the
efficiency and effectiveness of the methodology, some limitations

should be addressed. First of all, self-occlusion problem has
not yet been studied. Also, in some situations some jitter may

occur due to a lack of texture information. Finally, this method
requires the temporal information, which may limit its scope of

the application.

2 End of chapter.



Chapter 6

Velocity Coherence Regression

In this chapter, we present a velocity coherence regression ap-
proach to nonrigid surface detection. Comparing to the meth-

ods introduced in the previous three chapters, the proposed
approach does not require an explicit deformable mesh model.
To handle the large numbers of outliers, an incremental outlier

rejection scheme is presented. Several experiments have been
conducted for performance evaluation, and encouraging experi-

mental results demonstrate that the presented method is both
effective and robust.

6.1 Motivation and Methodology

As mentioned in Chapter 3, nonrigid surface detection [76] can
typically be treated as a problem of fitting a mapping function

and rejecting outliers matching without homologies. The dif-
ference between nonrigid surface recovery and detection is that

the latter does not require any initialization or a priori pose
information. If the point correspondences contain no outliers,
finding the nonrigid mapping function only requires the solu-

tion of a simple linear equation [123]. However, this ideal case
seldom happens in any computer vision problem, and the out-

liers could comprise up to 90% of the points for a typical point

99
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matching problem [76]. Therefore, it is difficult to directly apply
the robust techniques widely used in statistics. This is because

a typical statistical estimator requires that the inliers must be
the absolute majority of the data in order to obtain a reasonable

solution [68, 119]. Moreover, some registration methods [6, 20]
tend to be computationally expensive and mainly aim at object
recognition rather than nonrigid surface recovery.

Chapter 3 has already thoroughly reviewed various approaches
to nonrigid shape recovery, which employs either the feature-

correspondences or appearance information. Alternatively, the
method presented in this chapter is closely related the nonrigid

point set matching methods, which are investigated in the fol-
lowing.

Considerable research efforts have been expended on the non-
rigid shape matching from point sets in the image analysis and
computer vision community [49, 67, 71]. Extensive studies can

be found in the literature [10, 71]. Rangaranjan et al. [20] intend
to establish a consistent correspondence between two point sets

and recover the mapping function with the best alignment. They
present a coarse-to-fine approach to jointly determine the corre-

spondences and nonrigid transformation through deterministic
annealing and soft-assign. The major problem of this approach
is that the stability of the registration result is not guaranteed in

the case of data with large outliers, and hence a good stopping
criterion is required. In the most recent studies, the probabilis-

tic approach for the nonrigid point set matching is attracting
increasing research interests [49, 67, 71]. The point set match-

ing is interpreted as a mixture density estimation problem [38],
where one point set represents the centers of Gaussian mixture

models and the other represents sample data. This problem
is usually solved by the Expectation Maximization (EM) algo-
rithm. Another idea is to model each of the two point sets

by a kernel density function and then measure the similarity.
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In [96], Tsin and Kanade proposed a kernel correlation based
approach to register the nonrigid point set, which minimizes

the L2 norm between the distributions. Later, Jian and Ve-
muri [49] extended this approach via representing the density

by Gaussian mixture models. All these methods employed the
Thin-Plate Spline to obtain the smooth nonlinear transforma-
tion. Recently, Myroneko et al. [71] presented a coherent point

drift method for nonrigid point set registration, which does not
make any explicit assumption of the transformation model.

In contrast to the nonrigid surface detection problem, the
methods for the point set matching [10, 71] tend to be compu-

tationally expensive, and few of them can be applied to point
sets extracted from real images; an exception is the most re-

cent part-based approach [67]. On the other hand, the nonrigid
surface detection approach has already been applied to track
nonrigid objects in real-time video [76, 123].

In nonrigid surface detection, the regularized deformable mod-
els are vitally important for dealing with the problem of the

many outliers and ill-posed optimization, and thus are able to
make the problem tractable by constraining the search space.

We have introduced several regularization methods in Chapter 2,
such as the Finite Element Model, the Thin-Plate Spline and the
data embedding method. The Finite Element Model based reg-

ularization approach has been extensively studied in [32, 47, 76],
which reported promising results in fitting noisy image data

and handling deformable 3D objects. Using the Finite Element
Model, however, the nonrigid surface should be explicitly rep-

resented by a triangulated mesh. Moreover, the triangulated
Finite Element Model heavily relies on the quadratic regulariza-

tion term, and does not always accurately represent large defor-
mations [82]. Alternatively, the Thin-Plate Spline is well-known
interpolation method widely used in point set registration, and

mainly penalizes the second order derivatives [89]. Finally, the



CHAPTER 6. VELOCITY COHERENCE REGRESSION 102

data embedding techniques, such as Principal Component Anal-
ysis [82, 105], can also be engaged as the regularization tech-

nique, although PCA requires a large number of training sam-
ples to obtain sufficient generalization capability.

In this chapter, a novel robust velocity coherence regres-
sion approach is proposed for the nonrigid surface detection,
which has the advantage of employing the velocity coherence

constraints [108] to regularize the deformation of the nonrigid
surface. In contrast to the method presented in Chapter 3,

the proposed approach does not require an explicit triangu-
lated mesh representation for the nonrigid surface. Moreover,

a coarse-to-fine scheme is proposed to handle large numbers of
outliers. The key of the proposed robust velocity coherence re-

gression method is to take advantage of imposing the velocity
coherence smoothness on the underlying mapping. According
to [108], the velocity coherence constraint penalizes the deriva-

tives of all orders of the underlying velocity field, while both the
Thin-Plate Spline and the Finite Element Model regularization

methods can only penalize the second order derivative. To the
best of our knowledge, few studies have been done to formulate

the nonrigid surface detection as a generic regression problem.
To evaluate the performance of the proposed algorithm, exten-
sive experiments have been conducted on such diverse objects

as a piece of paper, a coffee mat, T-shirt and a medical image,
as shown in Fig. 6.1.

The rest of this chapter is organized as follows. In Section 6.2,
the nonrigid surface detection problem is first formulated as a

generic regression problem, and then a velocity coherence regres-
sion approach is proposed. Section 6.3 presents a robust velocity

coherence regression method along with an incremental outlier
threshold scheme to handle large numbers of outliers in the non-
rigid surface detection. Section 6.4 provides the details of the

experimental implementation and describes the experimental re-
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(a) Paper (b) Coffee mat

(c) A piece of paper (d) Medical image

Figure 6.1: Detecting nonrigid surfaces in real-time video (a-d). (a) Paper
with the registered mesh. (b) The contour is overlaid on the coffee mat. (c)
A piece of paper. (d), Medical image registration.

sults. We discuss limitations in Section 6.5. Section 6.6 sets out
the conclusion.

6.2 Velocity Coherence Regression

In this section, we describe the proposed velocity coherence re-
gression approach for nonrigid surface detection. To tackle this

challenge, the nonrigid surface detection is formulated as a re-
gression problem under the regularization networks framework.

Then, the velocity coherence regression is proposed to address
this problem. Finally, we discuss the connections of the method

with the Gaussian process regression and the Gaussian mixtures
models.



CHAPTER 6. VELOCITY COHERENCE REGRESSION 104

6.2.1 Theoretical Framework

Consider two images Im and It, which are the model image and

the target image respectively. Let xi be defined as the 2D co-
ordinates of a feature point in the model image Im, and yi is

the coordinates of its match in the target image It. A set of
correspondences M = {(xi,yi) ∈ Rd}Ni=1 between the model and

target images are obtained through a point matching algorithm,
where d = 2 and N is the total number of matched pairs.

The goal of the nonrigid surface detection is to find a function
f to map the points in the model surface into the target image
It. It can be viewed as a regression problem that has the input

data of the correspondence pairs (x,y). Let vector y denote
the measurements target of the input vector x. We denote ǫ as

the noise variable, and then the function f can be written as
f(x) = y + ǫ.

Given the set of correspondences M , the posterior probability
of the mapping function f can be derived as below:

p(f |M) ∝ p(M |f)p(f)

where p(M |f) is the conditional probability of M given f , and
p(f) is the a priori probability of the random field f .

Assuming the noise variables ǫi are normally distributed with

variance σ. Thus, we can write p(M |f) as:

p(M |f) ∝ exp

(
−

1

2σ2
tr
[
(Y − f(X))⊤(Y − f(X))

])

where X ∈ RN×d and Y ∈ RN×d are the matrices of the model
and target points. In addition, the a priori probability p(f)

embodies a priori knowledge of the function f , and can be used
to constrain the nonrigid surface model. As suggested in [30],

p(f) can be written as follows:

p(f) ∝ exp(−
λ

2
φ(f))
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where λ is a regularization coefficient, and φ(f) is a smoothness
function.

Finally, finding the maximum a posteriori estimate of func-
tion f is equivalent to minimizing the following log-posterior

energy function:

E1 = − ln p(M |f)− ln p(f)

=
1

2σ2
tr
[
(Y − f(X))⊤(Y − f(X))

]
+

λ

2
φ(f) (6.1)

which is the same problem as for the Tikhonov Regulariza-

tion [30, 92].

