A Generic Environment for COTS Testing and
Quality Prediction

Xia Cai', Michael R. Lyu!, and Kam-Fai Wong?

Dept. of Computer Science and Engineering, The Chinese University of Hong
Kong, Hong Kong, China'

Dept. of System Engineering and Engineering Management, The Chinese
University of Hong Kong, Hong Kong, China?

{xcai,lyu}@cse.cuhk.edu.hk,kfwong@se.cuhk.edu.hk

Summary. In this chapter, we first survey current component technologies and
discuss the features they inherit. Quality assurance (QA) characteristics of compo-
nent systems and the life cycle of component-based software development (CBSD)
are also addressed. Based on the characteristics of the life cycle, we propose a QA
model for CBSD. The model covers the eight main processes in component-based
software systems (CBS) development. A Component-based Program Analysis and
Reliability Evaluation (ComPARE) environment is established for evaluation and
prediction of quality of components. ComPARE provides a systematic procedure for
predicting the quality of software components and assessing the reliability of the
final system developed using CBSD. Using different quality prediction techniques,
ComPARE has been applied to a number of component-based programs. The pre-
diction results and the effectiveness of the quality prediction models for CBSD were
outlined in this chapter.

1 Introduction

Based on the component-based software development (CBSD) approach [403],
software systems are developed using a well defined software architecture and
off-the-shelf components as building blocks [335]. This is different from the tra-
ditional approach, in which software systems are implemented from scratch.
Commercial off-the-shelf (COTS) components are developed by different de-
velopers using different languages and different platforms [342]. Typically,
COTS components are available from a component repository; users select
the appropriate ones and integrate them to establish the target software sys-
tem (see Fig. 1).

In general, a component has three main features: 1) it is an independent
and replaceable part of a system that fulfills a clear function; 2) it works

316 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Component 1

Component
: -
repository Component 2 »| Software
/ system
/ Component n \
select assemble

Commercial Off-the-shelf (COTS)
components

Fig. 1. Component-based software development.

in the context of a well defined architecture; and 3) it communicates with
other components by its interfaces [47]. Current component technologies have
been used to implement different software systems, such as object-oriented
distributed component software [431] and Web-based enterprise applications
[336].

The system architecture of a component-based software system is layered
and modular [152,176,192]; see Fig. 2.

A
npulicati
App2 Appl ¥ Layer
Special -system 1
components Component
Layer
Common components
Bame components 1
. ~
Hardvware v Layer

Fig. 2. System architecture of component-based software systems.

The top application layer entails information systems designed for various
applications. The second layer consists of components for a specific system or
application domains. Components in this layer are applicable to more than one

A Generic Environment for COTS Testing and Quality Prediction 317

single application. The third layer comprises cross-system middleware com-
ponents and includes software and interfaces common to other established
entities. The fourth layer of system software components includes basic com-
ponents that interface with the underlying operating systems and hosting
hardware. Finally, the lowest two layers involve the operating and hardware
systems.

A CBSD-based software system is composed of one or more components
that may be procured off-the-shelf, produced in-house, or developed through
contracts. The overall quality of the final system depends heavily on the qual-
ity of the components involved. One needs to be able to assess the quality of a
component to reduce the risk in development. Software metrics are designed
to measure different attributes of a software system and the development pro-
cess, and are used to evaluate the quality of the final product [360]. Process
metrics (e.g., reliability estimates) [224], static code metrics (e.g., code com-
plexity) [251], and dynamic metrics (e.g., test thoroughness) [411] are widely
used to predict the quality of software components at different development
phases [122,360].

Several techniques are used to model the predictive relationship between
different software metrics and for component classification, i.e., for classifying
software components into fault-prone and non fault-prone categories [144].
These techniques include discriminant analysis [297], classification trees [334],
pattern recognition [45], Bayesian network [121], case-based reasoning (CBR)
[216], and regression tree models [144]. There are also prototypes and tools
[224,253] which use such techniques to automate software quality prediction.
However, these tools employ only one type of metric, e.g., process metrics or
static code metrics. Furthermore, they rely on only one prediction technique
for overall software quality assessment.

The objective of this chapter is to evaluate quality of individual off-the-
shelf components and the overall quality of software systems. We integrate
different prediction techniques and different software metric categories to form
a single environment, and investigate their effectiveness on quality prediction
of components and CBS.

The rest of this chapter is organized as follows: we first give an overview
of state-of-the-art CBSD techniques in Sect. 2, and highlight the quality as-
surance (QA) issues behind them in Sect. 3. Section 4 proposes a QA model
which is designed for quality management in CBSD process. In Sect. 5, we
propose ComPARE, a generic quality assessment environment for CBSD. It
facilitates quality evaluation of individual components as well as the target
systems. Different prediction models have been applied to real-world CORBA
programs. In Sect. 6, the pros and cons of these prediction models are ana-
lyzed. Finally, Sect. 7 concludes this chapter.

318 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

2 A Development Framework for Component-Based
Software Systems

A framework can be defined as a set of constraints on components and their
interactions, and a set of benefits that derive from those constraints [368].
To identify the development framework for component-based software, the
framework or infrastructure for components should be identified first, as com-
ponents are the basic units in component-based software systems.

Visual Basic Controls (VBX), ActiveX controls, class libraries, JavaBeans,
etc., make it possible for their corresponding programming languages, i.e., Vi-
sual Basic, C++, and Java, and supporting tools to share and distribute
application fragments. But all these approaches rely on certain underlying
services to provide communication and coordination. The infrastructure of
components (sometimes called a component model) acts as the “plumbing”
that allows communication between components [47]. Among the component
infrastructure technologies that have been developed, there are three de facto
industrial standards: OMG’s CORBA, Microsoft Corporation’s Component
Object Model (COM) and Distributed COM (DCOM), and Sun Microsys-
tem’s JavaBeans and Enterprise JavaBeans [234].

2.1 Common Object Request Broker Architecture (CORBA)

CORBA is an open standard for interoperability. It is defined and supported
by the Object Management Group (OMG), an organization of over 400 soft-
ware vendors and object technology user companies [310]. CORBA manages
details of component interoperability, and allows applications to communicate
with one another despite their different locations and designs. Interfaces are
the only way in which applications or components communicate.

The most important part of a CORBA system is the Object Request Bro-
ker (ORB). ORB is the middleware that establishes a client/server relation-
ship between components. Using an ORB, a client can invoke a method on
a server object, whose location is completely transparent. ORB is responsi-
ble for intercepting a call and finding an object, which can implement the
request, pass its parameters, invoke its method, and return the results. The
client does not need to know where the object is located, its programming lan-
guage, its operating system, or any other system aspects that are not related
to the interface. In this way, ORB supports interoperability among applica-
tions on different machines in heterogeneous distributed environments, and
can seamlessly interconnect multiple object systems.

CORBA is widely used in object-oriented distributed systems [431], in-
cluding component-based software systems, because it offers a consistent dis-
tributed programming and runtime environment for common programming
languages, operating systems, and distributed networks.

A Generic Environment for COTS Testing and Quality Prediction 319

2.2 Component Object Model (COM) and Distributed COM
(DCOM)

Component Object Model (COM) is a general architecture for component soft-
ware [284]. It supports Windows- and Windows NT-based platform-dependent
and language-independent component-based applications.

COM defines how components and their clients interact. As such, a client
and a component can be connected without the support of an intermediate
system component. In particular, COM provides a binary standard that com-
ponents and their clients must follow to ensure dynamic interoperability. This
enables online software update and cross-language software reuse [417].

