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Abstract—Functionally equivalent web services can be composed to form more reliable service-oriented systems. However, the choice
of fault tolerance strategy can have a significant effect on the quality-of-service (QoS) of the resulting service-oriented systems. In this
paper, we investigate the problem of selecting an optimal fault tolerance strategy for building reliable service-oriented systems. We
formulate the user requirements as local and global constraints and model the selection of fault tolerance strategy as an optimization
problem. A heuristic algorithm is proposed to efficiently solve the optimization problem. Fault tolerance strategy selection for semantically
related tasks is also investigated in this paper. Large-scale real-world experiments are conducted to illustrate the benefits of the proposed
approach. The experimental results show that our problem modeling approach and the proposed selection algorithm make it feasible to
manage the fault tolerance of complex service-oriented systems both efficiently and effectively.

Index Terms—Fault tolerance, web service, service composition, quality-of-service (QoS)

1 INTRODUCTION

WEB services are self-contained applications that can be
described, published, and invoked over the Internet. In

the service-orientedenvironment, complexdistributedsystems
can be dynamically composed by discovering and integrating
Web services provided by different organizations. As service-
oriented architecture (SOA) is becoming a large part of IT
infrastructures, building reliable service-oriented systems is
more and more important. However, comparing with the
traditional stand-alone software systems, building reliable
service-oriented systems is much more challenging, because:
(1) Web services are usually distributed across the unpredict-
able Internet; (2) remote Web services are developed and
hosted by other providers without internal design and imple-
mentationdetails; (3) performance ofWeb servicesmaychange
dynamically (e.g., caused by workload change of servers,
internal updates of Web services, performance fluctuation of
communication links, etc.); and (4) remote Web services may
even become unavailable without any advance notifications.

In software reliability engineering [19], there are four main
approaches to increase system reliability, which are fault
prevention, fault removal [11], fault tolerance, and fault
forecasting [12]. Since source-codes and internal designs
of Web services are unavailable to service users (usually
developers of the SOA systems), it is difficult to use fault

prevention and fault removal techniques to build fault-free
service-oriented systems. Another approach for building
reliable systems, software fault tolerance [18], makes the
system more robust by masking faults instead of removing
faults. One approach of software fault tolerance, also known
as design diversity, is to employ functionally equivalent yet
independently designed components to tolerate faults [18].
Due to the cost of developing redundant components, design
diversity is usually only employed for critical systems. In the
area of service computing [34], however, it is possible to
construct a fault-tolerant service-oriented system without
having to pay the cost of developing diverse components.
There are a number of functionally equivalent Web services
already diversely implemented by different organizations on
the Internet. These Web services can be employed as alterna-
tive components for building diversity-based fault-tolerant
service-oriented systems.

Fault tolerance strategies can be divided into passive
replication strategies and active replication strategies. Passive
strategies [9], [28], [30] employ a primary service to process
the request and invoke another alternative backup service
when the primary service fails, while Active strategies [16],
[21], [24], [27], [29] invoke all functionally equivalent services
in parallel. Complementary to previous approaches which
mainly focus on applying various fault tolerance strategies for
service-oriented systems, this paper investigates how to select
the optimal fault tolerance strategy for building reliable
service-oriented systems, considering not only objective
Quality-of-Service (QoS) performance of Web services, but
also subjective requirements of service users.

In this paper, user requirements are formulated as local
constraints and global constraints. A service-oriented system
typically includes a set of tasks. SuitableWeb services need to
be selected to fulfill these tasks. Service users may provide
constraints for a single task (named as local constraints), such
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as response-time of task 1 should be less than 1 second. Service
users can also provide constraints for the whole service-
oriented system (named as global constraints), such as avail-
ability of the service-oriented system should be higher than 99%.
The research problem of this paper is how to identify the
optimal fault tolerance strategy for a service-oriented system
under these local and global constraints.

To address this research problem, based on our previous
work [36], [37], this paper proposes a systematic and extensi-
ble framework. Themain features of this frameworkare: (1) an
extensible QoS model of Web services, (2) a number of fault
tolerance strategies, (3) a QoS composition model of Web
services, (4) a consistency checking algorithm for complex
service-oriented systems, and (5) various QoS-aware algo-
rithms for selecting the optimal fault tolerance strategy.

In our framework, we model the problem of selecting an
optimal fault tolerance strategy as a 0-1 Integer programming
(IP) problem. A heuristic algorithm is proposed to efficiently
solve the problem. We select the optimal fault tolerance
strategy not only for a single task, but also for semantical-
ly-related tasks where multiple tasks have strong correlation
(e.g., contain statedependency) andmust beperformedby the
same type ofWeb services. In contrast to previous research on
fault-tolerantWeb services [9], [16], [21], [24], [27]–[30],which
typically consider only one single metric (i.e., reliability), our
framework considers not only reliability, but also a number of
other QoS properties (e.g., response-time, cost, etc.) and user
requirements. Comprehensive experiments are conducted
based on our WS-DREAM (Distributed REliability Assess-
ment Mechanism for Web Services) architecture [35]. The
experimental results show the effectiveness and efficiency of
our proposedoptimization algorithm.Moreover, a real-world
Web service QoS dataset is released for future research.1

This paper advances the current state-of-the-art in software
fault tolerance forWeb services byproposing a systematic and
extensible framework for selecting an optimal fault tolerance
strategy for reliable service-oriented systems with local and
global constraints. The main contributions of this paper in-
clude: (1) modeling the problem of selecting the optimal fault
tolerance strategy as a specific optimization problem and
designing a heuristic algorithm to efficiently solve the prob-
lem; (2) specifying the user requirements as local and global
constraints, and formulating the selection of the optimal fault
tolerance strategy for semantically-related tasks as a con-
straint in the optimization problem; and (3) proposing an
extensible framework which integrates different modules
together for selecting an optimal fault tolerance strategy.

The rest of this paper is organized as follows: Section 2
introduces a motivating example. Section 3 presents prelimi-
naries. Section 4 investigates optimal fault tolerance strategy
selection. Section 5 describes experimental design and results.
Section 6 reviews related work and Section 7 concludes the
paper.