6.2.2 Velocity Coherence Regularization

In this chapter, the velocity coherence constraint is employed
to impose smoothness on the underlying mapping function. A

continuous velocity function v is defined as follows:

v(x) = f(x)− x

Instead of applying the regularization to the mapping function

f , Andriy et al. [71] suggest constraining the velocity function
v. This is similar to the technique used in optical flow es-

timation [44]. Therefore, according to the regularization net-
works [30], the smoothness function φ(v) is defined as:

φ(v) =
λ

2

∫

Rd

|ṽ(s)|2

G̃(s)
ds

where ṽ and G̃ are the Fourier transform of the velocity function

v and a real symmetric function G respectively. G̃ is a positive
function that tends to zeros as ‖s‖ → ∞; thus 1/G̃ becomes a
high-pass filter. Replacing the regularization term in the reg-

ularization networks (Eqn. 6.1) with φ(v), the energy function
can be rewritten as below:

E2 =
1

2σ2
tr
[
(Y − f(X))⊤(Y − f(X))

]
+

λ

2

∫

Rd

|ṽ(s)|2

G̃(s)
ds (6.2)
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It is named as the velocity coherence regression in this thesis. It
is shown (see the appendix B for a sketch of the proof) that the

solution of the velocity coherence regression has the following
form:

v(x) =
∑

αiG(x− xi)

where αi is a d-dimensional coefficient vector. Therefore, the

mapping function f can be rewritten as below:

f(x) = x +
∑

αiG(x− xi) (6.3)

As discussed in [30], there are various choices for selecting the

kernel form for G, such as Gaussian, multivariate splines and
multiquadric, amongst others. In this chapter, we choose the

Radial Basis Function (RBF) kernel function k, since it not only
fulfills the requirements for the positive function G but also leads

to a velocity coherence regularization [71]. Moreover, the regu-
larization term φ(v) with a Gaussian kernel form is equivalent
to the one used in [108], which can be derived as the sum of

weighted squares of all order derivatives of the velocity field:
∫

Rd

|ṽ(s)|2

G̃(s)
ds =

∫

Rd

∞∑

m=1

ρ2m

m!2m
(Dmv)ds

where D is a derivative operator such that D2mv = ∇2mv. Let

K ∈ Rm×m denote a kernel matrix with elements:

Kij = k(xi,xj) = exp(−
1

2ρ2
‖xi − xj‖

2)

where ρ is the width of the RBF kernel. In nonrigid surface de-
tection, ρ is related to physical characteristics such as elasticity.

For example, the nonrigid object becomes more rigid when ρ in-
creases. Substituting Eqn. 6.3 into the energy function Eqn. 6.2,

we can derive the following problem:

E2 =
1

2σ2
tr[(Y −X −Kα)⊤(Y −X −Kα)]

+
λ

2
tr(α⊤Kα) (6.4)
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where matrix α ∈ Rm×d is a variable. Therefore, the derivatives

of the energy function E2(α) with respect to the variable α

vanish for optimality:

∂E2

∂α
= −

1

σ2
K(Y −X −Kα) + λKα

which leads to the following linear equation:

(
K + σ2λI

)
α = Y −X (6.5)

6.2.3 Link to Gaussian Process Regression

Assume the velocity function v(x) is a zero mean Gaussian Pro-
cess with squared exponential covariance function [78]:

v(x) ∼ GP(0, k(xi,xj))

Then, the mapping function f(x) can be written as a Gaussian

Process with the deterministic mean function x:

f(x) ∼ GP(x, k(xi,xj))

The prediction can be computed by:

f ∗(X) = X + K(K + σ2I)−1(Y −X) (6.6)

6.3 Nonrigid Surface Detection

Generally speaking, the great challenge for nonrigid surface de-

tection is to deal with the large numbers of outliers which are
mainly introduced by the local feature matching. In the rest of

this section, the proposed robust velocity coherence regression
method is presented to attack this critical problem.
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6.3.1 Robust Velocity Coherence Regression

Since the outliers are overemphasized using the L2 norm in

the velocity coherence regression, we employ a robust estima-
tor V(δ, σ) which assesses a fixed penalty for the residual δ =

y − f(x), which is larger than the variance σ. Moreover, this
approach is relatively insensitive to the outliers [15]:

V(δ, σ) =

{
‖δ‖, M1 = {(x,y)| ‖δ‖ ≤ σ2}

σ2, M2 = M1

(6.7)

where the set M1 contains the inlier matches, and M2 is the
set of the outliers. Note that this robust estimator is the same

as the one used in Chapter 3 except that the order is fixed to
two in the velocity coherence regression. As in EM-ICP [35], we
introduce a weight ωi associated with each correspondence, and

then reformulate the energy function as follows:

E3 =
1

2σ2

N∑

i=1

ωiV(yi − f(xi), σ) +
λ

2
tr(α⊤Kα) (6.8)

Note that a feature point in the model image Im may be

matched with multiple points in the target image It. Simply
summing them together is equivalent to matching them with

the center of these points in It, which may not be effective and
efficient. In this case, we only retain the correspondences with

the highest match score. Moreover, ωi is the posterior proba-
bility, which decays exponentially as a function of distance, so

that the large numbers of outliers have little influence on the
minimization:

ωi =
e−

1

2σ2
‖yi−f(xi)‖

2

∑N
j=1 e−

1

2σ2
‖yi−f(xi)‖

2

The modified finite Newton method [54] can be employed to
solve the unconstrained optimization problem in Eqn. 6.8, and
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the derivatives of E3 can be derived as below:

∂E3

∂α
= −

1

σ2
(Y −X −Kα)⊤WI0K + λKα

where W is a diagonal weight matrix with Wii = ωi and I0 is

an N ×N matrix with inlier entries being one and others zero.
Therefore, we can obtain the following solution:

(
WI0K + σ2λI

)
α = WI0(Y −X) (6.9)

Let K ′ ∈ Rl×l denote the matrix part of the inlier block in the

original kernel matrix K, and l is the number of inlier matches.
Since l is always less than N , the above linear system can be

reduced to a smaller problem:

(
W ′K ′ + σ2λI

)
α
′ = W ′(Y ′ −X ′) (6.10)

where W ′, Y ′ and X ′ refer to the inlier block of the correspond-
ing matrices. The above linear system can be efficiently solved

by LU decomposition. Moreover, it can be observed that the
outliers are not involved into the computation. In addition,

both the precision and computational cost of the method are
dependent only on the number of inlier points.

After computing the mapping function f , the model image Im

can be warped to the target image It by predicting the velocity
fields using Eqn. 6.3.

6.3.2 Optimization

In order to facilitate the velocity coherence regression, both the
model and target point sets are normalized with zero mean and

unit variance, which is equivalent to translating and scaling the
point sets. To handle the large numbers of outliers, we introduce

an incremental outlier threshold scheme. The variance σ that is
also the support of the robust estimator V(δ, σ) is progressively
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decayed at a constant rate γ. Since the derivatives of V(δ, σ)
are inversely proportional to the support σ, the regularization

coefficient λ is kept constant during the optimization. For each
value of σ, the object function E3 is minimized until the inlier

set no longer changes, and then the result is employed as the
initial state for the next minimization. The minimization of E3

is solved through Eqn. 6.10 with a given initial state, after which

the inlier set is updated. To deal with the transformation, we
re-normalize the input point set with respect to the inliers.

In order to select most of the correspondences into the ini-
tial active set, and to avoid getting stuck at local minima, the

initial value of σ is usually set to a sufficiently large value. The
optimization procedure stops when σ reaches a value close to

the expected precision, and then the algorithm reports a suc-
cessful detection when the number of inlier matches is above a
given threshold. Ultimately, the proposed optimization scheme

involves two or three iterations for each σ, and around twenty
iterations in total to ensure the convergence.

Fast Computation: Since the optimization procedure only
involves the part of the Kernel matrix K that is constant in the

whole process, it can be pre-computed in order to save com-
putational cost. Similarly, the projection matrix can also be
pre-computed, which maps the mesh from the model to the tar-

get.

6.4 Experimental Results

In this section, we present the details of the experimental im-
plementation and report the results of performance evaluation
on nonrigid surface detection. It is shown that the proposed ap-

proach is both effective and efficient for real-time tracking, and
can be easily employed for augmented reality applications. In

addition, similarly convincing results are obtained for medical
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image registration.

6.4.1 Experimental Setup

All the experiments reported in this chapter were carried out on

a Pentium-4 3.0GHz PC with 1GB RAM, and a DV camera was
employed to capture videos. As in Chapter 3, a random-trees

based method [58] is used to build the correspondences between
the model image and the target image, and a model image is
acquired when the nonrigid surface contains no deformation.

In the experiments, a set of synthetic data is used to select
the parameters, and the reference mesh is manually registered.

The performance is evaluated by measuring the percentage of
mesh vertices within two pixels of those in the reference mesh.

The RBF kernel width ρ is set to 2.0, and the best regularization
coefficient is found to be around 0.1 by grid searching. Similarly,
the initial support is fixed to 1.0, and the decay rate is 0.7.