Distributed COM (DCOM) is an extension of the Component Object
Model (COM). It is a protocol that enables software components to com-
municate directly over a network in a reliable, secure, and efficient manner.
DCOM supports multiple network protocols, including Internet protocols such
as HTTP. When a client and its component reside on different machines,
DCOM simply replaces the local interprocess communication with a network
protocol. Neither the client nor the component is aware of changes in physical
connections.

2.3 Sun Microsystems’s JavaBeans and Enterprise JavaBeans

Sun Microsystem’s Java-based component model consists of two parts: the
JavaBeans for client-side component development and the Enterprise Jav-
aBeans (EJB) for the server-side component development. The JavaBeans
component architecture supports multiple platforms, as well as reusable,
client-side and server-side components [381].

The Java platform offers an efficient solution to the portability and secu-
rity problems through the use of portable Java bytecode and the concept of
trusted and untrusted Java applets. Java provides a universal integration and
enabling technology for enterprise application integration (EAI). The technol-
ogy enables 1) interoperation across multi-vendor servers; 2) propagation of
transaction and security contexts; 3) multilingual clients; and 4) supporting
ActiveX via DCOM/CORBA bridges.

JavaBeans and EJBs extend the native strength of Java incorporating
portability and security into component-based development. The portability,
security, and reliability of Java are well suited for developing robust server
objects independent of operating systems, Web servers, and database man-
agement servers.

2.4 Comparison among Different Architectures

Comparisons between development technologies for component-based software
systems can be found in [47, 337, 385]. Table 1 summarizes their different
features.

320

Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 1. Comparison of development technologies for component-based software

systems.
CORBA EJB COM/DCOM
Development Underdeveloped Emerging Supported by a wide
environment range of strong develop-
ment environments
Binary Not binary standards Based on COM; A binary standard for
interfacing Java-specific component interaction is
standard the heart of COM

Compatibility
and
portability

Particularly strong in
standardizing language
bindings; but not so
portable

Portable by Java
language specification;
but not very compatible

Not having any con-
cept of source-level stan-
dard of standard lan-
guage binding

Modification
and
maintenance

CORBA IDL for
defining component
interfaces, need

extra modification and
maintenance

Not involving IDL files,
defining interfaces be-
tween component and
container; easier modifi-
cation and maintenance

Microsoft IDL for
defining component
interfaces, need
extra modification
and maintenance

Services A full set of standard-|Neither standardized Recently supplemented

provided ized services; lack of im-|nor implemented by a number of key
plementations services

Platform Platform-independent Platform-independent Platform-dependent

dependency

Language Language-independent |Language-dependent Language-independent

dependency

Strongest in general Web
clients

Strongest in traditional
desktop applications

Strongest for
traditional enterprise
computing

Implementation

3 Quality Assurance for Component-Based Software
Systems

3.1 The Development Life Cycle of Component-Based Software
Systems

A component-based software system (CBS) is developed by assembling differ-
ent components rather than programming from scratch. Thus, the life cycle of
a component-based software system is different from that of a traditional soft-
ware system. The cycle can be summarized as follows [335]: 1) Requirements
analysis; 2) Software architecture selection, construction, analysis, and evalu-
ation; 3) Component identification and customization; 4) System integration;
5) System testing; and 6) Software maintenance.

The architecture of CBS defines a system in terms of computational com-
ponents and interactions among components. The focus is on composing and
assembling components. Composition and assembly mostly take place sepa-
rately, and even independently. Component identification, customization and
integration are crucial activities in the development life cycle of CBS. It in-
cludes two main parts: 1) evaluation of candidate COTS based on the func-
tional and quality requirements provided by the user; and 2) customization of
suitable candidate COTS prior to integration. Integration involves communi-
cation and coordination among the selected components.

Quality assurance (QA) for CBS targets every stage of the development
life cycle. QA technologies for CBS are currently premature, as specific char-

A Generic Environment for COTS Testing and Quality Prediction 321

acteristics of component systems are not accounted for. Although some QA
techniques, such as the reliability analysis model for distributed software
systems [429,430] and the component-based approach to Software Engineer-
ing [308], have been studied, there are still no clear and well defined standards
or guidelines for CBS. The identification of the QA characteristics, along with
the models, tools, and metrics, have urgent need for standardization.

3.2 Quality Characteristics of Components

QA technologies for component-based software development have to address
two inseparable questions: 1) How do we ensure the quality of a component?
and 2) How do we ensure the quality of the target component-based software
system? To answer these questions, models should be defined for quality con-
trol of individual components and the target CBS; metrics should be defined
to measure the size, complexity, reusability, and reliability of individual com-
ponents and the target CBS; and tools should be designed to evaluate existing
components and CBS.

To evaluate a component, we must determine how to assess the quality of
the component [150,433]. Here, we propose a list of component features for
the assessment: 1) Functionality; 2) Interface; 3) Usability; 4) Testability; 5)
Maintainability; and 6) Reliability.

Software metrics can be proposed to measure software complexity [339,
340]. Such metrics are often used to classify components [211]. They include:

1) Size. This affects both reuse cost and quality. If it is too small, the
benefits will not exceed the cost of managing it. If it is too large, it is hard to
ensure high quality.

2) Complexity. This also affects reuse cost and quality. It is not cost-
effective to modularize a component that is too trivial. But, on the other
hand, for a component that is too complex, it is hard to ensure high quality.

3) Reuse frequency. The number of times and different domains in which
a component has been used previously is an indicator of its usefulness.

4) Reliability. This is the probability of failure-free operations of a com-
ponent under certain operational scenarios [252].

4 A Quality Assurance Model for Component-Based
Software Systems

Since component-based software systems are developed on an underlying pro-
cess different from that for traditional software, their quality assurance model
should address both the process of componentization and the process of the
overall system development. Figure 3 illustrates this view.

Many standards and guidelines, such as ISO9001 and CMM model [376],
are used to control the quality activities of a traditional software development

322 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Component System

Assurance
Model

Fig. 3. Quality assurance model for both components and systems.

process. In particular, Hong Kong Productivity Council has developed the
HKSQA model to localize the general SQA models [184]. In this section, we
propose a quality assurance model for component-based software development.

In our model, the main practices relating to components and software
systems contain the following phases: 1) Component requirement analysis;
2) Component development; 3) Component certification; 4) Component cus-
tomization; 5) System architecture design; 6) System integration; 7) System
testing; and 8) System maintenance.

4.1 Component Requirement Analysis

Component requirement analysis is the process of discovering, understanding,
documenting, validating, and managing the requirements of a component.
The objectives of component requirement analysis are to produce complete,
consistent, and relevant requirements that a component should realize, as
well as the programming language, platform, and interfaces related to the
component.

Initiators (Users, Customers,
Manager etc)

Request for new development

or change
Requirement Format & ﬂ-‘ 1t
ui! . equirements
Structure
Dx < P Gathering and
Template Definition
Current
URD Draft User Requirement

Documentation (URD)

Requirement
Analysis

Component Requirement
Document (CRD)

Stiucture for
Data || amping & Component
Dictionary 1 Modeling

Updated CRD with
model included

Systt
dystem Requirement

Comp
Validation Current URD d Development

A

User Requirement
Changes

Fig. 4. Component requirement analysis process overview.

A Generic Environment for COTS Testing and Quality Prediction 323

The component requirement process overview diagram is shown in Fig. 4.
Initiated by the users or customers for new development or for changes to
an old system, component requirement analysis consists of four main steps:
requirements gathering and definition, requirement analysis, component mod-
eling, and requirement validation. The output of this phase is the current user
requirement documentation, which should be transferred to the next compo-
nent development phase, the user requirement changes for the system main-
tenance phase, and data dictionary for all the latter phases.