2 MOTIVATING EXAMPLE

We begin by a motivating example to show the research
problems. In this paper, a service plan is an abstract description
of activities for a business process, which includes a set of

tasks executing according to a certain workflow. Fig. 1 shows
a simple service plan including six tasks. Each task can be
executed by invoking a Web service. Following the same
assumption of work [2], [4], [32], we assume that for each
task in a service plan, there are multiple functionally equiva-
lent Web service candidates that can be adopted to fulfill the
task. These functionally equivalent Web services can be
obtained from service communities [4], [33], which define
common terminologies to guarantee that Web services devel-
oped by different organizations have the same application
programming interface.

For the example shown in Fig. 1, there are several chal-
lenges to be addressed: (1) There are a number ofWeb service
candidates for the task (GetWeather). Which candidate
would be optimal? Does task requires fault tolerance
strategy? If so, which fault tolerance strategy is suitable?
(2) Assuming that task (Payment) is non-refundable, and
task (Delivery) is unreliable. The failure of (Delivery) will
lead to inconsistency of the process, since the user has paid the
money (which cannot be refunded) but cannot get the good
due to delivery fails. How do we detect and avoid such kinds
of consistency violations? (3) Tasks and are semantically
related. It is incorrect topay one company (e.g., eBay.Payment())
and require another companywho did not receive anymoney
todeliver the good (e.g.,Amazon.Deliver()).How to apply fault
tolerance strategy for such kind of semantically-related tasks?
(4) Service users have different preferences and may provide
local constraints for a single task or global constraints for a
whole service plan. Under both local constraints and global
constraints, how do we determine optimal fault tolerance
strategy for the service plan?

This paper addresses the above challenges by proposing a
systematic framework for selecting fault tolerance strategy,
which defines QoS model of Web services, identifies com-
monly-used fault tolerance strategies, and designs selection
algorithms to attack these challenges.

3 PRELIMINARIES

Fig. 2 shows an overview of how to employ our framework to
select an optimal fault tolerance strategy for service-oriented
systems. Fig. 2 includes a number of service users, a commu-
nication bus (usually the Internet), and a lot of Web services.
The execution engine is in charge of selecting and invoking
Web services to fulfill the tasks in the service plan. The
execution engine includes several modules: QoS Model, Com-
position Model, Fault Tolerance Strategies, Consistency Checking,
and Fault Tolerance Strategy Selection. Details of the first four
moduleswill be introduced in Sections 3.1 to 3.4, respectively,

Fig. 1. A motivating example.

1. http://www.wsdream.net.
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and details of selecting fault tolerance strategies will be pre-
sented in Section 4.

The work procedures of Fig. 2 are as follows: (1) A service
provider obtains the address of a certain service community
from the UDDI and registers its Web service in the service
community; (2) a service user designs a service plan; (3) the
execution engine obtains a list of service candidates for each
task in the service plan from the service communities; (4) the
consistency checking module checks whether the service plan
will cause inconsistency; (5) the fault tolerance strategy selection
module determines optimal fault tolerance strategies for the
tasks in the service plan; (6) the execution engine executes the
service plan by invoking selectedWeb services and activating
selected fault tolerance strategies to mask faults; and (7) the
execution engine records the QoS values of the invoked Web
services, sends them to the community coordinators, and
obtains updated QoS from the community coordinator from
time to time.

3.1 QoS Model of Web Services
In thepresence ofmultiple service candidateswith identical or
similar functionalities, QoS (quality-of-service) properties
provide non-functional characteristics for service selection.
Based on the previous investigations [2], [20], [33],we identify
several representative QoS properties of Web services in the
following:

1. Availability (av) : the probability that aWeb service is
operational. The value of availability is in the range of
[0,1].

2. Price (pr) : the fee that a service user has to pay for
invoking a Web service.

3. Popularity (po) : the number of totally received in-
vocations of a Web service.

4. Data-size (ds) : the size of the Web service invocation
response.

5. Success-probability (sp) : the probability that a re-
quest is successfully completed at the server side and the
corresponding response is successfully received by the
service requestor.

6. Response-time (rt) : the average time duration be-
tween a service user sending a request and receiving a
response.

7. Overall Success-probability (osp) : the average value
of the invocation success probability ( ) of aWeb service
observed by different service users.

8. Overall Response-time (ort) : the average value of the
response-time ( ) of aWeb service observedbydifferent
service users.

In the above QoS model, are provided by service
providers and are the same for all service users. and are
measured at the user-side since they are affected by commu-
nication links. Besides these commonly-used QoS properties
ofWeb services, we also consider the overall success-probability
( ) and overall response-time ( ). Given the above QoS prop-
erties, the QoS performance of a Web service can be repre-
sented as . More QoS properties can be added
in the future easily since our QoS model is extensible.

The overall performance of Web services (i.e., and )
provides helpful information for betterWeb service selection,
especially when a user is new and has no idea on the perfor-
mance of different service candidates. For example, overall
success probability of 99.9% indicates that a service candidate
has been successfully invoked in most cases. Most likely, this
service candidate is better than another service candidatewith
50% overall success probability. To obtain the vales of and
, we have designed a user-collaborative QoS evaluation

mechanism for Web services, together with its prototyping
system WS-DREAM [35]. In WS-DREAM, the service users
are encouraged to contribute their individually observed
QoS data of Web service to exchange for the data of other
users. In this way, service users can obtain the QoS data of
other users.

3.2 Service Composition Model
There are two types of services, i.e., atomic service and
composite service. An atomic service is a self-contained Web
service that provides service to users independently without
relying on any other Web services, while a composite service
represents a Web service that provides service by integrating
other Web services. Atomic services can be aggregated by
different compositional structures (i.e., sequence, branch,
loop, andparallel) that describe the order inwhich a collection
of tasks is executed. The QoS values of composite services by
these structures can be calculated by the formulas in Table 1.
In the branch structure, is a set of branch execution
probabilities, where . In the structure,
is a set of probabilities of executing the loop for times, where
is the maximum loop times and . In the

structure, the response-time (rt) is the maximal value of the
parallel branches. The structure is counted as a
success if and only if all the branches succeed.