6.4.2 Nonrigid Surface Detection

The proposed robust velocity coherence regression is first eval-
uated on a point set registration problem. The targets are cor-

rupted by the noise (55%) having a normal distribution with a
standard deviation of two. Fig. 6.2 plots the registration results,

which indicates that the proposed method can handle the larger
outliers. The proposed method requires 11 iterations to obtain
the convergence. However, CPD algorithm [71] needs above 100

iterations, and fails to achieve the convergence. Furthermore,
CPD algorithm cannot handle the large pose variation, as shown

in Fig. 6.3.
Then, the proposed approach is compared with with the

state-of-the-art methods, such as the semi-implicit optimiza-
tion [76] and the progressive finite Newton method presented

in Chapter 3. A set of synthesized correspondences is generated
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Figure 6.2: Point set registration with large outliers.(a) initial position of
model and target points; (b) CPD algorithm [71]; (c) proposed method.
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Figure 6.3: Point set registration with pose variation.(a) initial position of
model and target points; (b) CPD algorithm [71]; (c) proposed method.
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by a given transformation between the model image and the test
image, as shown in Fig. 6.4. The experiments are conducted on

the observations with added Gaussian noise. Each experiment is
repeated with 50 runs. Table 6.1 shows the experimental results

with different standard deviations for the added noise, which
indicates that the proposed method performs very similarly to
the gradient method. Moreover, the performance of nonrigid

surface detection algorithm is mainly determined by the accu-
racy of the feature matching methods. However, it can be also

observed that the implementation of semi-implicit method does
not perform well. This is mainly due to lack of a Levenberg-

marquardt scheme to properly tune the parameters.

(a) Model image (b) Test image (c) Test image with overlaid
mesh

Figure 6.4: Model image and test image used in the numerical comparison.
The overlaid mesh is employed as the ground truth mapping.

Table 6.1: The accuracy on synthesized dataset with different standard de-
viations std. The mean square error (MSE) per vertex is adopted as the
metric.

Method std = 1 std = 2 std = 5 std = 8 std = 10

[76] 0.88± 0.09 1.72± 0.10 4.01± 0.33 6.26 ± 0.68 7.45 ± 0.71

[123] 0.72± 0.02 1.43± 0.05 3.59± 0.14 5.69 ± 0.29 7.08 ± 0.38

VCR 0.74± 0.02 1.45± 0.04 3.86± 0.09 5.68 ± 0.17 7.13 ± 0.37

Fig. 6.5 illustrates the results on a piece of paper. To eval-
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uate the effectiveness of the proposed method, the grid mesh is
mapped from the model image to the input image. It can be

observed that the velocity coherence regularization technique is
robust to the large deformations. The regularization networks

with the robust estimator is also evaluated in this case, which
fails to converge for all the cases.

Figure 6.5: Nonrigid surface detection on a piece of paper, the detected mesh
model is overlaid on the input images size of 720× 576.

Complexity: The complexity of the proposed method is

determined by the order of Eqn. 6.10, which is equal to the
number of inlier matches. On the other hand, the complexity of

the Finite Element Model-based method [76, 123] is dominated
by the number of vertices in the mesh model. For the paper

video, as shown in Fig. 6.6, the proposed method runs around
15 frames per second on real-time video with size of 720× 576,
which requires about 20 iterations to achieve the convergence.

As described in Chapter 3, our own implementation of the semi-
implicit iterative approach [76] needs around 40 iterations to

reach the convergence, and runs about 9 frames per second with
a mesh of 120 vertices. Thus, the proposed method is more

efficient than the semi-implicit iterative approach. As for the
progressive finite Newton approach, it runs around 18 frames
per second.

Augmented Reality: The proposed method is also applied
to re-texturing an image. To obtain realistic results, the texture

should be correctly relighted. As suggested in [76], a re-textured
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Figure 6.6: Re-texturing a picture on a piece of paper. The first row is the
720× 576 images captured by a DV camera. The second row is the results
of replacing the pure white pattern.

input image is generated by multiplying a blank shaded image,
which is the quotient of the input image and the warped refer-

ence image. This relighting procedure is easily done by the GPU
and requires only a short OpenGL shading language program;

and the whole process runs at around 15 frames per second.
Fig. 6.6 describes the results on a piece of paper with a satu-

rated region. In addition, the right two columns of Fig. 6.6 show
the results in a cluttered environment, and the last one shows
the result with partial occlusion. As it is another feature-based

method, the performance of the proposed method is closely re-
lated to the texture of objects. Specifically, better results can be

obtained for objects with more texture, because it is easy to find
more correct correspondences than with those lacking texture.
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6.4.3 Medical Image

The proposed approach is also evaluated for medical image regis-

tration. A pair of sagittal images [74] with the size of 256× 256
from two different patients are used in the experiments. The

source and target images differ in both geometry and intensity.
The results are plotted in Fig. 6.7; it can be seen that the source

image is successfully registered. In comparison with the locally
affine but globally smooth method [74], which takes about four

minutes, the proposed method can solve the problem within half
a second. Moreover, the sparse correspondences-based method
can naturally handle the missing data and the partial occlusion

problem. As shown in Fig. 6.7, even with the source images
in a region removed, the nonrigid shape can still be recovered.

Since it is a fully automated approach, we can employ the fitting
result to initialize other local methods [74] in order to further

improve the registration accuracy.

6.5 Discussion

A robust velocity regression method with an incremental outlier

threshold scheme has been proposed. Note that the proposed
methodology could be applied to solving other flow related es-

timation problems. In this thesis, however, we restrict its ap-
plication to nonrigid surface detection. Comparing to the semi-
implicit iterative method [76] and the progressive finite Newton

approach in Chapter 3, the proposed method makes no assump-
tion about the model except for the velocity coherence, which

is independent of an explicit mesh model. Moreover, the ve-
locity coherence regularization can be infinite order, while the

Finite Element Model-based methods only consider the second
order regularization. Similar to the progressive finite Newton

method, it is easy to implement the proposed approach, which
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(a) Source (b) Target (c) Before (d) After

Figure 6.7: Applying the proposed method to medical image registration. A
pair of sagittal images from two different patients is shown. (a,b,d) are the
source, target and registered source respectively. (c) and (e) are the overlaid
images before and after registration. The second row displays the synthetic
example with missing data.

only involves solving a linear equation, and does not require
tuning of the viscosity parameters or a sophisticated Levenberg-
Marquardt optimization algorithm. Although the linear system

of the present method is not a sparse one as in [76], experimen-
tal results indicate that the proposed approach is more efficient

than the semi-implicit iterative method. This is mainly because
the present optimization scheme requires fewer iterations and

the problem size is greatly reduced. While it is difficult to es-
tablish ground truth in non-rigid registration, we just show the

qualitative comparisons empirically. In the experiments, the ac-
curacy largely depends on the feature matching algorithm, and
all methods perform similarly.

Although promising experimental results have validated both
the effectiveness and efficiency of the proposed approach, some

limitations still exist. First of all, as this is another feature
correspondence-based method, some jitter may occur due to the
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point matching algorithm or the lack of texture information,
just like the method presented in Chapter 3. Second, the robust

estimator used in the method cannot handle multi-structured
data, while detection of multiple nonrigid surfaces is still an

open issue.

6.6 Summary

It is clear that the proposed novel approach to nonrigid surface

detection is powerful and effective. It offers several distinct ad-
vantages over the semi-implicit method. Firstly, this method

makes no assumption about the model except for the velocity
coherence. Moreover, the robust velocity coherence regression
takes advantage of the robust estimator and progressive opti-

mization scheme, and can handle the data with large numbers
of outliers. In addition, in contrast to the previous approaches

involving iterative and explicit minimization, the proposed opti-
mization scheme requires fewer iterations. Finally, the proposed

method is both robust and efficient, and can handle large defor-
mations and illumination changes.

The proposed approach has been tested in several applica-

tions, such as real-time Augmented Reality and medical image
registration. Encouraging experimental results show that the

proposed approach is both effective and promising.

2 End of chapter.



Chapter 7

Near-duplicate Keyframe
Retrieval

In this chapter, we apply the technique developed in Chap-
ter 3 to tackle the task in multimedia domain: near-duplicate

keyframe retrieval from real-world video corpora. In contrast to
previous approaches, the presented technique can recover an ex-
plicit mapping between two near-duplicate images with a few de-

formation parameters and find out the correct correspondences
from noisy data effectively. To make the presented technique ap-

plicable to large-scale applications, we suggest an effective multi-
level ranking scheme that filters out the irrelevant results in a

coarse-to-fine manner. In the proposed scheme, to overcome the
extremely small training size challenge, a semi-supervised learn-

ing method is employed for improving the performance using
unlabeled data.

7.1 Motivation

Near-Duplicate Keyframes (NDK) refer to the pairs of keyframes
in a video corpus, for which the two keyframes of a pair are
closely similar to each other apart from minor differences due to

the variations of capturing conditions, rendering conditions, or
editing operations [109, 113, 120]. NDK detection and retrieval

119
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techniques are beneficial for many real applications, such as news
video search [94] and copyright infringement detection [53, 77].

