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Abstract Measuring object similarity in a graph is a fundamental data- mining problem in
various application domains, including Web linkage mining, social network analysis, infor-
mation retrieval, and recommender systems. In this paper, we focus on the neighbor-based
approach that is based on the intuition that “similar objects have similar neighbors” and
propose a novel similarity measure called MatchSim. Our method recursively defines the
similarity between two objects by the average similarity of the maximum-matched similar
neighbor pairs between them. We show that MatchSim conforms to the basic intuition of
similarity; therefore, it can overcome the counterintuitive contradiction in SimRank. More-
over, MatchSim can be viewed as an extension of the traditional neighbor-counting scheme
by taking the similarities between neighbors into account, leading to higher flexibility. We
present the MatchSim score computation process and prove its convergence. We also analyze
its time and space complexity and suggest two accelerating techniques: (1) proposing a sim-
ple pruning strategy and (2) adopting an approximation algorithm for maximum matching
computation. Experimental results on real-world datasets show that although our method is
less efficient computationally, it outperforms classic methods in terms of accuracy.
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1 Introduction

Measuring similarity between objects (web pages, persons, academic articles, movies, etc.)
is required by many applications in different domains, such as Web mining, social networks,
citation analysis, information retrieval, and recommender systems. For example, on the Web,
besides traditional keyword-based search, some search engines also support instance-based
search: searching similar or related web pages to a given one.1 In automated submission
web directories, human editing is replaced with automated processing, which requires spe-
cial techniques for website content categorization and filtering.2 Identifying online social
communities that consist of highly related web pages or individuals is another important
application [7]. In this paper, we use the Web as an example to illustrate our ideas. Never-
theless, the proposed method is also applicable to any data sources with a graph structure.

Because various properties of objects can be exploited to estimate similarity, accordingly
similarity measures are usually grouped into different classes. For example, for web pages,
there are two basic approaches, text-based and link-based. Originated from information
retrieval, the text-based methods exploit textual content of web pages. One commonly
used method is cosine TFIDF [2,30]. New methods have been proposed in the past few
years [1,37,40]. The major deficiency of the text-based methods is that they usually require
large storage and long computing time, due to the need for full-text comparison. Secondly,
the large amounts of web pages with low-quality or even malicious textual contents may
reduce their accuracy [13]. The link-based methods exploit relationships between objects
(e.g., hyperlinks between web pages). They can be further grouped into 1) the path-based
methods, such as the Maximum Flow/Minmum Cut [26] and the Katz measure [16], which
“refine the notion of shortest-path distance by implicitly considering the ensemble of all paths
between two pages [22],” and 2) the neighbor-based methods, which share a simple intu-
ition that “similar objects have similar neighbors,” such as Co-citation [33], Bibliographic
coupling [17], Jaccard Measure [14], and SimRank [15].

In this paper, we focus on the neighbor-based approach. Traditional neighbor-counting
methods measure overlaps and/or differences between objects’ neighbor sets. For example,
Co-citation and Bibliographic coupling work by counting the numbers of common inlink
and outlink neighbors, respectively. Jaccard Measure defines similarity between objects by
the size of the intersection divided by the size of the union of their neighbor sets. These
methods run fast and are easy to implement. But they lack flexibility because of ignoring
similarities between neighbors. SimRank makes an extension by taking neighbors’ similari-
ties into account. However, it has a counterintuitive contradiction [8], which may influence
its accuracy as a result. We give examples in Sect. 4.1 to demonstrate the problems of these
methods.

We consequently propose a novel similarity measure called MatchSim in this paper, which
overcomes the above problems of classic neighbor-based methods by (1) taking similarities
between neighbors into account, and (2) conforming to the basic intuition of similarity.
Therefore, potentially our method can produce better results. MatchSim recursively defines
the similarity between two objects by the average similarity of the maximum-matched simi-
lar neighbor pairs between them. More precisely, to calculate the similarity score sim(a, b)

between two objects a and b, MatchSim first finds out a maximum matching between their
similar neighbors. (If the numbers of two pages’ neighbors are not the same, we simply add
dummy neighbors that are similar to none of the others to make up the missing part.) Next,

1 http://www.googleguide.com/similar_pages.html.
2 http://en.wikipedia.org/wiki/Web_directory.
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MatchSim: a novel similarity measure based on maximum neighborhood matching 143

sim(a, b) is replaced with the average similarity of the maximum-matched neighbor pairs.
The process of MatchSim score computation is iterative and can be proved to converge under
certain conditions. The main contributions of the paper are summarized as follows:

1. Proposing MatchSim, which measures similarity between any networked objects based
on maximum neighborhood matching.

2. Suggesting accelerating techniques to improve efficiency of MatchSim, including a
pruning strategy and an approximation algorithm.