Fig. 2. Conceptual overview.

TABLE 1
Formulas for Basic Compositional Structures
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Algorithm 1. FlowQoS.

Input: : a service plan

Output: : QoS values of the service plan

1 switch structure type do

2 case atomic task

3 ;

4 return ;

5 case sequence
// is the sub service plans in the sequence.

6 foreach do ;
// is the number of sub service plans.

7 ;

8 return ;

9 case branch-split

10 foreach do ;

11 ;

12 return q;

13 case Parallel-split

14 foreach do ;

15 ;

16 return q;

17 case loop-enter

18 ;

19 ;

20 return q;

21 end

22 end

The basic structures can be nested and combined in arbi-
trary ways. For calculating the aggregated QoS values of a
service plan, we decompose the service plan to basic struc-
tures hierarchically. As the example shown in Fig. 3, a service
plan is decomposed into basic compositional structures,
which will employ the formulas in Table 1 to calculate the
aggregated QoS values. Algorithm 1 is designed to calculate
the aggregated QoS values of a service plan hierarchically.
TheQoSvalues of the sub-plans can be stored for reducing the
recalculation timewhenQoSperformance of some tasks in the
service plan are updated. For example, when the QoS values
of in Fig. 3 are updated, we only need to recalculate the
QoS values of the service plans , , and . The QoS
values of and do not need recalculation,
since their values remain the same. This design will speedup
the QoS recalculation, especially when the QoS values are
updated frequently.

3.3 Fault Tolerance Strategies
Tobuild reliable service-oriented systems, functionally equiv-
alent service candidates can be employed for tolerating faults
[28]. In this paper, a fault tolerance strategy represents a
specified approach for masking software faults. Four well-
known fault tolerance strategies are employed in this paper,
i.e., Retry, Recovery block, N-version programming, and
Active. Retry is a very simple and widely-employed strate-
gies for tolerating software faults. Recovery block [25] and
N-version programming (NVP) [3] are two well-known fault
tolerance strategies in thefield of software reliability.Active is
a variation ofNVP,which employs thefirst returned response
as the final result instead of the voting result. Similar to the
way to compute QoS values of various compositional struc-
tures, QoS values of different fault tolerance strategies can
also be calculated from the QoS of the selected Web services.
The formulas for calculating the QoS values of the fault
tolerance strategies are listed in Table 2.

Retry. The original Web service will be tried for a certain
number of times if it fails. In Table 2, ( ) is the
maximal number of executions of the original Web ser-
vice. is the probability that the Web service will be
executed for times, where the first executions fail
and the th execution succeed. can be calculated by

,where is the success-probability of
the original Web service. We assume that service failures
are independent. When the Web service failure is persis-
tent instead of transient, an immediate retry is unlikely to
succeed. In this case, other fault tolerance strategies are
needed.

Fig. 3. Example of service plan decomposition.

TABLE 2
Composition Formulas for Fault Tolerance Strategies
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RecoveryBlock (RB). Another standby service candidate
will be invoked sequentially if the primary Web service
fails. When using recovery blocks, an acceptance test is
needed to identify whether a response is success or not.
Acceptance tests are usually application independent
and need to be implemented by application designers.
In Table 2, ( number of candidates) is the maximal
number of recoveries, means the th QoS value of the
th service candidate, and is the probability that the th
candidate will be executed. can be calculated by

. Please note that the symbol re-
presents different meaning in Retry and RB in Table 2.
N-Version Programming (NVP). All the functionally
equivalent service candidates are invoked in parallel and
the final result will be determined by majority voting. In
Table 2, when , means the probability that
parallel candidate from all the candidates succeed.

For example, when , , where
and

.
Active. All the candidates are invoked in parallel and
the first returned response without communication er-
rors will be employed as the final result.

Using the formulas in Table 2, the aggregated QoS values
of different fault tolerance strategies can be calculated. The
QoS properties are divided into three groups in Table 2 based
on their own features. For example, for theActive strategy, the
aggregatedQoSvalues of price ( ), popularity ( ) and data-size
( ) are the value sum of their parallel Web services, while
the aggregated QoS values of response-time ( ) and overall
response-time ( ) are the minimum values of their parallel
Web services. In Table 2, some of the calculations are deter-
ministic while others are probabilistic, so the result is an
expected value rather than the actual value.

3.4 Consistency Checking
To detect inconsistency problems in complex service plans,
we propose two properties for the tasks in the service plans:

1. Compensable: A task is compensable if its effects can be
undone after committing. In case the cost of compensat-
ing the task isunacceptable, the task isnon-compensable.
For example, a task is non-compensable if it is
non-refundable.

2. Reliable: A task is reliable if its execution success-
probability is higher than a predefined threshold.

The compensable and reliable properties of a task are
presented as and , respectively, where

means task is compensable and means
task is non-compensable. In contrast to the previous ap-
proaches [10], [31], our reliable property is quantified, which
makes our consistency checking approach more practical. In
our approach, service users can present their judgement on
whether a task is reliable or not by setting a threshold.

Before proposing our consistency checking algorithm,
we first simplify a service plan by transforming the
structures to structures using the loops peeling tech-
nique [2], where loop iterations are presented as a sequence of
branches and each branch condition indicates whether the
loop has to continue or has to exit. We then decompose a

service plan to different execution routes. An execution route
is defined as:

Definition 1. Execution route ( ) is a sub service plan
( ) which includes only one branch in each branch
structure. Each execution route has an execution probability

, which is the product of all probabilities of the selected
branches in the route.
For example, the service plan shown in Fig. 3 includes two

execution routes, i.e., , and
. Each execution route can be

further decomposed into a set of sequential routes. A sequen-
tial route is defined as:

Definition 2. Sequential route ( ) is a sub service plan
( ) which includes only one branch in each parallel
structure and only one branch in each branch structure of a
service plan.
For example, in the above example can be decom-

posed into two sequential routes, i.e., ( , , , , , ) and
( , , , , , ). In this way, a service plan can be decom-
posed into a set of sequential routes. Each sequential route
includes a set of tasks which are executed sequentially. A
service plan satisfies consistency checking if and only if no
unreliable tasks are executed after non-compensable tasks in
every sequential route, which is formalized as follows:

Definition 3. A sequential route satisfies consistency checking if
and only if: > .
A service plan satisfies consistency checking if and only

if all its sequential routes satisfy consistency checking.
Algorithm 2 is designed to check whether a service plan
satisfies the consistency requirement. Using this algorithm,
a designer can discover a consistency violation of a service
plan at design time and improve the design to avoid causing
any inconsistency problems.