NDK retrieval is a challenging research problem due to some
well-known factors. One is that videos from different sources

may be captured by devices with different hardwares under a
variety of illumination conditions. Moreover, video editing often
produces extra photometric and geometric transformations and

occludes the original video by adding captions. Figure 7.1 shows
some examples of pairs of duplicate keyframes extracted from

the TRECVID2003 video corpus.
In the past years, there has been a surge of research atten-

tion on this topic in the multimedia community [53, 77, 103,
104, 109, 113, 120]. Some conventional methods extend content-

based image retrieval (CBIR) techniques for the NDK detec-
tion and retrieval task; these often employ global features ex-
tracted from the whole image, such as color moment and color

histogram [77, 109]. Although these methods are usually very
efficient in finding identical copies, they may not be very accu-

rate for real NDKs as they often fail to address the variations
of lighting changes, viewpoint changes, and occlusions.

Alternatively, some recent approaches using local feature point
correspondences can deal with the illumination variations and
geometric transformations by exploring the recent advances in

local feature descriptors [69]. These approaches often incur
heavy computational cost in feature matching. Nevertheless,

some efficient solutions have been proposed. For example, Ke
et al. [53] proposed an efficient method using PCA-SIFT and

locality-sensitive hashing indexing. However, their method often
makes a rigid projective geometry assumption, which may suffer

from some outlier matches due to lens changes and small object
movements. Zhang and Chang [109] presented a stochastic At-
tributed Relational Graph (ARG) matching framework, which

involves a computationally intensive process of stochastic belief
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Figure 7.1: Some near-duplicate keyframes examples selected from
TRECVID2003 video corpus. The caption of each subfigure shows the total
number of inlier matches with each of the three methods: projective ge-
ometry, OOS-SIFT method (PE is below the number of inliers), and the
presented NIM method. Since PE > 0.5, OOS-SIFT method failed in (a-d).

propagation. Zhao et al. [113] proposed a one-to-one symmetric
(OOS) matching method, which applies a local smoothing con-

straint to remove the outlier matches. In [72], Pattern Entropy
(PE) is employed as similarity measure for OOS method. Simi-

lar to other bipartite graph matching methods, the OOS method
considers only pairwise matches and fails to explore the spatial

coherence between the two sets of interest points in two NDKs.
As shown in Figure 7.1, illumination variations, occlusions and
zooming lead to large PE, in which PE ≤ 0.5 is considered as

NDK pair [72].
In contrast to previous approaches employing either rigid pro-

jective models or bipartite graph matching, in this chapter, we
apply the nonrigid surface detection method developed in Chap-

ter 3 to retrieving near-duplicate keyframes. Instead of detecting
a patch of deformable surface from video, this method is employ

to matching two images. Therefore, we rename the technique
presented in 3 as Nonrigid Image Matching (NIM) which will
be used in the following part of this chapter. Unlike the previ-

ous approaches, the proposed NIM method assumes that there
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may exist nonrigid transformations between the two NDKs. The
key to solving the NIM problem is based on the methodology

presented in Chapter 3, which takes advantage of a closed-form
solution for a given set of correspondences. Since the presented

method takes consideration of local deformations, it often ob-
tains more inlier matches than regular rigid projective models
and the OOS graph matching method. This characteristic plays

a critical role in duplicate similarity matching. Figure 7.1 shows
some examples along with the total numbers of inlier matches

found by three different methods on the same set of extracted
SIFT features [62].

Compared to the previous approaches, the proposed NIM
method not only delivers better retrieval performance, but also

enjoys some other salient merits. For example, the method is
able to find the exact matching region between two NDKs, which
is usually not obtained by conventional methods. This attrac-

tive feature is important for part-based or sub-image detection
and retrieval. In addition, the presented method is rather effi-

cient, processing about ten pairs of keyframes per second on a
regular PC with moderate configuration. To further accelerate

the presented technique for large-scale applications, I suggest
a Multi-Level Ranking (MLR) framework for efficient NDK re-
trieval, which integrates three different ranking components in

a unified solution: nearest neighbor ranking, semi-supervised
ranking, and NIM-based ranking.

In summary, this chapter includes three main contributions.
First of all, the Nonrigid Image Matching technique is ap-

plied to retrieving and detecting NDK, which is significantly
different from the conventional approaches. The presented tech-

nique overcomes some limitations with the existing approaches
and hence offers better performance for solving the NDK de-
tection and retrieval tasks. Secondly, to enable the proposed

technique applicable to large-scale applications, we suggest a



CHAPTER 7. NEAR-DUPLICATE KEYFRAME RETRIEVAL 123

Multi-Level Ranking framework that can effectively filter out
irrelevant results so as to significantly reduce the sample size for

the NIM comparisons. Although this is not the first use of the
MLR approach by multimedia researchers [40, 41], our contribu-

tion is to validate its effectiveness by improving the NIM scheme
in the NDK retrieval tasks. The third major contribution is to
employ a Semi-Supervised Ranking (SSR) method with a

Semi-Supervised Support Vector Machine (S3VM) for improving
the NDK learning task, which often has extremely few labeled

data. The SSR method effectively improves the filtering perfor-
mance of traditional supervised learning approaches by taking

advantage of unlabeled data information.
The rest of this chapter is organized as follows. Section 7.2 re-

views some existing approaches for NDK detection and retrieval.
Section 7.3 proposes the nonrigid image matching method for
detecting NDK with local feature correspondences. Section 7.4

presents a multi-level ranking scheme together with a semi-
supervised SVM method for NDK retrieval. Section 7.5 provides

experimental results and details of the experimental implemen-
tation. Section 7.6 sets out the conclusions.

7.2 Related Work

There are numerous research efforts devoted to the near-duplicate
image/keyframe detection and retrieval in the multimedia com-

munity [53, 77, 102, 104, 109, 120]. In general, most of the
existing approaches can be roughly divided into two categories:

appearance-based methods and local feature-based methods.
The appearance-based methods often measure the similarity

between two keyframes based on the extracted global visual fea-

tures, such as color histogram [109] and color moments [112].
These methods are advantageous for their high efficiency since

keyframes are often compactly represented in the vector space
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and thus can be solved efficiently by adapting conventional CBIR
methods and mature data indexing techniques [77]. But they are

often not very robust to illumination changes, partial occlusions,
and geometric transformations.

On the other hand, the local feature-based methods detect
local keypoints in two keyframes and measure their similarity
by counting the number of correct correspondences between two

keypoint sets. Keypoints are the salient regions detected over
image scales and their descriptors are often invariant to certain

transformations and variations. They overcome the limitations
of the global appearance-based methods, and thus often achieve

better performance [53, 113]. But they may incur a heavy com-
putational cost for the matching of two keypoint sets, which may

contain more than one thousand keypoints.
Recently, local feature-based methods have been actively stud-

ied. Sivic et al. [87] employed the local keypoints approach for

object matching and retrieval in movies. Ke et al. [53] employed
the compact PCA-SIFT feature and speeded up the search of

nearest keypoints with the locality sensitive hashing technique
for duplicate image detection and retrieval. Zhao et al. [113]

proposed an OOS matching approach to NDK detection and
reported state-of-the-art performance. The key of the OOS
method is to eliminate noisy outliers during the one-to-one bi-

partite graph matching process. Most of these methods fall in
the same category of point-to-point bipartite graph matching.

The NIM technique proposed in this chapter goes beyond con-
ventional point-to-point bipartite graph matching methods. In

contrast to existing techniques, the presented method is able to
recover the explicit nonrigid mapping between two near-duplicate

keyframes with nonrigid transformation models and can effec-
tively find the correct correspondences from noisy data. Though
similar techniques are actively being studied for tracking in com-

puter vision and graphics [123, 124], to the best of our knowl-
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edge, we are the first to study it comprehensively for NDK re-
trieval tasks.

7.3 Nonrigid Image Matching

In this section, we present the nonrigid image matching ap-
proach to near-duplicate keyframe detection. We first give the

formulation of the nonrigid image matching problem, and then
solve it by a coarse-to-fine optimization technique.

7.3.1 Nonrigid Image Matching

Instead of assuming an affine transformation or projective ge-
ometry as in the conventional methods, we employ the nonrigid
mapping relation between the NDKs. Therefore, the proposed

method can tackle not only geometric transformations and view-
point changes, but also small object movements. Nonrigid Image

Matching refers to the problem of recovering the explicit map-
ping between the two images with a few deformation parameters

and finding out the correct correspondences from noisy data si-
multaneously. It has been successfully applied to real-time non-

rigid surface tracking in computer vision [76, 123, 124]. Unlike
the nonrigid image registration, the NIM method is fully auto-
matic and does not require manual initialization.

As mentioned in Section 7.1, the underlying technique in NIM
is the same as the nonrigid surface detection. Therefore, the

technical detail for NIM is omitted in this chapter; please refer
to Chapter 3 for the detailed description. Since the definitions of

task for nonrigid surface detection and NIM are quite different,
it is necessary to make some clarifications. Comparing to the
nonrigid surface detection task in Chapter 3, NIM does not make

restriction on the acquisition of the template image, in which the
images being compared is directly employed in the matching
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process. Moreover, any image in the comparison pair can be
selected as the template image, and the other one is viewed as

the input image. In NDK retrieval, the query image is usually
served as the template image. To reduce the computational cost,

the stiffness matrix and barycentric coordinates for the query
image are pre-computed in each query. Furthermore, NIM is
optimized for finding as many as possible correct inlier matches

rather than precisely registering the model mesh onto the input
image in the nonrigid surface tracking task. To this end, NIM

adopts a relatively small regularization coefficient in order to
allow the large deformations.