4.2 Component Development

Component development is the process of implementing the requirements for
a well functioning, high quality component with multiple interfaces. The ob-
jective of component development is the development of the final component
products, their interfaces, and their corresponding development documents.
Component development should lead to the final components satisfying the
requirements with correct and expected results, well defined behaviors, and
flexible interfaces.

‘ Developers ‘

C p . /J
Requirement >
Document

Techniques required

Existing
Fault Draft Component

Self Testing
(Function)

‘Well Functional Component

Self Testing
(Reliability)

Reliable Component

S. ystem D C

X w Submit "1 Certification
For Reference

Fig. 5. Component development process overview.

The component development process overview diagram is shown in Fig. 5.
Component development consists of four procedures: implementation, func-
tion testing, reliability testing, and development documentation. The input
to this phase is the component requirement document. The output should be
the developed component and its documents, ready for the following phases
of component certification and system maintenance.

324 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

4.3 Component Certification

Component certification is the process which involves: 1) component outsourc-
ing, or managing a component outsourcing contract and auditing the contrac-
tor performance; 2) component selection, or selecting the right components in
accordance with the requirements for both functionality and reliability; and
3) component testing, or confirming that the component satisfies the require-
ments with acceptable quality and reliability.

’ System Requirements

Specific Component
v Requirements

Component
Component Functions K—
De t > p
Document Outsourcing

Reject

Component Released

Component
Testing

‘Well Functional Component

Component
Selecting

Component fit for the special
requirements

> System
Contract Signoffs Maintenance
Payments

Fig. 6. Component certification process overview.

The objectives of component certification are to outsource, select, and
test the candidate components and check whether they satisfy the system
requirement with high quality and reliability. The governing policies are: 1)
component outsourcing should be supervised by a software contract manager;
2) all candidate components should be tested to be free from all known de-
fects; and 3) testing should be in the target environment or in a simulated
environment. The component certification process overview diagram is shown
in Fig. 6. The inputs to this phase are the component development documents,
and the output is the testing documentation for system maintenance.

4.4 Component Customization

Component customization is the process which involves 1) modifying the com-
ponent for specific requirements; 2) making necessary changes to the compo-
nent for running on local platforms; and 3) upgrading the specific component
to get better performance or higher quality. The objective of component cus-
tomization is to make necessary changes to a developed component so that
it can be used in a specific environment or cooperate well with other compo-
nents.

A Generic Environment for COTS Testing and Quality Prediction 325

System Requirements & Other
Component Requirements

Specific System & Other
Component Requirements

Comp
Component Document

Dx
Document

Comp
Customization

Component Changed

Component
Document

New Component Document

Component
Testing

Component fit for the special
requirements

System System

< >
Integration Assemble \/Componcm Maintenance
Document

'

Fig. 7. Component customization process overview.

All components must be customized according to the operational system
requirements or the interface requirements. The component customization
process overview diagram is shown in Fig. 7. The inputs to component cus-
tomization are the system requirements, the component requirements, and the
component development documents. The outputs are the customized compo-
nents, and documents for system integration and system maintenance.

4.5 System Architecture Design

System architecture design is the process of evaluating, selecting, and cre-
ating the software architecture of a component-based software system. The
objectives of system architecture design are to collect the user requirements,
determine the system specification, select an appropriate system architecture,
and determine the implementation details such as platform, programming
languages, and so on.

System architecture design should compare the pros and cons of differ-
ent system architectures and select the one most suitable for the target CBS.
The process overview diagram is shown in Fig. 8. This phase consists of sys-
tem requirement gathering, analysis, system architecture design, and system
specification. The output of this phase comprises the system specification
document for system integration, and the system requirements for the system
testing and system maintenance phases.

4.6 System Integration

System integration is the process of properly assembling the components se-
lected to produce the target CBS under the system architecture designed.
The process overview diagram is shown in Fig. 9. The inputs are the system

326 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Initiators

Requests for New Systems

o
»(System Requiremen

Gathering

Format &
Structure

Requirement
De "
Template

Current
Document

Document
System Requirement
Analysis

System Requirement Document|

System Architecture
Design

System

Draft System Requirements

System
f Maintenance

System |4 System g System

<
Testing System Specification ystem Specification| Integration
R

Document

Fig. 8. System architecture design process overview.

Requirement

Requirements for New
Systems

System Architecture
. >

System
Integration

Ar e

Current
Component Draft System

Self Testing

Fault Component

Component
Requirement

Ce

p » C
Changing

Certification

Selecting New Component

System | 4 Final Y System

Testing Final System WSysmm Integration Maintenance

Document

Fig. 9. System integration process overview.

requirement documentation and the specific architecture. There are four steps
in this phase: integration, testing, changing components, and reintegration (if
necessary). At the end of this phase, the final target system will be ready for

system testing, with the appropriate document for the system maintenance
phase.

4.7 System Testing

System testing is the process of evaluating a system to: 1) confirm that the
system satisfies the specified requirements; and 2) identify and correct defects.
System testing includes function testing and reliability testing. The process
overview diagram is shown in Fig. 10. This phase consists of selecting a testing

A Generic Environment for COTS Testing and Quality Prediction 327

System Design
Document

Testing Requirements

System
Maintenance | [Test ~ .V
(Previous Dmcndcngiﬂng
Software Life » Strategy
Cycle)
System Testing Plan
System Test Comp
System Spec System < Document Comp
Integration Testing Development
System Tested
User Acceptance Component
Test Spec User Acceptance) ¢ Document

>

Testing

User Accepted System

Test C
Activities

> System
System Integration Maintenance
Document

Fig. 10. System testing process overview.

strategy, system testing, user acceptance testing, and completion activities.
The input comprises the documents from the component development and
system integration phases. And the output includes the testing documentation
for system maintenance. Note that this procedure must cater to interaction
testing between multiple components, and includes coordination issues and
deadlocks.

4.8 System Maintenance

Users

Request and Problem Reports
v

- Documents
All Previous | |Siraegics mort
Phases > Strategy

User Support Agreement

Problem
Management

Change Requests

New Version System
Testing

System
Maintenance

A,

Fig. 11. System maintenance process overview.

System maintenance is the process of providing service and maintenance
activities required to use the software effectively after it has been delivered.
The objectives of system maintenance are to provide an effective product or

328 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

service to the end users while repairing faults, improving software performance
or other attributes, and adapting the system to a changed environment.

A maintenance organization should be available for every CBS product. All
changes for the delivered system should be reflected in the related documents.
The process overview diagram is shown in Fig. 11. According to the outputs
from all previous phases, as well as requests and problem reports from users,
system maintenance should be performed to determine the setup support and
problem management (e.g., identification and approval) strategies. This phase
produces a new version of the CBS, which may be subjected to further system
testing.

5 A Generic Quality Assessment Environment for
Component-Based Systems: ComPARE

We propose Component-based Program Analysis and Reliability Evaluation
(ComPARE) to evaluate the quality of software systems in component-based
software development. ComPARE automates the collection of different met-
rics, the selection of different prediction models, the formulation of user-
defined models, and the validation of the established models according to
faulty data collected in the development process. Different from other exist-
ing tools [253], ComPARE takes dynamic metrics into account (such as code
coverage and performance metrics), integrates them with process metrics and
other static code metrics (such as complexity metrics, coupling and cohesion
metrics, and inheritance metrics) that are adopted from object-oriented soft-
ware engineering, and provides different estimation models for overall system
assessment.

5.1 Overall Architecture

A number of commercial tools are available for the measurement of software
metrics for object-oriented programming. There are also off-the-shelf tools for
testing and debugging of software components [36]. However, few tools can
measure the static and dynamic metrics of software systems, perform various
types of quality modeling, and validate such models against actual quality
data.