Algorithm 2. Consistency Checking of a Service Plan.

Input: a service plan

Output: true or false, and the violation task pairs if false

1 ;

2 int routeNumber ;

3 for ( ) do

4 if then

5 return false;

6 end

7 end

8 return true;

Algorithm 3. Function (SequentialRoute ).

1 ;

2 ;

3 int ;

4 for ( ; ) do
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5 if then

6 if ( ) then ;

7 else

8 if ( ) then return false;

9 end

10 end

11 return true;

4 FAULT TOLERANCE STRATEGY SELECTION

4.1 Notations and Utility Function
Table 3 summaries themajor notationsused in the reminder of
this paper. Given a service plan , the set of tasks in the
service plan is denoted by . For a task , let

be the set of candidate Web services for
implementing . Each candidate has a quality vector

representing the nonfunctional QoS character-
istics, where is the number of QoS properties. We assume
that values of QoS properties are real numbers in a bounded
range with minimum and maximum values. A larger value
means better quality for someQoS properties (e.g., availability
and popularity), whereas a lower value means better quality
for other QoS properties (e.g., price and response-time). For
consistency purpose, we transform all the former QoS prop-
erties to be the latter format (i.e., lower value means better
quality) by:

We then normalize values of QoS properties, which have
different scales, to bewithin the interval of [0,1] by employing
the Simple Additive Weighting technique [5]:

where and are theminimumandmaximumQoS
values of the th QoS property, respectively. In the remainder
of this paper, we assume that this transformation has been
applied, and represent the value of the thQoSproperty of the
th candidate for the th task as , which is in the interval of
[0,1] where a smaller value represents better quality. To
quantify the performance of a candidate , a utility function
is defined as:

where is the utility value of the th candidate of task and
is the user-defined weight of the th QoS property

( ). By setting the values of , users can prioritize
the different QoS properties.

4.2 Selection Candidates
For each task in a service plan, there are two types of candidates
that can be adopted for implementing the task: (1) Atomic
services without any fault tolerance strategies, and

(2) services with fault tolerance strategies (e.g., Retry, RB,
NVP and Active).

The fault tolerance strategies include a number of varia-
tions basedondifferent configurations. For the strategy,
there are a total of variations, where is the maximal
number of executions of , and is the number of
alternative atomic services. Note we do not consider the case
of one execution to be a fault tolerant strategy. For the RB,
NVP and Active strategies, there are ( ) variations for
each, where each variation uses the top ( ) best
performing candidate services, identified by their utility
values (Equation (3)). By selecting the top candidate ser-
vices, the possible combinations of different candidates is
greatly reduced. The number of candidates for a task in a
service plan can be calculated by

. In reality, the
values of and are usually very small, making the total
number of candidates acceptable. If there are toomany atomic
services (the value if is too large),we can reduce thevalue of
by only considering a subset of the best performing candi-
dates based on their utility values. Since our selection frame-
work is extensible, new candidates (e.g., new atomic services
or new fault tolerance strategies) can be added easily in the
future without fundamental changes.

To select the optimal fault tolerance strategy for a service
plan, we model the target problem as a candidate selection
problem. By solving the problem, suitable candidates are
determined for the tasks. In case the selection result for a task
is an atomic service, it indicates that no fault tolerance strategy
is required for this task (e.g., the service candidate is already
performing well).

4.3 Candidate Selection with Local Constraints
Local constraints ( ) specify user requirements
for a single task in a service plan. For example, response-time
of the task has to be smaller than 1000 milli-seconds is a local
constraint. For each task, there are local constraints for the
QoS properties, respectively. Since service users may only
provide a small number of local constraints, the untouched
local constraints are set to be by default, so that all
candidates meet the constraints. The candidate selection
problem for a single task with local constraints can be
formulated mathematically as:

TABLE 3
Notations of the Selection Algorithm

224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:32:51 UTC from IEEE Xplore.  Restrictions apply. 



Problem 1.

Subject to:

,

,

.

In Problem 1, is used as an indicator ( if the
candidate is selected and otherwise), is
the QoS vector of candidate , is the utility value of the
candidate calculated by Equation 3, and is the number
of candidates of task .

To solve Problem1, for a task ,wefirst use the formulas in
Table 2 to calculate the aggregated QoS values of the fault
tolerance strategy candidates. Then Algorithm 4 can be em-
ployed to select the optimal candidate for each task in a service
plan. Firstly, utility values of candidates which meet local
constraints are calculated by Equation 3 (line 5). Then, the
index of the candidate with the smallest (best) utility value is
recorded by setting (lines 8-9). Finally, the indexes of
optimal candidates are returned (line 11).

Algorithm 4. Candidate Selection with .

Input: Service plan , local constraints , candidates

Output: a set of optimal candidate indexes .

1 ;

2 ;

3 for ( ) do

4 for ( ) do

5 if meets then ;

6 end

7 if no candidate meets then Throw exception;

8 Select which has minimal utility value ;

9 ;

10 end

11 return ;

Algorithm 5. Candidate Selection for Semantically-Related
Tasks with .

Input: Service plan , a set of semantically-related tasks
, local constraints , and candidates

Output: a set of optimal candidate indexes .