7.3.2 Case Studies: Detecting Various NDKs

To illustrate how the proposed NIM technique can effectively
detect various NDKs appearing in news video domains, we show

part of the detection results to demonstrate the advantages of
the presented technique.

Figure 7.2 shows some examples of the successful detection
results for various NDKs. All results on the duplicate pairs from

Columbia’s TRECVID2003 dataset are available 1. In particu-
lar, the proposed NIM technique can effectively detect a variety
of NDKs including, but not limited to, the following cases:

• Viewpoint change. This is very common for the shots

extracted from news video sequences.

• Object movement. This is due to the relative movements

caused by the camera or some objects.

• Lens change. This case is caused by the changes of camera

lens, such as zooming in or zooming out.

• Partial occlusion. This case arises from the added cap-
tions or text descriptions in the videos.

1http://www.cse.cuhk.edu.hk/~jkzhu/dup_detect.html
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(a) Viewpoint changes (b) Object movements

(c) Lens changes (d) Partial occlusions

(e) Subimage duplicates (f) Failure cases

Figure 7.2: Examples of the detection results on various near-duplicate
keyframe cases.

• Subimage duplicate. Such duplicates could be caused

either by lens changes or some editing effects.

We also investigate the failure cases, which are shown in
Fig. 7.2(f). This is mainly due to either the difficulty in finding

the nonrigid mapping or too few feature points in the keyframes.
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7.4 Multi-Level NDK Retrieval

7.4.1 Framework Overview

Although the proposed NIM is efficient for matching two images

in comparison with conventional local feature matching tech-
niques [104, 113], directly applying NIM to large-scale applica-

tions could still be computationally intensive. To improve the
efficiency and scalability of the proposed solution, we employ
a Multi-Level Ranking (MLR) framework for efficiently tack-

ling the NDK retrieval task. This strategy has been widely
used, which is also shown to be successful in multimedia re-

trieval [40, 41]. In particular, the multi-level ranking scheme
integrates three different ranking components:

• Nearest Neighbor Ranking (NNR). This is to rank the
keyframes with simple nearest neighbor search.

• Semi-Supervised Ranking (SSR). This is to rank the
keyframes with a semi-supervised ranking method.

• Nonrigid Image Matching (NIM). This is to rank the
keyframes by applying the proposed NIM method.

The first two ranking components are based on global features

for efficiently filtering out the irrelevant results, and the last
component provides a fine re-ranking based on the local features.

Figure 7.3 shows the proposed MLR framework, which attacks
the NDK retrieval task in a coarse-to-fine ranking manner. This

makes the proposed NIM solution applicable to large-scale real-
world applications.

7.4.2 Formulation as a Machine Learning Task

The NDK retrieval problem can be formulated as a machine

learning task with a query set of labeled image examples Q =
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Figure 7.3: A multi-level ranking framework.

{(x1, +1), . . . , (xl, +1)} and a gallery set of unlabeled image ex-

amples G = {xl+1, . . . ,xl+u}, where each image example xi ∈ Rd

is represented in a d-dimensional feature space. The goal of the

learning task is to find the relevant near-duplicate examples from
G that are closest to being exact duplicates of examples in Q.

The learning task is tough on account of two difficulties. One

is that there is no negative examples available, as only a query
set Q will be provided in the retrieval task. The other is the

small sample learning issue: Very few labeled examples will be
provided in the retrieval task. To overcome the first difficulty,

we adopt the idea of pseudo-negative examples used in previ-
ous multimedia retrieval approaches [107]. Specifically, we can

conduct a query-by-example retrieval for ranking the unlabeled
data in G based on their distances from the examples in the
query set. Then we select a short list of most dissimilar exam-

ples as the negative examples based on the Nearest Neighbor
ranking results.

To this end, with both positive and negative examples, we
can formulate the learning task as a general binary classifica-

tion task, which can then be solved by existing classification
techniques. In the proposed approach, we apply Support Vector
Machines (SVM) for the learning task. SVM is a well-known

and state-of-the-art learning technique [97], which we briefly re-
view here. SVM is used for learning an optimal hyperplane with

maximal margin, and can learn nonlinear decision boundaries by
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exploiting powerful kernel tricks. SVM can be generally formu-
lated in a regularization framework:

min
f∈HK

1

l

l∑

i=1

max(0, 1− yif(xi)) + λ‖f‖2HK
(7.1)

where f is the hyperplane function f(x) =
∑l

i=1 αik(x,xi), k
is some kernel function, and HK is the associated reproducing

kernel Hilbert space.
While SVM can be applied for solving the learning task, its

performance may be poor when there are very limited number
of labeled examples. This is a critical issue of an NDK retrieval

since only extremely few positive examples will be provided.
To overcome the second difficulty, we next introduce a semi-

supervised learning technique for exploring both labeled and
unlabeled data for the retrieval tasks.

7.4.3 Semi-supervised Support Vector Machine

To overcome the challenge of small sample learning, we suggest

a semi-supervised retrieval (SSR) approach to attack the learn-
ing task via a semi-supervised SVM technique. Semi-supervised

learning has been extensively studied in recent years, and numer-
ous approaches have been proposed to exploit it [106, 114, 118].

In this chapter, we employ a unified kernel learning approach
for semi-supervised SVM. The key idea is to first learn a data-
dependent kernel from the unlabeled data, and then apply the

learned kernel to train a supervised SVM based on the regular-
ization learning framework. In the presented approach, we adopt

the kernel deformation principle for learning a data-dependent
kernel from unlabeled data [86].

The main idea of kernel deformation is to first estimate the
geometry of the underlying marginal distribution from both la-

beled and unlabeled data, and then derive a data-dependent
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kernel by incorporating estimated geometry [86]. Let H denote
the original Hilbert space reproduced by kernel function k(·, ·),

and H̃ denote the deformed Hilbert space. In [86], the au-
thors assume the following relationship between the two Hilbert

spaces:
< f, g >H̃=< f, g >H +f⊤Mg

where f(·) and g(·) are two functions, f = (f(x1), . . . , f(x1))

evaluates the function f(·) for both labeled and unlabeled data,
and M is the distance metric that captures the geometric re-

lationship among all the data points. The deformation term
f⊤Mg is introduced to assess the relationship between the func-

tions f(·) and g(·) based on the observed data. Given an input
kernel k, the explicit form of the new kernel function k̃ can be
derived as below:

k̃(x,y) = k(x,y) + κ⊤yd(x)

where κy = (k(x1, y), . . . , k(xn, y))⊤. The coefficient vector d(x)
can be computed by: d(x) = −(I + MK)−1Mκx, where K =
[k(xi,xj)]n×n is the original kernel matrix for all the data, and

κx = (k(x1, z), . . . , k(xn, z))⊤. To capture the underlying geom-
etry of the data, a common approach is to define M as a function

of graph Laplacian L, for example, M = Lp where p is an inte-
ger. A graph Laplacian is defined as L = diag(S1) − S, where

1 denotes a vector with all one elements. Moreover, S ∈ Rn×n

is a similarity matrix and each element Si,j is calculated by:

Sij = Sji =





e−
‖xi−xj‖

2
2

2ς2 , xi and xj are adjacent,

0, otherwise,

where ς denotes the kernel width for a graph Laplacian. Various

similarity measures can be used to build the adjacent matrix,
such as L1 norm, L2 norm, and cosine similarity.
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Algorithm Semi-Supervised SVM Re-ranking
Input

• X: extracted the features for all images in the dataset

• k: input kernel function

• Regularization parameter γA and γI , the graph Laplacian parame-
ters

Procedure
1: Perform nearest neighbor ranking for each query image, and record
the most dissimilar samples.
2: Calculate initial kernel matrix K: Kij = k(xi,xj)
3: Compute graph Laplacian L and semi-definite positive matrix M
4: Calculate each element of semi-supervised kernel matrix:

k̃(x,y) = k(x,y)− κ⊤

y
(I + MK)−1Mκx

5: For each query image:

• Train SVM with semi-supervised kernel K̃.

• Rank the samples in the gallery set by the trained SVM.

Output

• Rank list for each query image

End

Figure 7.4: Semi-Supervised SVM Re-ranking Algorithm

Consequently, the new kernel k can be formulated as follows:

k̃(x,y) = k(x,y)− κ⊤y (I + MK)−1Mκx (7.2)

Hence, replacing the kernel k in Eqn. 7.1 by the kernel k̃
in Eqn. 7.2, we can train the semi-supervised SVM classifier.
Note that Eqn. 7.2 can also be used to compute the kernel for

transductive learning, and the new deformed kernel matrix K̃ ∈
Rn×n can be derived as below:

K̃ = K −K(I + MK)−1MK (7.3)



CHAPTER 7. NEAR-DUPLICATE KEYFRAME RETRIEVAL 133

It can be simplified through the Kailath Variant:

K̃ = (I + KM)−1K

Moreover, the above equation is equal to

K̃ = K(I + MK)−1 (7.4)

From above all, we summarize the complete S3VM re-ranking

algorithm into Fig. 7.4.