ComPARE aims to provide an environment for quality prediction of soft-
ware components and assess the reliability of the overall system based on
them. The overall architecture of ComPARE is shown in Fig. 12. First of all,
various metrics are computed for the candidate components; then the users
can select and weigh the metrics deemed important to quality assessment. Af-
ter the models have been constructed and executed (e.g., “case base” is used
in the BBN model), the users can validate the selected models with previous
failure data collections. If the users are not satisfied with the prediction result,

A Generic Environment for COTS Testing and Quality Prediction 329

1 1
I) :
H | CaseBase ! I
1 i | !
: i H
1 1
1 1
1 1
! i
1
' Metrics Criteria Model System H
1 Computation Selection Definition Architecture !
: 1
1 1
1 1
! i
1

. 1
! Candidate Mode_l Result !
' Components Validation Display !
: 1
1 1
1 1
! i
H Failure I
! Data H
1 1
1 1
1 1

Fig. 12. Architecture of ComPARE.

they can go back to the previous step, redefine the criteria, and construct a re-
vised model. Finally, the overall quality prediction can be displayed based on
the architecture of the candidate system. Results from individual components
can also be displayed for sensitivity analysis and system redesign.

The objectives of ComPARE are summarized as follows:

1) To predict the overall quality by using process metrics and static code
metrics, as well as dynamic metrics. In addition to complexity metrics, we use
process metrics, cohesion metrics and inheritance metrics, as well as dynamic
metrics (such as code coverage and call graph metrics) as inputs to the quality
prediction models. Thus, the prediction is more accurate, as it is based on data
from every aspect of the candidate software components.

2) To integrate several quality prediction models into one environment
and compare the prediction results of different models. ComPARE integrates
several existing quality models into one environment. In addition to selecting
or defining these different models, the user can also compare the prediction
results of the models on the candidate component and see how good the
predictions are if the failure data of the particular component is available.

3) To define the quality prediction models interactively. In ComPARE, the
user can select from several quality prediction models and select the one most
suitable for the prediction task at hand. Moreover, the user can also define
his or her own models and validate them in the evaluation stage.

4) To classify components using different quality categories. Once the met-
rics are computed and the models selected, the overall quality of the com-
ponent can be displayed according to the category it belongs to. Program
modules with problems can also be identified.

5) To validate reliability models defined by the user against real failure data
(e.g., change report). Using the validation criteria, the result of the selected

330 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

quality prediction model can be compared with real failure data. The user can
redefine his or her models according to the comparison.

6) To show the source code with potential problems at line-level granular-
ity. ComPARE can identify the source code with high risk (i.e., the code that
is not covered by test cases in the environment) at line-level granularity. This
can help the user locate high risk program modules or portions promptly and
conveniently.

7) To adopt commercial tools in accessing software data related to qual-
ity attributes. We adopt Metamata [274] and Jprobe [229] suites to measure
the different metrics for the candidate components. These two tools, involv-
ing metrics, audits, and debugging, as well as code coverage, memory, and
deadlock detected, are commercially available.

5.2 Metrics Used in ComPARE

Table 2. Process Metrics.

Metric Description
Time Time spent from design to delivery (months)
Effort Total human resources used (man*month)
Change Report|Number of faults found in development

Three different categories of metrics, namely process, static, and dynamic,
are analyzed in CompARE to give the overall quality prediction. We have
chosen proven metrics, i.e., those that are widely adopted by previous soft-
ware quality prediction tools in the software engineering research commu-
nity [218,362]. The process metrics we selected are listed in Table 2 [224]. Since
we perceive that object-oriented (OO) techniques are essential in component-
based software development, we select static code metrics according to the
most important features in OO programs, i.e., complexity, coupling, inheri-
tance, and cohesion. They are listed in Table 3 [251,274,384,411]. The dynamic
metrics measure component features when they are executed. Table 4 shows
the detailed description of the dynamic metrics.

Sets of process, static, and dynamic metrics can be collected from com-
mercial tools, e.g., Metamata Suite [274] and Jprobe Testing Suite [229]. We
adopt these metrics in ComPARE.

5.3 Models Definition

In order to predict the quality of software systems, several techniques have
been developed to classify software components according to their reliability
[144]. These techniques include discriminant analysis [297], classification trees
[334], pattern recognition [45], Bayesian network [121], case-based reasoning
(CBR) [216], and regression tree model [224].

A Generic Environment for COTS Testing and Quality Prediction

Table 3. Static Code Metrics.

Abbreviation Description

Lines of Code Number of lines in the components including statements,

FF(LOC) blank lines, lines of commentary, and lines consisting only
of syntax such as block delimiters.

Cyclomatic A measure of the control flow complexity of a method or

Complexity constructor. It counts the number of branches in the body

(CC) of the method, defined by the number of WHILE state-
ments, IF statements, FOR statements, and CASE state-
ments.

Number of Number of fields declared in the class or interface.

Attri-butes (NA)

Number Of Classes
(NOC)

Number of classes or interfaces, which are declared. This
is usually 1, but nested class declarations will increase this
number.

Depth of Inheritance
Tree (DIT)

Length of inheritance path between the current class and
the base class.

Depth of Interface
Extension Tree
(DIET)

The path between the current interface and the base in-
terface.

Data Abstraction
Coupling (DAC)

Number of reference types, which are used in the field dec-
larations of the class or interface.

Fan Out
(FANOUT)

Number of reference types, which are used in field decla-
rations, formal parameters, return types, throws declara-
tions, and local variables.

Coupling between

Objects (CO)

Number of reference types, which are used in field decla-
rations, formal parameters, return types, throws declara-
tions, local variables and also types from which field and
method selections are made.

Method Calls
Input/Output
(MCI/MCO)

Number of calls to/from a method. It helps analyze the
coupling between methods.

Lack of Cohesion
of Methods (LCOM)

For each pair of methods in the class, the set of fields each
of them accesses is determined. If they have disjoint sets
of field then increase the count P by one. If they share at
least one field then increase Q by one. After considering
each pair of methods,

LCOM = (P - Q)
=0

if P>Q

otherwise

331

332 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 4. Dynamic Metrics.

Metric Description
Test Case The coverage of the source code when the given test cases
Coverage are executed.
Call Graph Statistics about a method, including method time (the
metrics amount of time the method spent in execution), method

object count (the number of objects created during the
method execution) and number of calls (how many times
each method is called in you application).

Heap metrics |Number of live instances of a particular class/package, and
the memory used by each live instance.

Up to now, there is no good quality prediction model for CBS. Here, we
set some evaluation criteria for good quality prediction models [298]: 1) Use-
ful quantities, i.e., the model can make predictions of quantities reflecting
software quality; 2) Prediction accuracy, i.e., the model can make predictions
of quality which can be accurately observed later; 3) Ease of measuring pa-
rameters, i.e., the parameters in the model are easily measured or simulated;
4) Quality of assumptions, i.e., the assumptions should be reasonable, rather
than too narrow or limited; 5) Applicability, i.e., the model should be widely
used in various projects or experiments; and 6) Simplicity, i.e., the model
should not be too hard to implement or realize.

In ComPARE, we combine existing quality prediction models according
to the above criteria. Initially, one employs an existing prediction model, e.g.,
classification tree model or BBN model, customizes it, and compares the pre-
diction results with different tailor-made models. In particular, we have in-
vestigated the following prediction models and studied their applicability to
ComPARE in our research.

Summation Model

This model gives a prediction by simply adding all the metrics selected and
weighted by the user. The user can validate the result by real failure data, and
then benchmark the result. Later, when new components are included, the user
can predict their quality according to their differences with the benchmarks.
The concept of the summation model is formulated as follows:

Q=Y am, (1)
i=1

where m; is the value of one particular metric, «; is its corresponding weighting
factor, n is the number of metrics, and @ is the overall quality mark.