1 ;

2 th semantically-related
task ;

3 for ( ; ) do

4 for ( ) do

5 if candidate meets then

6 ;

7 ;

8 end

9 end

10 if no candidate meets LC then Throw exception;

11 Select which has minimal utility value ;

12 forall tasks in do ;

13 end

14 return ;

As discussed in Section 2, a service plan may contain
semantically-related tasks. A semantically-related task in-
cludes multiple tasks which have strong correlation (e.g.,
contain state dependency) with each other. The optimal
candidates for the tasks within the same semantically-related
task need to be selected together. For example, as shown in
Fig. 1, (Payment) and (Delivery) are semantically related.
Assume there are two candidates to implement these tasks,
i.e., Amazon and eBay. If we select optimal candidates for
these two tasks independently, the selection results may be:
eBay.Payment() +Amazon.Delivery(). However, since these two
tasks need to maintain states across them, it is inconsistent to
pay eBayand requireAmazonwhodidnot receive anymoney
to deliver the good. Therefore, the optimal candidates for
these two tasks should be provided by the same provider. For
example, for task and task , there are two candidates, i.e.,
candidate 1: Amazon.Payment() + Amazon.Delivery(), and can-
didate 2: eBay.Payment() + eBay.Delivery().

To select optimal candidates for the semantically-related
tasks, Algorithm 5 can be employed. In this algorithm, firstly,
if a candidatemeets local constraints, the overall QoS value of
the whole service plan with this candidate is calculated by
Algorithm 1 (line 6), and the utility value of the service plan
with this candidate is calculated by Equation (3) (line 7). After
that, the candidate with the best utility performance is select-
ed as the optimal candidate for a semantically-related task
(lines 11-12). The above procedure is applied to different
semantically-related tasks one by one to identify the optimal
candidates. Finally, the optimal indexes of the selected can-
didates are returned (line 14).

4.4 Candidate Selection with Global Constraints
Local constraints require service users to provide detailed
constraint settings for individual tasks, which is time con-
suming and requires good knowledge of the tasks. Moreover,
local constraints cannot specify user requirements for the
whole service plan, such as the response-time of the whole service
plan should be smaller than 5000 milli-seconds. To address these
drawbacks, we employ global constraints ( ) for
specifying user constraints for the whole service plan.

As shown in Section 3.4, a service plan may include
multiple execution routes. To ensure that a service planmeets
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the global constraints, each execution route should meet the
global constraints. For determining optimal candidates for a
service plan under global constraints, the simplest way is
employing an exhaustive searching approach to calculate
utility values of all candidate combinations and select out
the one which meets all the constraints and with the best
utility performance. However, the exhaustive searching ap-
proach is impractical when the task number or candidate
number is large, since the number of candidate combinations

increases exponentially, where is the candidate
number for task and is the task number in the service plan.

To determine the optimal candidates for a service plan
under both global and local constraints, we model the candi-
date selection problem as a 0-1 Integer Programming (IP)
problem as follows:

Problem 2.
Minimize:

Subject to:

In Problem 2, Equation (4) is the objective function, where
and are the execution frequency and utility

value of the th execution route, respectively. The detailed
definition of will be introduced in the later part of
this section. Equation (5) is the global constraints for the price,
popularity and date-size ( ), where the aggregated
QoS values of an execution route are the sum of all tasks
within the route. Equation (6) is the global constraints for
response-time and overall response-time ( ). In a service
plan, an execution routemayhave parallel execution and thus
includes multiple sequential routes. The response time of an
execution route is equal to the maximal response time of its
sequential routes. If all the sequential routes in an execution
route meet the global constraint, then this execution route
meets the global constraint. Therefore, for and , all
sequential routes should meet the global constraints to make
sure that every execution of the service plan meets the global
constraints. In sequential routes, the aggregated QoS values
are the sum of QoS values of all tasks within the route.
Equation (7) is the global constraints for the availability,
success-probability and overall success-probability (

), where the aggregated QoS values of an execution
route are the product of all tasks within the route. In
Equation (7), is employed as an indicator. If , then

, indicating that the candidate is not selected. For

the tasks that are semantically related, we ensure that these
tasks must be implemented by the same Web service pro-
vider (the same candidate index). We assume that service
candidates are numbered consistently within the sets of
semantically-related tasks. Equations (8) and (9) are em-
ployed to ensure that only one candidate will be selected
for each task in the service plan, where and
indicate that a candidate is selected andnot selected for task
, respectively. In Integer Programming, the objective func-
tion and constraint functions should be linear. Therefore, we
need to transform Equation (7) from non-linear to linear. By
applying the logarithm function to Equation (7), we obtain a
linear equation:

The objective function needs to be changed accordingly.
We define the execution route utility function in the new
objective function as:

In Equation (11), is the number of QoS properties, is
the user-defined weight for the QoS properties, and is
the aggregated QoS value of the execution path , which
can be calculated by:

In this way, the fault tolerance strategy selection problem
is formulated as a 0-1 IP problem. The IP problem is
NP-Complete [8]. The problem solving time increases
exponentially with the problem size, which makes runtime
reconfiguration impractical for complex service plans.
Therefore, it is not feasible to solve the 0-1 IP problem using
an exhaustive search. The well-known Branch-and-Bound
algorithm [14] can be employed to reduce the search space.
To further speedup the computation process, we propose a
heuristic algorithm to efficiently solve the fault tolerance
strategy selection problem in the following section.

4.5 Heuristic Algorithm FT-HEU

Algorithm 6. FT-HEU.