7.5 Experiments

In this section, the empirical study of the proposed techniques

for NDK retrieval is reported. Two key techniques will be eval-
uated comprehensively in the experiments. The first experi-
ment is to examine the effectiveness of the Multi-Level Rank-

ing scheme for filtering out the irrelevant results. In partic-
ular, we would like to examine whether the semi-supervised

ranking method using S3V M is more effective than the con-
ventional ranking approaches. The second and more important

experiment is to evaluate the performance of the proposed NIM
technique for NDK retrieval in comparison with some state-of-

the-art approaches. In the following experiments, quantitative
evaluations are mainly reported.

7.5.1 Experimental Testbeds and Setup

To conduct comprehensive evaluations, we employ two bench-

mark datasets for NDK retrieval as the experimental testbeds.
One is the widely used Columbia’s TRECVID2003 dataset [109],

which consists of 600 keyframes with 150 near duplicate image
pairs and 300 non-duplicate images extracted from the TRECVID2003

corpus [109]. All the keyframes are with the same size, 352 ×
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264. The other is CityU’s TRECVID2004 dataset2 recently col-
lected by Ngo et al. [72]. It contains 7,006 keyframes with

3,388 near-duplicate image pairs, which are selected from the
TRECVID2004 video corpus. In the TRECVID2004 dataset,

the near-duplicate image pairs involve a total of 1,953 keyframes,
representing about 28% of the whole collection. Note that one
keyframe may be associated with several near-duplicate pairs.

To make a fair comparison with the state-of-the-art approaches,
we adopt the evaluation protocol used in [113]. Specifically, all

NDK pairs are adopted as queries for performance evaluation.
Each query set Q contains a single keyframe image; other re-

maining keyframes are regarded as the gallery set G. For the
retrieval task, each algorithm produces a list of relevant results

by ranking the keyframes in the gallery set. To evaluate the
retrieval performance, the average cumulative accuracy metric
is adopted as a performance metric [113], in which the accuracy

is measured by judging whether the retrieved keyframe is one of
the corresponding pairwise duplicates in the ground truth query

set. As a yardstick for assessing the performance, we compare
the proposed method with the recently proposed OOS matching

algorithm [113], one state-of-the-art method for NDK detection
and retrieval.

For the experimental setups, the kernel function used in both

SVM and S3VM is an RBF kernel with fixed width. Regarding
the parameter settings, the penalty parameter C of SVMs is set

to 10 (or γA = 10−1) and the graph regularization parameter of
S3VM is set to γI = 10−1.

All the experiments in this chapter were carried out on a
notebook computer with Intel Core-2 Duo 2.0GHz processor and

2GB RAM. All the proposed methods are implemented in Mat-
lab, for which some routines are written in C code. The code

2http://vireo.cs.cityu.edu.hk/research/NDK/ndk.html
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can be downloaded for verification purpose3.

7.5.2 Feature Extraction

Feature extraction is a key step for NDK retrieval. In the ex-
periments, both global and local features are considered. The

two types of features have their advantages and disadvantages.
We believe an appropriate fusion of them will compensate their

shortcomings, and therefore improve the overall effectiveness
and efficiency.

Global Feature Extraction

The global feature representation techniques have been exten-

sively studied in image processing and CBIR community. A
wide variety of global feature extraction techniques were pro-

posed in the past decade. In this chapter, we extract four kinds
of effective global features:

• Grid Color Moment. We adopt the grid color moment
to extract color features from keyframes. Specifically, an

image is partitioned into 3 × 3 grids. For each grid, we
extract three kinds of color moments: color mean, color
variance and color skewness in each color channel (R, G,

and B), respectively. Thus, an 81-dimensional grid color
moment vector is adopted for color features.

• Local Binary Pattern (LBP). The local binary pat-
tern [73] is defined as a gray-scale invariant texture mea-

sure, derived from a general definition of texture in a local
neighborhood. In the experiment, a 59-dimensional LBP

histogram vector is adopted.

• Gabor Wavelets Texture. Gabor wavelets is an effective
feature image representation method widely used in [42,

3http://www.cse.cuhk.edu.hk/~jkzhu/dup_detect.html



CHAPTER 7. NEAR-DUPLICATE KEYFRAME RETRIEVAL 136

125]. To extract Gabor texture features, each image is first
scaled to 64×64 pixels. The Gabor wavelet transform [57] is

then applied on the scaled image with 5 levels and 8 orien-
tations, which results in 40 subimages. For each subimage,

3 moments are calculated: mean, variance and skewness.
Thus, a 120-dimensional vector is used for Gabor texture
features.

• Edge. An edge orientation histogram is extracted for each

image. We first convert an image into a gray image, and
then employ a Canny edge detector [17] to obtain the edge
map for computing the edge orientation histogram. The

edge orientation histogram is quantized into 36 bins of 10
degrees each. An additional bin is used to count the number

of pixels without edge information. Hence, a 37-dimensional
vector is used for shape features.

In total, a 297-dimensional vector is used to represent all the

global features for each keyframe in the datasets.

Local Feature Extraction

Interest point detection and matching is a fundamental research
problem in computer vision. Many effective approaches have
been proposed in the literature. One of the most widely used

methods is the SIFT [62], which computes a histogram of local
oriented gradients around the interest point and stores the bins

in a 128-dimensional vector. To improve the SIFT, Ke et al. [53]
proposed an extended method by applying Principle Compo-

nent Analysis [33] on the gradient image, which then yields a
36-dimensional descriptor that is more compact and faster for
matching. However, the PCA-SIFT has been empirically shown

to be less distinctive than the original SIFT in a comparative
study [69], and is also slower than the original SIFT in the fea-

ture computation. Instead of using SIFT or PCA-SIFT, we



CHAPTER 7. NEAR-DUPLICATE KEYFRAME RETRIEVAL 137

adopt SURF [9], another emerging local feature descriptor to
detect and extract local features, which takes advantage of fast

feature extraction using integral images for image convolutions.
Specifically, a 64-dimensional feature vector is used for repre-

senting each keypoint with SURF. Compared to the SIFT, it
is more compact and hence reduces the computational cost for
keypoint matching.

7.5.3 Experiment I: Ranking on Global Features

In this part, the effectiveness of the proposed multi-level ranking
scheme is evaluated for filtering out the irrelevant keyframes by

ranking on global features. We will first evaluate the retrieval
performance of the global features with nearest neighbor rank-

ing, and then evaluate the semi-supervised ranking approach
based on S3VM.

Effectiveness of Global Features

To examine how effective the global features are, we measure

the retrieval performance of different distance measures with
the global features on both datasets, as shown in Figure 7.5.

From the results, we first observe that different distance metrics
have different impacts on the retrieval results with the same

global features. In particular, the L1 norm outperforms both
the L2 norm and the cosine metric on both datasets, and the
cosine similarity is slightly better than the L2 norm. As a result,

we employ the L1 norm as the distance measure in all of the
remaining experiments.

In addition, we also assess the performance of each compo-
nent of the global features as well as the combined features.

From the results shown in Figure 7.5, we can see that the ap-
proaches with the combined features clearly outperform the ap-
proaches with individual features. For the individual features,



CHAPTER 7. NEAR-DUPLICATE KEYFRAME RETRIEVAL 138

5 10 15 20 25 30

40

50

60

70

80

90

Rank

C
um

ul
at

iv
e 

A
cc

ur
ac

y 
(%

)

 

 

L
1

L
2

Cos
Color
Gabor
LBP
Edge

(a) TRECVID2003 Dataset
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(b) TRECVID2004 dataset

Figure 7.5: Cumulative accuracy of similarity measure and features using
Nearest Neighbor Ranking on the TRECVID2003 dataset (600 keyframes)
and the TRECVID2004 dataset (7006 keyframes).
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Figure 7.6: Comparison of the proposed semi-supervised ranking method
using S3VM algorithm with other appearance based methods on the
TRECVID2003 dataset.

we found that the grid color moments method outperforms the

other three methods.

Performance of the S3VM Method

Finally, we compare the proposed semi-supervised ranking ap-

proach using the S3VM method with other conventional appearance-
based methods on global features, such as the approaches with
color histogram [109] and color moments [112]. Note that we em-

ploy the Nearest Neighbor ranking results to select the most dis-
similar examples as the negative samples for training S3VM. Fig-

ure 7.6 shows the experimental results on the two datasets. Ob-
viously, S3VM significantly outperforms the color moment and

color histogram methods. Specifically, S3VM obtains about 33%
improvement over the color moment method on the TRECVID2003

dataset. Compared with the supervised ranking methods includ-
ing Nearest Neighbor ranking and SVM ranking, S3VM achieves
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Figure 7.7: Cumulative accuracy of NDK retrieval using NIM method on the
TRECVID2003 dataset. (a). There is a wide range available from which to
select the threshold value. The image pairs with below 30 inlier matches are
viewed as non-duplicate in the experiments. (b) The overall accuracy grows
with the number of top-K returns. We choose 50 as a trade-off between the
accuracy and computational time.

significantly better results, with around 10% improvement over
the two conventional ranking methods.