A Generic Environment for COTS Testing and Quality Prediction 333
Product Model

Similar to the summation model, the product model multiplies all the metrics
selected and weighted by the user. The resulting value indicates the level of
quality of a given component. Similarly, the user can validate the result by real
failure data, and then determine the benchmark for later usage. The concept
of product model is shown as follows:

Q=Tm ®

where m; is the value of one particular metric, n is the number of metrics, and
Q is the overall quality mark. Note that the m;’s are normalized to a value
close to 1 so that no single metric can dominate the result.

Classification Tree Model

Cm<4?.5

Co<1B58 TC<6R7.5

BU<1] 575
3.103 7.699 ‘ 50.170

BW<1| 83

40.170 20.540

Fig. 13. An example of the classification tree model.

Classification tree model [334] classifies candidate components into differ-
ent quality categories by constructing a tree structure. All candidate compo-
nents (with a certain failure rate) form the leaves of the tree. Each node of the
tree represents a metric (or a composed metric calculated from other metrics)
with a certain value. All children of the left sub-tree of a node represent those
components whose values of the same metrics are smaller than the value of
the node. Similarly, all children of the right sub-tree of a node are those com-
ponents whose values of the same metric are equal to or larger than the value
of the node. Figure 13 gives an example of the classification tree model.

In ComPARE;, a user can define the metrics and their values at each node
from the root to the leaves. Once the tree is constructed, a candidate compo-
nent can be directly classified by following the threshold of each node in the
tree until it reaches a leaf node. Again, the user can validate and evaluate the
final tree model after its definition. Figure 13 is an example of the outcome

334 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

of a tree model, where Cm (number of comments), Co (code characters), Tc
(total line of code), and BW (Belady’s bandwidth metric) are sample met-
rics [144]. At each node of the tree are metrics and values, and the leaves
represent the components with a certain number of predicted faults in the
classification result.

Case-Based Reasoning Model

Case-based reasoning (CBR) has been proposed for predicting quality of soft-
ware components [216]. A CBR classifier uses previous “similar” cases as the
basis for prediction. Previous cases are stored in a case base. Similarity is
defined in terms of a set of metrics. The major conjecture behind this model
is that a candidate component which has a similar structure as a component
in the case base will be assigned to a similar quality level.

A CBR classifier can be instantiated in different ways by varying its pa-
rameters. But according to previous research, there is no significant difference
in prediction validity with any combination of parameters in CBR. For this
reason, we adopt the simplest CBR classifier modeling with Euclidean dis-
tance, z-score standardization [216], and without a weighting scheme. Finally,
we select the single, nearest neighbor for prediction.

Bayesian Network Model

Bayesian networks (also known as Bayesian Belief Networks, or BBNs) is
a graphical network that represents probabilistic relationships among vari-
ables [121]. BBNs enable reasoning under uncertainty. Besides, the framework
of Bayesian networks offers a compact, intuitive, and efficient graphical repre-
sentation of dependence relations between entities of a problem domain. The
graphical structure reflects properties of the problem domain directly, and
provides a tangible visual representation of, as well as a sound mathematical
basis for Bayesian probability [118]. The foundation of Bayesian networks is
based on the following theorem, which is known as Bayes’ Lemma:

P(H|c)P(E|H,c)
PEl) ®)

(H|E,C) =

where H, F, and c are independent events and P is the probability of such
an event under certain circumstances.

With BBNs, it is possible to integrate expert beliefs about the depen-
dencies between different variables and to propagate consistently the impact
of evidence on the probabilities of uncertain outcomes, such as “unknown
component quality.” Details of the BBN model for quality prediction can be
found in [121]. Users can also define their own BBN models in ComPARE,
and compare the results with other models.

A Generic Environment for COTS Testing and Quality Prediction 335
5.4 Operations in ComPARE

ComPARE suggests eight functions: File Operations, Metrics Selection, Cri-
teria Selection and Weighting, Model Selection and Definition, Model Valida-
tion, Display Result, Windows Switch, and Help. The details of some of these
key functions are described in the following:

Metrics Selection

Users can select the metrics they want to collect for the component-based
software systems. Three categories of metrics are available: process metrics,
static metrics, and dynamic metrics. The details of these metrics are shown
in Section 5.2.

Criteria Selection and Weighting

After computing different metrics, the users will select and weigh the criteria
associated with these metrics before using them. Each metric can be assigned
a weight between 0 and 1.

Model Selection and Definition

This operation allows the users to select or define the model they would like
to use in the evaluation. The users are required to provide the probability of
each metric that affects the quality of the candidate component.

Model Validation

Model validation enables comparison between different models with respect
to actual software failure data. It helps users compare different results based
on a subset of the software failure data chosen under certain validation cri-
teria. Comparison between different models in their predictive capability are
summarized in a summary table. Model validation operations are employed
only when software failure data are available.

5.5 Prototype

We have developed a ComPARE prototype for QA of Java-based components
and CBS. Java is one of the most popular languages used in off-the-shelf
components development today. It is a common language binding the three
standard architectures of component-based software development, namely,
CORBA, DCOM, and Java/RMI.

Figures 14 and 15 show screen dumps of the ComPARE prototype. The
computation of various metrics for software components and the application of

336 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Fle Em e 'Ionl eum-

'[ﬂg@-n—mv[i*m|_|_

Fig. 14. GUI of ComPARE for Fig. 15. GUI of ComPARE for pre-
metrics, criteria and tree model. diction display, risky source code and
result statistics.

quality prediction models can be seen as a straightforward process. Users also
have flexible choices in selecting and defining different models. The combina-
tion of simple operations and a variety of quality models makes it easy for the
users to identify an appropriate prediction model for a given component-based
software system.

6 Experiment and Discussion

6.1 Objective

ComPARE provides a systematic procedure for predicting the quality of soft-
ware components and for assessing their reliability in the final target system.
As there is no existing QA model for CBS, ComPARE adopts existing quality
prediction models.

In this section, we investigate the effectiveness of different existing quality
prediction models and their applicability to CBS. In our experiment, we use
the five models selected in Section 5.3 to predict and evaluate the relation-
ship between the number of faults and the software metrics of some CORBA
programs obtained in a component-based software engineering experiment. In
this experiment, all programs were designed according to the same specifica-
tion. The programming teams could choose their own programming languages.
The test cases were designed to assess the functionalities of the final programs
according to the specification. The details of the testing and evaluation of this
experiment is shown in [427]. We applied the selected prediction models to the
final CORBA programs and investigated how well they behave. This informa-
tion is useful to the users for determining the appropriate quality prediction
models.

A Generic Environment for COTS Testing and Quality Prediction 337
6.2 Data Description and Experiment Procedure

In the fall of 1998, we engaged 19 programming teams to design, implement,
test, and demonstrate a Soccer Team Management System using CORBA.
This was a class project for students majoring in computer science. The du-
ration of the project was four weeks. The programming teams (two or three
students for each team) participating in this project were required to inde-
pendently design and develop a distributed system. The system had to allow
multiple clients to access a Soccer Team Management Server for 10 different
operations. The teams were free to choose different CORBA vendors (VisiBro-
ker or Tona Orbix) and use different programming languages (Java or C++)
for the client and server programs. These programs had to pass an acceptance
test, in which programs were subjected to two types of test cases for each of
the 10 operations: one for normal operation and the other for operations which
would raise exceptions. In total, 57 test cases were used in the experiment.