Input: , , ,

Output: a set of optimal candidate indexes

1 ;

2 ;

3 while ( does not meet GC) do

4 );

5 if then

6 throw exception FeasibleSolutionNotFound
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7 else

8 forall do ;

9 end

10 ;

11 end

12 repeat

13 );

14 until do not change;

15 return ;

For a service plan, a solution is a set of candidate selection
results for the tasks. A solution is a feasible solution if the
selected candidates meet all their corresponding local con-
straints as well as all the global constraints. Otherwise, it is an
infeasible solution. To solve the 0-1 IP problem efficiently, we
propose a heuristic algorithm FT-HEU in Algorithm 6 by
extending and customizing traditional heuristic algorithms.
Our proposed FT-HEU algorithm integrates the elements we
have described in this paper (e.g., local constraints and global
constraints, flowQoS(), user-defined weights of QoS proper-
ties, etc.) to solve the fault tolerance selection problem. Com-
pared with traditional heuristic algorithms, our FT-HEU
algorithm explores the following capacities: (1) When select-
ing candidates, FT-HEU considers local constraints which are
not considered in traditional heuristic algorithms; (2)
When calculating aggregated QoS values, FT-HEU employs
our proposed flowQoS() algorithm to handle the QoS aggre-
gation of different compositional structures; and (3) in
FT-HEU, we propose accumulated feasible value, infeasible factor,
and QoS saving for the fault tolerance strategy selection
problem.

Algorithm 6 includes the following steps:
Step 1 (line 1): The function is invoked to

find an initial solution for the service plan .
Step 2 (lines 2-11): The Function is employed to

get the aggregated QoS values of the initial solution. If the
initial solution cannot meet the global constraints (infeasible),
then the function is invoked to find an
exchangeable candidate to improve the solution. If such
an exchangeable candidate cannot be found, then the
FeasibleSolutionNotFound exceptionwill be thrown to the user.
Otherwise, the above candidate-exchanging procedures will
be repeated until a feasible solution becomes available.

Step 3 (lines 12-15): Iterative improvement of the feasible
solution by invoking the function. The
final solution will be returned when the values of do not
change in the iterations.

We provide a brief introduction to the functions
, , and

in Sections 4.5.1 to 4.5.3, respectively.More technical details of
these functions are provided in the Appendix, which can be
found in the Computer Society Digital Library at https://doi.
ieeecomputersociety.org/10.1109/TC.2013.189/. Additional
mentions of supplemental material are available online at
http://ieeexplore.ieee.org.

4.5.1 Find Initial Solution:
To find an initial solution for a service plan, we first set the
QoS values of all the tasks to be the optimized values (e.g.,
response-time to be 0, availability to be 100%, etc.), so that the
function (which has been introduced inAlgorithm
1) can be employed for calculating the accumulated QoS
values for the selected candidates. For example, when
the candidates of the first two tasks are selected,
will return the accumulated QoS values of the first two
tasks, since the values of other unselected tasks are set to be
optimal.

To initially select suitable candidate for a task, we first
exclude candidates that do not meet the local constraints.
After that, is employed to calculate the accumu-
lated QoS values of different candidates. An accumulated
feasible value is defined to quantify the feasibility degree
of the th candidate for the th task:

where is the accumulated QoS value of the selected
candidate, calculated by , is the weight for the
corresponding QoS property, and a smaller value means
the candidate ismore suitable. For a task in the service plan, by
calculating the values of all its candidates,we can determine
an initial candidate for a task. By repeating the above proce-
dure to all tasks in the service plan, we can obtain an initial
solution.

4.5.2 Find Exchange Candidate:
If the initial solution is infeasible, the function

is invoked to find an exchangeable can-
didate, which makes the solution feasible. For an infeasible

solution, the infeasible factor, which is calculated by , is
employed to quantify the degree of infeasibility of the th
QoS property. The exchangeable candidate should meet the
following requirements:

It will decrease the highest infeasible factor of the QoS
properties.
It will not increase the infeasible factor of any other previ-
ously infeasible properties.
It will not make any previously feasible QoS properties
become infeasible.

If there is more than one candidate which meet the above
requirements, wewill select the onewith the largest improve-
ment on the infeasible factor.

4.5.3 Feasible Upgrade:
If the solution is feasible, the function is
invoked to continuously improve the solution. In this func-
tion, we iterate all the tasks. For each task, we iteratively
replace the original selected candidate with other candidates
to find a better solution. In the function, the QoS saving is
defined as:
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where is the weight for the th QoS property, and
represent the accumulated QoS values of the new candidate
and original candidate, respectively.

The feasible upgrade procedure includes the following
steps: (1) If there exists at least one feasible upgrade which
provides QoS savings ( < , indicating that the new candi-
date is better than the original candidate), the candidate with
maximal QoS savings (minimal value) is chosen for ex-
changing; and (2) if no feasible upgrade with QoS saving
exists, the solution that contains the best utility value im-
provement comparedwith the old solution will be selected as
the new solution.

4.5.4 Computational Complexity of FT-HEU
The FT-HEU algorithm has convergence property, since
(1) Step 2 (lines 2-11 of Algorithm 6) never makes any feasible
QoS property become infeasible or any infeasible QoS prop-
erty become more infeasible; (2) for each exchange in Step 2,
the property with the maximal infeasible factor will be im-
proved; and (3) Step 3 (lines 12-15) always upgrades the utility
value of the solution,which cannot cause any infinite looping,
since there are only a finite number of feasible solutions.

For calculating the upper bound of the worst-case compu-
tational complexity of the FT-HEU algorithm, we assume
there are tasks, candidates for each task, and QoS
properties in a service plan. In Step 1, when finding the initial
solution, the computation of is . In Step 2,finding an
exchange candidate requires maximal calculations
of the alternative candidates, where each calculation will
invoke a function with computation complexity
of . Therefore, the computation complexity is
for each exchange. The function will be
invoked at most times since there are at most

upgrades for each task. Consequently, the total com-
putation complexity of Step 2 is . In Step 3, for each
upgrade, there are iterations for the alternative
candidates. For each iteration, the function with
computation complexity is invoked. Thus, the compu-
tation complexity of each upgrade is . Since there are
maximal upgrades for the whole service plan, the
total computation complexity of Step 3 is . Since Step
1, Step 2 and Step 3 are executed in sequence, the combined
complexity of the whole FT-HEU algorithm is .