7.5.4 Experiment II: Re-ranking with NIM on Local
Features

Parameter Settings

The last key ranking stage for the MLR scheme is the NIM rank-

ing using the proposed NDK matching technique. To deploy the
NIM technique for the NDK retrieval task, we need to determine

some parameter settings. In general, the total number of mesh
vertices determines the computational complexity and the de-

formation accuracy of the NIM method. Empirically, we adopt
a 14 × 16 mesh for all of the experiments. The regularization
coefficient λr is set to 5× 10−5 to allow large deformations. The

order ν of the robust estimator is set to 4. The initial support is
100 and the decay rate is 0.5. We find the optimization of each
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NIM task requires around 9 iterations to achieve convergence.

Evaluation on the Choices of Two Thresholds

For the proposed NIM approach, there are two threshold param-

eters that can affect the resulting accuracy and efficiency per-
formance. These are: (1) the minimal number of inlier matches
for reporting positive NDKs, denoted by τp, and (2) the number

of top ranked examples to be matched by NIM, denoted by τk.
The first threshold parameter τp determines the threshold for

predicting positive results. Normally, the smaller the value of τp,
the higher the recall (the hit rate). At the same time, the preci-

sion is likely to drop with decreasing τp. Hence, it is important
to determine an optimal threshold parameter. Although we do

not have a theoretical approach to this, choosing a good τp value
empirically seems not too difficult. To justify this, we evaluate
the performance by varying the τp values. Figure 7.7(a) shows

the surface of cumulative accuracies with the top 30 returned
results on the TRECVID2003 dataset when τp varies from 10

to 50 (where τk is fixed to 50). From the results, we can see
that good results can be obtained when setting the threshold τp

between 15 and 30.
The second threshold parameter τk determines how many ex-

amples returned by the S3VM ranking will be engaged for the

NIM matching. Hence, it affects both the accuracy and effi-
ciency performance. In general, the larger the value of τk is, the

more computational cost is incurred. However, τk value that is
too small is likely to degrade the retrieval performance. Hence,

choosing a proper τk value is important to balance the tradeoff
between accuracy and efficiency performance. To see how τk

affects the performance, Figure 7.7(b) shows the surface of cu-
mulative accuracies with the top 30 returned results obtained by
varying τk from 1 to 50 (with τp fixed to 30). From the results,

we can see that the cumulative accuracy increases when τk in-
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Figure 7.8: Comparison of cumulative accuracy of NDK retrieval results on
the TRECVID2003 dataset (600 images).

creases and tends to converge when τk approaches 50. Therefore,
in the rest of the experiments, we simply fix τk to 50 to achieve

good efficiency. We will evaluate the efficiency performance in
a subsequent part of this chapter.

Comparisons of NDK Retrieval Performance

To examine the performance of the proposed NIM technique for
retrieving NDKs, we compare the presented method with several
state-of-the-art methods, including the OOS-SIFT method [104],

the OOS-PCA-SIFT method [113], and the Visual Keywords
(VK) methods [113]. Figure 7.8 and Figure 7.9 show the experi-

mental results of the cumulative accuracy of the top 30 returned
keyframes on the two datasets respectively.

For the TRECVID2003 dataset, it is relatively small and
widely used as a benchmark testbed for NDK retrieval in lit-

erature. From the experimental results, we can draw several ob-
servations. First of all, the proposed S3VM method with global
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Figure 7.9: Comparison of cumulative accuracy of NDK retrieval results on
the TRECVID2004 dataset (7006 images).

features outperforms the OOS-PCA-SIFT method [113] and the

VK method [104], which use local features. This again validates
the effectiveness of the proposed semi-supervised ranking tech-

nique with S3VM. Second, the proposed NIM algorithm with
local features is significantly better than the S3VM method. In
particular, NIM achieves more than 8% improvement on the

rank-one accuracy over S3VM. Finally, among all compared meth-
ods, the proposed NIM method achieves the best performance,

outperforming the state-of-the-art OOS-SIFT method [104].
Turning next to the TRECVID2004 dataset, due to its large

size, we have a difficulty in comparing the presented method
with other existing methods, such as the OOS-SIFT and OOS-

PCA-SIFT methods, which are computationally very intensive.
Therefore, we only compare the proposed method with some
conventional approaches. Figure 7.9 shows the experimental re-

sults on the TRECVID2004 dataset. Similar to the previous
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dataset, NIM achieves the best performance among all the com-
pared methods on this dataset. For other compared methods,

S3VM performs significantly better than both supervised SVM
and NN methods.

Finally, to give more insights of the proposed technique, we
are interested in checking when our method may fail. To this
purpose, we show some failure cases in Fig. 7.10, where all of

the top one retrieved examples by the proposed method are not
the true duplicates. We here briefly analyze these cases and

attempt to find some possible reasons. For the first case as
shown in the first row, all of the top 3 retrieved examples are

not the true duplicates. The main reason is because the query
image is too blur and too smooth to extract the discriminative

feature points by the local feature descriptor. In fact, this is
a common challenge faced by most of existing keypoints based
methods. For the second case, the first and the third examples

are not the true duplicates, while the true duplicate is ranked at
the second position instead of the first position. This difficulty

in finding a strong explicit mapping between the duplicate pair is
possibly due to poor image quality as well as too large changes

in lighting and camera capture conditions. For the last case,
among the top 3 retrieved examples, only the last example is
the true duplicate. In fact, the first two examples are visually

very similar to the query image, but they are not labeled as the
true duplicates according to the ground truth. The result shows

that when there are too many similar images but essentially not
real duplicates, the performance of the proposed method may

be degraded due to the engagement of the filtering stage with
the global features.
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(a) Query Image (b) Top three retrieval results

Figure 7.10: Failure examples in showing when the presented method may
fail.

7.5.5 Evaluation of Computational Cost

Finally, we empirically examine the efficiency performance of
the proposed NIM and S3VM methods. Both the global ap-

pearance features and local features are extracted offline. Ta-
ble 7.1 and Table 7.2 summarize the overall computational time

for comparing all pairs of keyframes on both datasets. From the
results, we can see that NIM is more efficient than the OOS-

SIFT method [104] and less efficient than the VK method which
simply computes the similarity of visual words. Note that VK
method often requires much preprocessing time cost for extract-

ing the visual keywords offline. In addition, we clearly see that
the methods using global features are significantly more efficient

than the ones using local feature matching. This again vali-
dates the importance and effectiveness of the proposed multi-

level ranking scheme for improving the efficiency. Finally, we
also plot the computational cost and retrieval accuracy with

respect to the number of top ranked examples (τk) to be com-
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pared by NIM in Figure 7.11. The results show that the larger
the value of τk, the higher the computational cost and the bet-

ter the matching accuracy. In particular, we found that the
cumulative accuracy tends to converge to the best result when

τk approaches to 50. In real-world applications, one can choose
an appropriate τk to balance the tradeoff between accuracy and
efficiency. For example, when τk equals to 10, each query for

NIM takes about 1 second and achieves rather high cumulative
accuracy, about 93%.

Table 7.1: Comparison of overall time cost of 300 queries on the
TRECVID2003 dataset.

NIM S3VM NN OOS [104] VK [104]

15.8min 3sec 1sec 6.5hour 1.5min

Table 7.2: Comparison of overall time cost of 1,953 queries on the
TRECVID2004 dataset.

NIM S3VM NN OOS [104] VK [104]

103.5min 8.1min 30sec N/A N/A

7.6 Summary

This chapter presented a novel nonrigid image matching method
for Near-Duplicate Keyframe (NDK) retrieval. In contrast to

traditional approaches with either projective geometry or bi-
partite graph matching, the proposed nonrigid image matching

(NIM) algorithm recovers the explicit nonrigid mapping between
two NDKs and effectively finds out the correct correspondences
by a robust coarse-to-fine optimization scheme. Moreover, the

presented method not only can detect the NDK pairs accurately,
but also can recover the local deformations between them si-

multaneously. To further reduce the overall computational cost,
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Figure 7.11: Computational efficiency and retrieval performance on the
TRECVID2003 dataset. The left vertical axis shows mean cumulative ac-
curacy of the top 30 returned results, and the right vertical axis represents
the overall time cost for all 300 queries.

we proposed an effective multi-level ranking scheme together

with a semi-supervised ranking technique using semi-supervised
SVM (S3VM) to improve the ranking performance with the un-

labeled data. Extensive evaluations have been conducted on two
testbeds extracted from the TRECVID corpora. The promising

experimental results showed that the method is clearly more ef-
fective than conventional approaches, especially for dealing with

cases involving viewpoint changes and local deformations, which
are very common in practice.

2 End of chapter.



Chapter 8

Conclusion and Future Work

In this chapter, we briefly summarize this thesis research and
discuss some further work.

8.1 Conclusion

In this thesis, we have proposed a few deformation models and
deformable surface recovery approaches, and applied them to

effectively solve a variety of tasks in the real-world applica-
tions. Specifically, we proposed three different approaches to
2D nonrigid shape recovery, one method for 3D deformable sur-

face tracking. These methods all belong to the passive method
dealt with single still image or monocular video. The major

contributions are concluded in the following.
First of all, a novel progressive finite Newton optimization

scheme is proposed to solve the nonrigid surface detection prob-
lem, which is formulated as a closed-form solution for a given set

of local feature-correspondences. Moreover, a modified RANSAC
scheme is employed to select the initial active set. It takes ad-
vantage of the concise formulation and top-ranked correspon-

dences, and can handle high-dimensional variable spaces with
noisy observations. Furthermore, the presented method is very

fast and robust, and provides a fully-automatic solution for real-

148
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time nonrigid object detection, Augmented Reality and medical
image registration.