Among these 19 programs, 12 used VisiBroker and seven used Iona Orbix.
For the 12 VisiBroker programs, nine used Java and two used C++ for both
client and server implementations, and one used Java and C++ for client and
server, respectively. Because Team 1 did not pass the acceptance test, we will
not include it in our evaluations. The metrics collected and the test results
for the 18 different program versions are shown in Table 5. The meaning of
the metrics and testing results are listed below:

e Total Lines of Code (TLOC): the total length of the whole program, in-

cluding lines of codes in the client and server programs;

Client LOC (CLOC): lines of codes in the client program;

Server LOC (SLOC): lines of codes in the server program;

Client Class (CClass): number of classes in the client program;

Client Method (CMethod): number of methods in the client program;

Server Class (SClass): number of classes in the server program;

Server Method (SMethod): number of methods in the server program;

Fail: the number of test cases that the program failed on;

Maybe: the number of test cases designed to raise exceptions that failed to

work because the client-side of the program forbade it. In this situation,

we were not sure whether the server was designed to properly raise the
expected exceptions. Thus, we put down “maybe” as the result.

e R: pass rate, defined by R; = %, where C' is the total number of test
cases applied to the programs (i.e., 57); P; is the number of “Pass” cases
for program j, and P; = C' — Fail — Maybe.

e R1: pass rate 2, defined by R1; = PjEMJ , where C' is the total number of
test cases applied to the programs (i.e., 57); P; is the number of “Pass”
cases for program j, P; = C — Fail — Maybe; and M; is the number of
“Maybe” cases for program j.

338 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 5. General Metrics of Different Teams.

Team | TLOC|CLOC|SLOC|CClass|CMethod|SClass|SMethod |Fail|Maybe| R | R1
P2 | 1129 | 613 516 3 15 5 26 7 6]0.77]0.88
P3 | 1874 | 1023 | 851 3 23 5 62 3 6]0.84/095
P4 | 1309 | 409 | 900 3 12 1 23 3 12]0.74/0.95
P5 | 2843 | 1344 | 1499 4 26 1 25 2 1 0.95(0.96
P6 | 1315 | 420 | 895 3 3 1 39 13| 10 0.60|0.77
P7 | 2674 | 1827 | 847 3 17 5 35 3 14 10.70/0.95
P8 | 1520 | 734 786 3 24 4 30 1 6 10.88]0.98
P9 | 2121 | 1181 | 940 4 22 3 43 4 2 10.89]0.93
P10 | 1352 | 498 | 854 3 12 5 41 2 2 10.93]0.96
P11 | 563 | 190 | 373 3 12 3 20 6 3]0.84/0.89
P12 | 5695 | 4641 | 1054 14 166 5 32 1 4 10.91]0.98
P13 | 2602 | 1587 | 1015 3 27 3 32 17| 19 10.37]|0.70
P14 | 1994 | 873 | 1121 4 12 5 39 4 6 10.82]0.93
P15 | 714 | 348 | 366 4 11 4 33 2 5 10.88]0.96
P16 | 1676 | 925 | 751 3 3 23 44 30 0]0.47]0.47
P17 | 1288 | 933 | 355 6 25 5 35 3 3 10.89]0.95
P18 | 1731 | 814 | 917 3 12 3 20 4 9 10.77/0.93
P19 | 1900 | 930 | 970 3 3 2 20 35 1]0.37]/0.39

To evaluate the quality of these CORBA programs, we applied the test
cases to the programs and assessed their quality and reliability based on the
test results. We describe our procedure below.

First of all, we collected the different metrics of all the programs. Metamata
[274] and JProbe Suite [229] were used for this purpose. We designed test cases
for these CORBA programs according to the specification. We used black-box
testing methods, i.e., testing was on system functions only. Each operation
defined in the system specification was tested. We defined some test cases
for each operation. The test cases selected were from two categories: normal
cases and cases that caused exceptions in the system. For each operation in
the system, at least one normal test case was conducted in testing. In the other
cases, all the exceptions were covered. But, in order to reduce the workload,
we tried to use as few test cases as possible as long as all the exceptions had
been accounted for.

We used the test results as indicators of quality. We applied different qual-
ity prediction models, i.e., the classification tree model and Bayesian Network
model, to the metrics and test results. We then validated the prediction re-
sults of these models against the test results. We divided the programs into
two groups: training data and testing set, and adopted cross evaluation. This
was done during or after the prediction process, according to the prediction
models. After applying the metrics to the different models, we analyzed the
accuracy of their predicting results and identified their advantages and disad-
vantages. Also, based on the results, we adjusted the coefficients and weights
of different metrics in the final models.

A Generic Environment for COTS Testing and Quality Prediction 339
6.3 Experiment Results
Summation Model

The summation model gives a prediction by simply adding all the metrics
selected and weighted by the user. For simplicity, we give equal weighting to
all the metrics, e.g., the weights of all metrics equal 1. Also, we normalize the
values of the metrics by using the ratio of the actual value to the maximum
value of that particular metric, i.e., m; = %, mo = %, and
so on, for every program. The overall quality mark, then, is Q = my+mao+---
for the 18 programs. The result of the summation model is listed in Table 6.

Product Model

The product model multiplies all the metrics selected and weighted by the
user. The values of the metrics are also normalized to values close to 1, using
the same method as above. The final result is the product of these normalized
values. It is listed in Table 6.

Classification Tree Results Using CART

We adopted the commercial tool CART [118] in our classification tree mod-
eling. The CART methodology is technically known as binary recursive par-
titioning. The process is binary because parent nodes are always split into
exactly two child nodes, and recursive because the process can be repeated
by treating each child node as a parent. The key element of a CART analy-
sis is a set of rules for: 1) splitting each node in a tree; 2) deciding when a
tree is complete; and 3) assigning each terminal node to a class outcome (or
predicted value for regression).

We applied the metrics and testing results in Table 5 to the CART tool,
and collected the classification tree results for predicting the quality variable
“Fail”. Table 7 is the option setting of the classification tree. The tree con-
structed is shown in Fig. 16, and the relative importance of each metric is
listed in Table 8. From Fig. 16, we can see that the 18 learning samples are
classified into nine groups (terminal nodes), whose information is listed in
Table 9. The most important vector was the number of methods in the client
program (CMethod), and the next three most important vectors were TLOC,
SCLASS, and CLOC. From the node information, we observe that the most
non fault-prone nodes are those programs with 638.5 < TLOC < 921.5 and
7 < CMETHOD < 26 and SLOC < 908.5, or CEMTHOD > 7 and
TLOC < 638.5. The relationship between classification results and the three
main metrics was analyzed, and the results are listed in Table 10.

340 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 6. Results of Summation Model and Product Model.

Team|Summation Modeling|Product Model|Fail|Maybe| R | R1
P2 7.00 0.0000159 7 6 |0.77/0.88
P3 1.62 0.0002658 3 6]0.84]/095
P4 2.69 0.0000030 3 12]0.74/0.95
P5 1.62 0.0001134 2 1 0.95/0.96
P6 2.68 0.0000013 13| 10 |0.60|0.77
P7 1.82 0.0002813 3 14]0.70/0.95
P8 2.53 0.0000577 1 6]0.88]0.98
P9 1.97 0.0002036 4 2]0.89/0.93
P10 2.50 0.0000323 2 2 10.93|0.96
P11 2.08 0.0000007 6 3]0.84/0.89
P12 1.13 0.0788932 1 4]0.91]0.98
P13 5.44 0.0002482 17| 19 0.37|0.70
P14 2.50 0.0001391 4 6]0.82]0.93
P15 2.49 0.0000040 2 5]0.88|0.96
P16 1.50 0.0000808 30 0 10.47(0.47
P17 2.94 0.0000853 3 3]0.89]0.95
P18 2.03 0.0000213 4 9 10.77]0.93
P19 1.83 0.0000047 35 1 0.37]|0.39

Table 7. Option Setting of the classification tree.