4.6 Dynamic Reconfiguration
The Internet environment is highly dynamic, where the QoS
performance of Web services may change unexpectedly due
to internal changes or workload fluctuations. Moreover, new
service candidatesmay become available and requirements of
service users may also be updated. Dynamic reconfiguration
of the fault tolerance strategymakes the systemmore adaptive
to the dynamic environment. The reconfiguration procedures
are as follows: (1) the initial fault tolerance strategy is selected
by employing our candidate selection approach; (2) the ser-
vice-oriented system invokes the remote Web services with
the selected fault tolerance strategy, and records their
observed QoS performance of the invokedWeb services; and
(3) the service-oriented system reconfigures the optimal can-
didates for the tasks when system performance is unaccept-
able, the renewal time is reached, new candidates become

available, or the user requirements are updated. By this
reconfiguration procedure, service users can handle the fre-
quent changes of candidate performance as well as user
requirements. The reconfiguration frequency is application-
dependent and controlled by application designers.

5 EXPERIMENTS

In this section, we first describe our employment of a real-
world prototype to evaluate and collect QoS data of real-
world Web services. After that, our fault tolerance strategy
selection approach is illustrated by a case study. Finally, the
computational time and selection accuracy of various selec-
tion algorithms are investigated.

5.1 Implementation and Data Collection
To obtain real-worldWeb service QoS data, we obtained a list
of 21,197 publicly available Web services by crawling Web
service information from the Internet. We randomly selected
100 real-world Web services which are located in more than
20 countries for the experiments. 150 computer nodes from
Planet-Lab [7], which are distributed in more than 20 coun-
tries,were employed to serve as service users to runour client-
side evaluation programs for evaluating QoS performance of
the selectedWeb services. Table 4 shows the detailed location
information of Web services and service users.

In the experiment, each Web service is invoked by each
service user for 100 times. Therefore, there are a total of

Web service invocations being
executed. By processing the experimental results, we obtain a

matrix, where each entry in thematrix is a vector of
QoS values observed by a service user on aWeb service. Fig. 4
shows the experimental results of overall response-time (ort)
and overall failure-probability of the 100 Web services. More
detailed experimental raw data are provided online at
wsdream.net. Fig. 4a shows that among the 100 Web services,

TABLE 4
Locations of Service Users and Web Services
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there are 12 Web services providing longer than 2000 milli-
seconds response-time for service users. These Web services
may require a long time for processing the user requests. In
Fig. 4b,most of theWeb servicesmaintain small overall failure
probabilities, while there is a Web service with 100% invoca-
tion failure-probability, which is caused by the permanent
unavailability of the Web service.

5.2 Case Study
In this section, we illustrate the fault tolerance strategy selec-
tion procedure via a case study: A service user in China (CN)
plans to build a simple service-oriented application as shown
in Fig. 5, where does not have dependency with other tasks
and – are semantically related. There are six functionally
equivalentAmazonWeb services (located inUS, Japan,Germany,
Canada, France andUK, respectively) that canbe employed for
executing these tasks.

Researchers in different geographic locations (SYSU@CN,
SUT@AU, NASA@US, NTU@SG, NTHU@TW, and
CUHK@HK) are invited to run our evaluation program to
conduct this real-worldWeb service evaluations. The evalua-
tion results are shown in Tables 5 and 6. In these two tables,
the rows represent the six functionally equivalentAmazonWeb
services (named ); the columns show response-
time (rt) and success probability (sp) values of distributed
service users (named ); and represents the
overall response-time ( ) and overall success-probability ( ) of
a particular service observed by different users.

Tables 5 and 6 show that: (1) response-time performance is
greatly influenced by the communication links. For example,
the response-time performance of the user in US is much
better than the user in CN in our experiment; (2) optimal
service candidates aredifferent fromusers to users (e.g, aus for
the user US and ajp for the user AU); (3) invocation success-
probabilities are also different from users to users; and (4) the
success-probability of the semantically-related task – is
lower than that of the task , since the semantically-related
task is counted as successful only if all the tasks – are
successful.

Since the sixAmazonWeb Services are independent systems
and – are semantically related, the optimal candidates for
these tasks should be provided by the same Web service. To
determine the optimal fault tolerance strategy for the user in
China (CN), we set the weights of the eight QoS properties as:
( ). The weights of ( )
and ( ) are set to be 0, since the service provider
Amazon does not offer any such information. After calculating
the candidate utility values, the selection algorithm is em-
ployed to determine the optimal candidates. The selection
results are as follows: an strategy with the top 2
performing candidates for , and an strategy with 3
parallel branches for the semantically-related task – . This
selection result is reasonable, since the user in is under
poor network condition in the experiment, and the
strategy can improve response-time performance (by employ-
ing the first response as the final result) and improve success-
probability since it fails only if all the redundant candidates fail.

By employing our fault tolerance strategy selection ap-
proach, service users can determine optimal fault tolerance
strategies for both single tasks and semantically-related tasks.

5.3 Performance Study of the Selection Algorithms
To study the selection performance, we randomly select
different number of Web services to create service plans with
different compositional structures and execution routes. We
implement three different selection algorithms, i.e., FT-ALL,
FT-BAB, and FT-HEU. FT-ALL represents the exhaustive
searching approach introduced in Section 4.4, FT-BAB repre-
sents the traditional Branch-and-Bound algorithm for solving
the IP problem, and FT-HEU represents the heuristic

Fig. 4. Overall QoS performance.

Fig. 5. Service plan for case study.

TABLE 5
QoS Values of the Task ( )

TABLE 6
AggregatedQoSValues of the Semantically-Related Task ( – )
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algorithm shown in Algorithm 6. The configurations of the
computers for running the experiments are: Intel(R)Core(TM)2
2.13 G CPU with 1 G RAM, 100Mbits/sec Ethernet card,
Window XP and JDK 6.0.

5.3.1 Computation Time
Fig. 6(a)–(c) show the computation time of different selection
algorithms with different number of tasks, candidates and
QoS properties, respectively. The experimental result shows:
(1) the computation time of FT-ALL increases exponentially
even with a very small problem size (the curve of FT-ALL is
almost overlap with the y-axis); (2) the computation time of
FT-BAB is acceptable when the problem size is small;
however, it increases quickly when the numbers of tasks,
candidates and QoS properties are large; (3) the computation
time of FT-HEU is very small in all the experiments even with
a large problem size; and (4) the curve of FT-BAB in Fig. 6c is
more irregular since computation times of different types of
QoS properties are different.