The feature-based methods for nonrigid shape recovery may
suffer from some jittering issue due to the lack of reliable matches.

To tackle this problem, a fusion approach is proposed, which
takes advantage of both the appearance information and the
local feature correspondences. To allow the large surface defor-

mation, a deformable mesh model is introduced into the con-
ventional Lucas-Kanade framework. This leads to the presented

deformable Lucas-Kanade algorithm that can be efficiently op-
timized by the inverse compositional method. Comparing to

the feature-based method, the experimental evaluation demon-
strates that the jitter is greatly reduced in the fusion approach.

Additionally, the partial occlusion problem is properly handled
through starting from a good initialization and imposing the
deformable model.

In contrast to the 2D nonrigid shape recovery, 3D deformable
surface recovery can estimate the depth information and recon-

struct the object surface. In this thesis, we proposed an effec-
tive solution for 3D deformable surface tracking, which formu-

lates the problem into an unconstrained quadratic optimization
problem with a closed-form solution. Also, the robust progres-
sive finite Newton optimization scheme is applied to handle the

noisy observations. Promising 3D deformable surface tracking
results show that the proposed solution is robust to noises and

large deformations.
Without resorting to an explicit deformable mesh model, we

formulated the nonrigid surface detection as a generic regression
problem. A novel velocity coherence constraint is imposed to

regularize the surface deformation, which leads to the proposed
velocity coherence regression approach. Similarly, a progressive
optimization scheme is employed to reject the outliers. This

approach has been tested in several applications, such as real-
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time nonrigid surface tracking and medical image registration.
In addition to the methodology studies and evaluations in

computer vision, we also investigated the nonrigid shape recov-
ery techniques in some real-world applications in multimedia

information retrieval domain. By taking advantage of a very
efficient and automatic solution, we applied the nonrigid sur-
face detection method to retrieving the near-duplicate keyframes

from the real-world video corpora. In contrast to conventional
approaches with either projective geometry or bipartite graph

matching, the proposed method recovers the the local deforma-
tions between two near-duplicate keyframes and effectively finds

out the correct local feature correspondences from the noisy ob-
servations. To make it applicable to large scale data, an effec-

tive multi-level ranking scheme together with a semi-supervised
ranking technique is presented to improve the ranking perfor-
mance with the unlabeled data. Extensive evaluations on two

testbeds extracted from TRECVID video corpora demonstrated
that the method is importantly more effective than the conven-

tional approaches, especially in the case of local deformations
and viewpoint variations.

8.2 Future Work

Although a substantial number of promising achievements on
deformable surface recovery and its applications have been pre-

sented in this thesis, there are still numerous open issues that
require to be continuously explored in future studies. We briefly

describe them in the following.
First, the computational efficiency is always an important

issue in a computer vision application, especially for the real-

time applications. Although we have developed the efficient al-
gorithms with closed-form solutions, there are still some steps

which can be further accelerated. For example, we can consider
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an efficient GPU-based feature matching algorithm. For large-
scale applications, it will be very expensive to directly solve the

linear system. By tacking advantage of the spatial informa-
tion, a multi-scale algorithm can be used to improve the per-

formance. More specifically, an efficient octree structure can
be employed to build a simplified multi-resolution mesh model
for the mesh model-based methods. Furthermore, a resolution-

aware approach can be considered to adaptively select the mesh
model.

The second problem is related to finding the reliable cor-
respondences under the scale changes, sever deformations and

illumination variations. With the rapid progress in the object
recognition, these difficulties can be tackled through introducing

some effective feature descriptors. Also, the feature extraction
algorithm can be further accelerated by the GPU power. For the
3D deformable surface recovery, we will consider incorporating

the appearance information into the energy function in order
to exploit more information, which can be built on top of the

deformable Lucas-Kanade algorithm described in Chapter 4.
Third, for the feature-based methods, in some situations some

jitter may occur due to a lack of texture information. To deal
with this problem, the global bundle-adjustment used in 3D
reconstruction can be fitted into our proposed gradient-based

optimization framework.
Forth, self-occlusion problem has not yet been studied in this

thesis. To address the problem in 3D environment, we may con-
sider employing the visible surface detection algorithm. More-

over, small errors did occur in the boundary region. We will con-
sider some silhouette-based methods and incorporate the con-

tour information to solve the ambiguity issue.
There are also a variety of obvious extensions to the existing

work we have illustrated in this thesis. First, we only employ the

first order approximation method to compute the warp update
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in the deformable Lucas-Kanade algorithm. Therefore, a sec-
ond order method can be considered as an immediate extension.

Second, we may explore the new deformable model and regular-
ization method via extending the techniques developed in this

thesis. Finally, we can apply the presented algorithms to new
applications. For example, the 3D deformable surface recovery
results can be employed in motion capture and computer ani-

mation. Also, the nonrigid surface detection can be applied to
many other multimedia applications like video content analysis

rather than the near-duplicate image retrieval.

2 End of chapter.



Appendix A

Optimization With Lighting

Performing the first order Taylor expansion on Eqn. 4.9 gives:

∑

x

[
(a + ∆a)

(
T (W (x; s0)) +∇T

∂W

∂s
∆s

)
+ (o + ∆o) · 1

−I(W (x; s))]2 + λr(s + ∆s)⊤K(s + ∆s)

Let D denote ∇T ∂W
∂s

, the gradient of the above equation can

be derived as below:

∂EA

∂∆s
= aD⊤ [(a + ∆a) (T + D∆s) + (o + ∆o) · 1− I]

+λrK(s + ∆s)
∂EA

∂∆a
= T⊤ [(a + ∆a) (T + D∆s) + (o + ∆o) · 1− I]

∂EA

∂∆o
= 1⊤ [(a + ∆a) (T + D∆s) + (o + ∆o) · 1− I]

The texture difference ∆I is compute by: ∆I = I − aT − o.

Also, we define T =
[

T 1
]
, ∆g =

[
∆a ∆o

]
and H4 =

D⊤D + λr

a2K. Thus, we can obtain the following equation by

neglecting second-order terms:
[

a2H4 aD⊤T

aT ⊤D T ⊤T

][
∆s

∆g

]
=

[
aD⊤∆I − λrKs

T ⊤∆I

]
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As in [39, 4], we multiply a full-rank matrix L ∈ R4N×4N to

the left side of the above equation:

L

[
a2H4 aD⊤T

aT ⊤D T ⊤T

][
∆s

∆g

]
= L

[
aD⊤∆I − λrKs

T ⊤∆I

]
(A.1)

where L is defined as below:

L =

[
diag(12N) 0

−1
a
T ⊤DH−1

4 diag(12N)

]

Simplifying Eqn. A.1, we can obtain ∆g by solving the fol-
lowing equation:

(
Q−G⊤H−1

4 G
)
∆g = T ⊤∆I −G⊤H−1

4

(
D⊤∆I −

λr

a
Ks

)

where G = D⊤T and Q = T ⊤T . Also, ∆s can be computed by:

∆s =
1

a

[
H−1

4

(
D⊤∆I −

λr

a
Ks

)
−H−1

4 G∆g

]

Similarly, we compute the warp update through Eqn. 4.8. Note
that we can pre-compute G and Q in order to reduce the com-
putational cost. As the regularization coefficient λr can be cho-

sen in a very wide range without significantly affecting the re-
sults [75, 76], we treat the H4 as constant (set a = 1) and ignore

the changes of a during the optimization.

2 End of chapter.



Appendix B

Solution of Velocity Coherence
Regression

For velocity coherence regression,

E =
1

2σ2

n∑

i=1

‖yi − f(xi)‖
2 +

λ

2

∫

Rd

|ṽ(s)|2

G̃(s)
ds

As in [30], the Fourier transform of the continuous function
is:

v(xi) =

∫

Rd

ṽ(s)e2πj<xi,s>ds

E(ṽ) =
1

2σ2

n∑

i=1

‖yi − xi − v(xi)‖
2 +

λ

2

∫

Rd

|ṽ(s)|2

G̃(s)
ds

Moreover, the derivatives of the energy function E(ṽ) with re-

spect to ṽ can be derived as below:

δE(ṽ)

δṽ
=

1

σ2

n∑

i=1

(yi − f(xi))e
2πj<xi,s> + λ

ṽ(−t)

G̃(t)

Since the derivatives of E(ṽ) with respect to ṽ vanish for opti-
mality, and f is real, changing t in −t:

1

σ2

n∑

i=1

(yi − f(xi))e
2πj<xi,s> + λ

ṽ(t)

G̃(−t)
= 0
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Therefore,

ṽ(t) = G̃(−t)
n∑

i=1

(yi − f(xi))

λσ2
e2πj<xi,s>

We define the coefficients αi = (yi−f(xi))
λσ2 , and assume that G̃ is

symmetric. Take the Fourier transform of ṽ:

v(x) = G(x) ∗
n∑

i=1

αiδ(x− xi) =
n∑

i=1

αiG(x− xi)

2 End of chapter.
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