Construction Rule Least Absolute Deviation
Estimation Method Exploratory - Resubstitution
Tree Selection 0.000 se rule
Linear Combinations No
Initial value of the complexity parameter = 0.000
Minimum size below which node will not be split =2
Node size above which sub-sampling will be used =18
Maximum number of surrogates used for missing values = 1
Number of surrogate splits printed =1
Number of competing splits printed =5
Maximum number of trees printed in the tree sequence = 10
Max. number of cases allowed in the learning sample = 18
Maximum number of cases allowed in the test sample =0
Max # of nonterminal nodes in the largest tree grown = 38
(Actual # of nonterminal nodes in largest tree grown = 10)
Max. no. of categorical splits including surrogates =1
Max. number of linear combination splits in a tree =0
(Actual number cat. + linear combination splits =0)
Maximum depth of largest tree grown =13
(Actual depth of largest tree grown =17)
Maximum size of memory available = 9000000

(Actual size of memory used in run = 5356)

A Generic Environment for COTS Testing and Quality Prediction

Table 8. Importance of different variables in the classification tree.

Metrics Relative Number of Minimum
Importance Categories Category
CMETHOD 100.000
TLOC 45.161
SCLASS 43.548
CLOC 33.871
SLOC 4.839
SMETHOD 0.000
CCLASS 0.000
N of the learning sample = 18
[3] [eoc<arss.s |

l CMETHOD<26 l 9

l SLOC<908.5 ‘ l 8 ‘

[omocmeis | []

l 4 ‘ ITLOC<1208.5 ‘

=] [e]

Fig. 16. Classification tree structure.

Table 9. Terminal node information in the classification tree.

Parent Node Wgt Count Count Median MeanAbsDev Complexity
1 1.00 1 13.000 0.000 17.000
2 2.00 2 35.000 2.500 17.000
3 1.00 1 6.000 0.000 6.333
4 1.00 1 2.000 0.000 2.500
5 1.00 1 7.000 0.000 4.000
6 6.00 6 3.000 0.500 4.000
7 3.00 3 4.000 0.000 3.000
8 1.00 1 17.000 0.000 14.000
9 2.00 2 2.000 0.500 8.000

341

342 Xia Cai, Michael R. Lyu, and Kam-Fai Wong

Table 10. Relationship between the classification results and 3 main metrics.

Terminal Node|Mean Faults|CMethod TLOC SLOC
4 2 726 638.5~921.5 [<908.5
9 2 >T7 <638.5 -
6 3 726 1208.5~2758.5|<908.5
7 4 726 638.5~921.5 [>908.5
3 6 >7 <638.5 -
5 7 726 638.5~921.5 [<908.5
1 13 <7 <1495.5 -
8 17 >26 638.5~921.5 -
2 35 <7 >1495.5 -

BBN Results

The HUGIN System was adopted [118]. It is a tool enabling one to construct
model-based decision support systems in domains characterized by inherent
uncertainty. The models supported are Bayesian belief networks and their
extension influence diagrams. The HUGIN System enables the user to define
both discrete nodes and, to some extent, continuous nodes in the models.

Bayesian networks are often used to model domains, which are character-
ized by inherent uncertainty. This uncertainty may be caused by imperfect
understanding of the domain, incomplete knowledge of the state of the do-
main at the time where a given task is to be performed, and randomness in
the mechanisms governing the behavior of the whole system. We have de-
veloped a prototype to show the potential of one of the quality prediction
models, namely BBN, and illustrated its useful properties using real metrics
data from the software engineering experiment (see Section 6.2).

TLOC TestResult ServerMethod

Fig. 17. The Influence Diagram of the BBN model.

We constructed an influence diagram for the CORBA programs according
to the metrics and testing results collected in the testing procedure, as shown
in Fig. 17. However, due to interactions between these metrics, some of the
metrics are redundant. We assumed the worst scenario and considered every
metrics. Each of these metrics shown in Fig. 17 had its own impact on the

A Generic Environment for COTS Testing and Quality Prediction 343

THugin 5.6 - Lite - [d:\research\coapare\cxperiment. hkb]
8] File Edit View Netvork Table Options ¥indow Help
Jlblﬂiﬂl ﬁalﬂl% m i[ﬂ
QIEII—_I_LIO@--:‘_I_I<> ol 3| +|-| 8|z 5]

0-05 9]
061 011
- 061

-5 0.22
| 006

Llhel’ﬂL"Jf) (— <) QC'“-"“C'*) (uenwemu)

- : : g:.,emf lass

.(Tas\nequ—-— -—-———'(.SGNEMeIﬂ)

Fig. 18. The probability description of nodes in BBN model.

testing result. Once the influence diagram is constructed, we input the prob-
ability of the metrics and testing results collected in our test procedures, as
shown in Fig. 18.

The result of the HUGIN tool are shown in Fig. 19 and Fig. 20, where (a) is
the original probability distribution of different metrics and testing results; (b)
is the probability distribution of the metrics when the number of faults is less
than 5; and (c) is the probability distribution of the metrics when the number
of faults is between five and 10. Figure 19 shows the results of summation
propagation, and Fig. 20 shows the results of maximum propagation.

Summation propagation shows the true probability of the states of the
nodes with the total summation equal to 1. For maximum propagation, if a
state of a node belongs to the most probable configuration, it is given the
value 100. All other states are given the value of the probability of the most
probable configuration they found relative to the most probable configuration.
That is, assume node N has two states, ¢ and b, and b belongs to the most
probable configuration of the entire BBN, which has probability 0.002; then,
b is given the value 100. Now, assume that the most probable configuration
which a belongs to has probability 0.0012; then, a is given the value 60.

Using maximum propagation instead of sum propagation, we can find the
probability of the most likely combination of states under the assumption
that the evidence holds. In each node, a state having the value 100 belongs to
the most likely combination of states. From Fig. 20(b), we can find the best
combination of the metrics with respect to the corresponding testing results,
as listed in Table 11. For test results between 0 and 5, the ranges of C'Method,
TLOC, and SLOC are very close to the results of the classification tree in
Table 10.

344 Xia Cai, Michael R. Lyu, and Kam-Fai Wong
CliontClass o FTETa ClientiClass
1 a00 1-5 BTZ0 1-5
0 00 810 1] 453 5-10 o 631 510
o 600 1015 L 419 1018 o 649 10-15
CliontMethod I CliontMathod
=] 1700 1-10 o o8- [m=] 1475 1-10
i] 7800 0.5 (%09 10-%0 — 7984 10-50
50 - 100 50 =200 - 50100
i 500 100 - 200 i 349 100200 1] 541100 - 200
P ServerClass SarverCiass
[] 8400 1.5 | —] [8364 1-5
510 - §-10 510
i] 800 10-15 1 A1 0o il 636 10-15
ServerMethod
110 B 1-10
— | — B4.0E 10 - 50 | — 8385 10-50
0 %200 50100 0 504 50100 o 608 50-100
100 - 200 - 100 - 200 100 - 200
TLOC TLOC TLOC
T0-05 - 0-08 - 0-05
] 100 05-1 a T 08-1 [m] 1224 05-1
— 6100 1-2 — 6798 1.2 —/ 6083 1.2
-] 2200 2.5 — W02 2-8 = 2044 2.5
1] 600 5-10 i} 419 5-10] 649 5-10
ol TestResult TestResult
] 3578 0-5 I 100.00 0-5 0-5
- 2311 6-10 &-10 I - 10000 S - 10
= 2045 10-20 - 10-20 10 - 20
= 2085 20-40 - 20-40 20- 40
clientLOC clientLOC cliontLOC
1 2000 0-08 [3207 0-05 — 7231 0-05
—1 3800 0.5-1 — a7e8 05-1 — 4471 051
— 2000 1-2 —_ I8 1.2 [2680 1.2
1] 600 25 1] 419 2.5 o 649 2-5
510 5-10 5-10
sorverioc sarverioc
[m=] 1700 0-05 [m] 1244 0-05 (] 1856 0-05
—/ 6100 05-1 — 8513 05-1 — 6188 0.5-1
[200 1.2 (] F243 1.2 c WEE 1.2
- 2-8 -2-5 e
510 5-10 5-10
Fig. 19. The different probability distribution of metrics according to the quality

indicator (sum propagation).