5.3.2 Selection Results
Fig. 7 compares the selection results of FT-BAB and FT-HEU
algorithms with different numbers of tasks, candidates and
QoSproperties. The y-axis of Fig. 7 is the values ofUtility(BAB)/
Utility(HEU), which is the utility ratio of the two algo
rithms, where the value of 1 means the selection results
obtained from FT-HEU is identical to that obtained from
FT-BAB. Fig. 7(a) and (b) show the experimental results of
FT-BAB and FT-HEU with different numbers of tasks and
candidates, respectively. The experimental results show that:
(1) under different numbers of QoS properties (10, 20, 30 and
40 in the experiment), the utility values of FT-HEU are near
FT-BAB (i.e., larger than 0.975 in the experiments) with

different numbers of tasks and candidates; (2) with the in-
creasing of the task number, the performance of FT-HEU
becomes better. Fig. 7c shows the selection results of FT-BAB
and FT-HEU with different numbers of QoS properties. The
results show that the performance of FT-HEU is steady with
different numbers ofQoSproperties. The experimental results
show that FT-HEU algorithm can provide near optimal selec-
tion result with excellent computation time performance even
under a large problem size. The FT-HEU algorithm enables
dynamic fault tolerance strategy reconfiguration.FT-HEU can
be employed in different environments, such as real-time
applications (requiring quick-response), mobile Web services
(with limited computation resource), and large-scale service-
oriented systems (with a large problem size).

6 DISCUSSION AND RELATED WORK

Software fault tolerance is widely employed for building
reliable service-oriented systems, including passive strategies
and active strategies [6], [28]. Passive strategies have been
discussed in FT-SOAP [9] and FT-CORBA [30], while active
strategies have been investigated in FTWeb [29], Thema [21],
WS-Replication [27], SWS [15], and Perpetual [24]. Comple-
mentary to the design of various fault tolerance strategies, this
paper focuses on selecting optimal fault tolerance strategies
for service-oriented systems.

A number of research efforts have been performed in the
research topic of QoS-aware Web service selection and com-
position. Zeng et al. [33] proposed a QoS-aware middleware
forWeb service selection employing five generic QoS proper-
ties (i.e., execution price, execution duration, reliability, availabili-
ty, and reputation). Ardagna and Pernici [2] investigated the
problem of adaptive service composition in flexible processes

Fig. 6. Performance of computation time.

Fig. 7. Performance of selection results.
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based on five QoS properties (i.e., execution time, availability,
price, reputation, and data quality). Alrifai and Risse [1] pro-
posed an efficient service composition approach by consider-
ing both generic QoS properties and domain-specific QoS
properties. Yu et al. [32] designed a combinatorymodel and a
graph model for Web service selection. Some previous work
also takes subjective information (e.g., provider reputations,
user requirements, etc.) into consideration to enable more
accurate Web service selection [26]. These previous efforts
investigate the selection of atomic services. However, influ-
enced by quality of the selected services, reliability of the
resulting service-oriented systems may not be able to meet
user requirements. This paper combines the selection of
atomic services together with associated fault tolerance strat-
egies to further enhance reliability of the resulting service-
oriented system. This paper models the problem of selecting
the optimal fault tolerance strategy as an optimization prob-
lem and proposes a heuristic algorithm to efficiently solve the
problem.Moreover, the previous efforts assume that tasks in a
service plan are independent of each other and Web services
can be selected separately for these tasks. However, in reality,
it is common that some tasks inherit correlations, where the
choice of one Web service implies the choice of another Web
service. To address this problem, in this paper, we model the
selection of an optimal fault tolerance strategy for semanti-
cally-related tasks as a general constraint in the optimization
problem.

Hagen and Alonso [10] investigated the compensable, retri-
able, and pivot transactional properties for exception handling.
Ye et al. [31] discussed the compensable and retriable transac-
tional properties for service-oriented systems from the per-
spective of atomicity sphere. In contrast to these approaches,
we propose a reliable property, which is quantifiable. The
advantages of our approach include: (1) Our approach can
be customized by setting the user-defined threshold. By
allowing different service users for different judgements on
whether a task is reliable or not, our approach turns out to be
more feasible and practical. (2) Traditionally, a task is retriable
means that the execution of this task will eventually succeed
by retying or resorting to other options [10], [31]. However, in
the area of service computing, a taskmay still fail even though
it can retry the original Web service or try other alternative
Web service candidates. By calculating the detailed execution
success-probability of a task, our approach provides more
realistic and accurate determination on whether a task is
reliable or not.

There are complementary techniques to our approach. The
Service Level Agreement (SLA) [17] can be employed to
maintain a certain level of service from the service provider
to service users. WS-Reliability [23] can be adopted for en-
abling reliable communications. WSRF [22], which describes
the state as XML datasheets, can be employed for transferring
states between alternative replicas. Our framework can be
integrated into SOA runtime governance middlewares [13]
and applied to industry projects.

7 CONCLUSION

In this paper, we investigate the problem of selecting an
optimal fault tolerance strategy for building reliable ser-
vice-oriented systems with local and global constraints.

Comprehensive experiments involving world-wide Web ser-
vice invocations are conducted. The experimental results
show that our proposed FT-HEU selection algorithm can
provide near optimal selection results with small computa-
tion time.

In the current work, we employ the average values of
historical QoS data for making a selection. In the future, more
comprehensive investigations will be made on QoS value
distributions and their correlations with time and day. When
making consistency checking, wewill consider compensation
cost and transaction commit overheads.When calculating the
aggregated execution success-probability, we assume that the
failures are independent of each other. It is noted that various
Web services, even developed independently, may still expe-
rience failure dependency. To probe further, more studies can
be carried out on the correlation of failures of different Web
services. Our on-going research also includes the investiga-
tions of more QoS properties of Web services.
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