Table 11. Relationship between test result and metrics in BBN.

TestResult| CCLASS|CMethod |SCLASS|SMethod| TLOC|CLOC|SLOC
0-5 1-5 10-50 1-5 10-50 | 1-2K |0-0.5K|0.5-1K
5-10 1-5 10-50 1-5 10-50 | 1-2K |0.5-1K|0.5-1K

Case-Based Reasoning Model

To use case-based reasoning model, a case base containing a number of com-
ponents with various metric values and quality levels should be established.
When a new component is developed, the component most similar to it in the
case base should be identified. The quality data of the case is then used for
the new component. Case base is unavailable for CBS at present. Thus, we
simply illustrate how the CBR model works with our own synthetic data set.

Assume we already have a case base containing 17 programs, i.e., P3
through P19. To predict the quality of a new program P2, we would find
the most similar program in the case base (using, for example, Euclidean dis-
tance without weighting; see Table 12). We would then predict that program
P2 had a quality level similar to that of the selected program, e.g., P17, with
three faults, under a reliability indicator of 89%.

A Generic Environment for COTS Testing and Quality Prediction 345
— T3 3 wooo 1.8 [E— T
268 8- 10 1 258 5-10 0 41 s-10
] 23 10-18 1 231 10-18] 241 18-15
— 058 1-10 1] 545 1-10 5] oy 110
] toane 10-80 1 wooo w-50 | — YRR
- 8O- 100 - 8O- 100 - S0-100
1 247100 - 300 1 217 100 - 200] 321100 - 200
ServerClans. [SarverCinss.
10000 1.5 10000 1-5 10000 1-6
- 8- 5-10 - 8-10
1 24T _10-18 1 217 1018] 110 1015
T [Servarmathod [sorvartathaa]
1190 1-10 < 110
L7 waoo w-50 [wooo w-50 | — 1T R LR
] 438 80-100 i] 638 60 - 100 1] 290 50 100
100 - 200 L - 100200 100 - 200
[TLoc TLOC TLOC
- 0-08 0-056 a-o8
] @4 B5-1 o 812 05.1 [u] 902 05-1
C——— wooo 1-2 [wooo 1-2 1 w000 1.2
— W07 2:6 — woT -8 (=] 0os 2-5
i 234 5.0 1] AW 5-10 0 an 5-10
TesiRosvit E [TemReautt
| — TR I ¢ 170 00 05 - 6.0
——— 67,06 &- 10 510 I © 10000 - 10
500 10-30 10 - 20 - 10-20
. 058 2040 - 20-40 - .40
clientLOC. [eenoc [clioniLoC
L 1 wom o-00 T 5 10000 005 i 1328 0-08
3 - €706 03-1 2 ar8s 05-1 | e— N
— LAYt -2 — 60T 1.2 | 384 1-3
] 538 2.5 n 538 Z.8 o 08 2-5
- 8-10 - B-10 5. 10
[servarioe servarioc sorvarios
4] 940 0-05 F D40 0-00 lﬁ 128 0-048
| — 1 TR 0000 06-1 | S— 1R
— 4608 1-2 — 4808 1-3 [w] 1229 1.2
g e -2-8
5- 10 _ 5.1 - &-10

Fig. 20. The different probability distribution of metrics according to the quality

indicator (max propagation).

Table 12. Result of Case-Based Reasoning Model.

Team|Distance with P2|Fail|Maybe| R | R1
P3 914.7185 3 6]0.84/095
P4 470.6442 3 12 |0.74|0.95
P5 2106.7950 2 1 10.95/0.96
P6 464.5589 13| 10]0.60/0.77
P7 1992.6031 3 14 |0.70(0.95
P8 490.4284 1 6]0.88]0.98
P9 1219.3470 4 2 10.89]0.93
P10 421.2268 2 2 10.93]0.96
P11 720.9598 6 3]0.84/0.89
P12 6114.3718 1 4 10.91]0.98
P13 1835.0995 17| 19]0.37]0.70
P14 1087.2116 4 6]0.82]0.93
P15 514.7980 2 5]0.88]0.96
P16 672.7332 30 0]0.47]0.47
P17 392.1632 3 3]0.89(0.95
P18 750.7696 4 9 10.77]0.93
P19 949.3340 35 1 0.37]|0.39

346 Xia Cai, Michael R. Lyu, and Kam-Fai Wong
6.4 Discussion

In our experiment, we used real CORBA programs as testing data and ap-
plied them to the five quality prediction models to show how they work. The
effectiveness and applicability of these models could be evaluated using more
data. The summation and product models are the simplest compared to the
three other models. They are intuitive and easy to construct. However, their
prediction accuracy is not high. The meanings of these models are yet unclear.
For this reason, they are not widely used.

The classification tree model predicts the quality of a program by con-
structing a tree model according to the metrics collected. If the learning sam-
ple is large enough, the prediction result of the classification tree would be
very accurate. However, the disadvantage of classification tree modeling is
that it needs large learning data and more data descriptions. In our case, the
classification tree result would be more accurate if we had used more programs
for learning, and more metrics could be collected to describe the features of
various aspects for the given programs.

BBN constructs an influence diagram depicting the dependency relation-
ship of the metrics and testing result. It can predict a range of testing results
using different combinations of metrics. Also, it can suggest the best combina-
tion of metrics. This is more clear in BBN than in the classification tree. The
obvious disadvantage of the BBN model is that the user is required to know
well the dependency relationship in his or her specific domain before an ef-
fective influence diagram can be constructed. But such knowledge is available
only after several runs.

The case-based reasoning model requires an established and sizable case
base. Due to the lack of such data, the effectiveness of the CBR model for
CBSD awaits further investigation.

The testing data used in our experiment is limited, i.e., only 18 programs
were used to construct the models and to validate the prediction. To make
the comparison more accurate, we will use more programs as test data in our
future work. Also, if we could collect data from real component-based systems,
we would apply these models to individual components as well as to entire
systems in order to obtain a relationship of their qualities.

7 Conclusion

In this chapter, we introduce a component-based software development frame-
work. We propose a QA model for component-based software development,
which covers both the component QA and the system QA, as well as their in-
teractions. As far as we know, this is the first effort to formulate a QA model
for developing software systems based on component technologies. We fur-
ther propose a generic quality assessment environment for component-based

A Generic Environment for COTS Testing and Quality Prediction 347

software systems: ComPARE. ComPARE is new in that it collects more met-
rics for software systems, including process metrics, static code metrics, and
dynamic metrics for software components, integrates reliability assessment
models from different techniques currently used in quality prediction field,
and validates these models against real failure data. ComPARE can be used
to assess live off-the-shelf components and to evaluate and validate the mod-
els selected for their evaluation. The overall component-based software system
can then be composed and analyzed seamlessly. ComPARE can be an effective
environment to promote component-based software system construction with
higher reliability evaluation and proper quality assurance.

Acknowledgment

The work described in this book chapter was supported by the following
projects:

e “Open Component Foundation,” an Industry Support Fund project sup-
ported by the Hong Kong Industry Department (Project No. AF94/99).

e a grant from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region (Project No. CUHK4360/02E).

e a strategic grant supported by the Chinese University of Hong Kong
(Project No. 4410001).