3. Conducting extensive experiments on real-world datasets to evaluate the performance
of MatchSim, as well as the accelerating techniques.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3
introduces the basic notations and concepts used in the paper. Section 4 presents the MatchSim
algorithm, including its key ideas, mathematical definition, iterative computing process, com-
plexity analysis, and suggested accelerating techniques. Section 5 reports the experimental
results and discussions. Conclusion and future work are given in Sect. 6. Appendix A presents
the proof of MatchSim score computation convergence, Appendix B gives a brief description
on the maximum matching problem, and Appendix C presents some basic statistics on the
link structure of the datasets.

2 Related work

Similarity measures are central to many important applications such as searching, clus-
tering, classification, and recommendation. Many of them have been developed for dif-
ferent kinds of data sources including text [20,37], image [10,11], sequence [21], and
geographic data [9]. In [4], the similarity strategies are organized into the following four
categories: (1) direct mechanisms, (2) transformation-based mechanisms, (3) information-
theoretic measures, and (4) emergent measures arising from an in-depth analysis of the
data.

Similarity measures are associated with the representation of underlying data sources. For
example, the direct mechanisms are applicable to feature vector representation. Many of the
traditional methods belong to this category, including Minkowski distance, Euclidean dis-
tance, Manhattan distance, and cosine similarity, as well as the set-based distances including
Dice similarity, Amsler, Jaccard measure, and Overlap similarity, which was recently applied
to multivariate data source [38,39]. We refer readers to [4] which contains a comprehensive
description of similarity measures and data representations.

Link structure has been proven to be a useful source of data for extracting knowledge
in the areas including citation analysis, Web mining, and social network analysis. Many
link-based similarity measures have been developed, which can be classified into path
based and neighbor based. The path-based methods take the global structure of graph
into consideration. These methods include Maximum Flow/Minmum Cut [26] and Katz
measure [16], which originate from graph theory, Companion [5], which is derived from
HITS algorithm [18], and PageSim [24], which is based on propagation of objects’ features,
etc.

The neighbor-based methods focus on local neighborhood comparison between objects
in a graph. Many of them originated from traditional domains such as IR, set theory, and
citation analysis. The Co-citation [33] algorithm was first introduced by Small in the fields
of citation analysis and bibliometrics as a fundamental metric to characterize the similarity
between scientific papers. Two papers a and b are co-cited if they are cited by a third paper c.
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Table 1 Classical
neighbor-based similarity
measures

Bibliographic coupling |O(a) ∩ O(b)|
Co-citation |I (a) ∩ I (b)|
Jaccard measure |�(a)∩�(b)|

|�(a)∪�(b)|
SimRank γ · �u∈I (a)�v∈I (b)sim(u,v)

|I (a)||I (b)| , γ ∈ (0, 1)

Dice coefficient 2|�(a)∩�(b)|
|�(a)|+|�(b)|

Overlap similarity |�(a)∩�(b)|
min(|�(a)|,|�(b)|)

The more papers they are cited by, the stronger their relationship is. The similarity between
two papers a and b is defined by sim(a, b) = |I (a) ∩ I (b)|, where I (a) refers to the set of
inlinks of a, i.e., the papers citing a.

The Bibliographic Coupling [17] was proposed by Kessler to measure paper similarities.
Two papers have a unit of bibliographic coupling if both cite a same paper. The idea is based
on the observation that paper authors work on the same subject tend to cite the same papers.
By definition, sim(a, b) = |O(a)∩ O(b)|, where O(a) refers to the set of outlinks of a, i.e.,
the papers cited by a.

The Jaccard Measure [14], also known as the Jaccard’s Coefficient, is a standard measure
in information retrieval. It is defined as the size of the intersection divided by the size of the
union of two sets. Given two objects a and b, let �(a) and �(b) denote their respective neigh-
bor sets (either inlinks or outlinks), then the similarity is defined by sim(a, b) = |�(a)∩�(b)|

|�(a)∪�(b)| .
The neighbor-counting methods ignore similarities between neighbors. It may reduce their

performance. The situation is even worse for the Web, which is extremely sparse. The Web
contains billions of web pages, most of which have only tens or hundreds of (inlink and out-
link) neighbors. Therefore, the chance that two web pages happen to share common neighbors
is very slim. Thus, how to make good use of the relatively tiny-sized neighborhoods is one
of the challenges for the neighbor-based methods.

The SimRank [15] algorithm relaxes the “neighbor-counting” strategy by taking similari-
ties between neighbors into account. It is based on the intuition that “two objects are similar
if they are referenced by similar objects [15]”. More precisely, the SimRank score sim(a, b)

between pages a and b is recursively defined as the average similarity of all possible neigh-
bor pairs between them times a decay factor. It has been criticized in [8] that in some cases,
SimRank outputs counterintuitive results. We present the SimRank definition in Table 1 and
will give more detailed description and discussion in Sects. 3 and 4.

Many of the traditional set-based methods can be easily converted into neighbor-based,
such as Dice Coefficient [36] and Overlap Similarity (a general version of Co-citation and
Bibliographic Coupling). We summarize the definitions of commonly used neighbor-based
similarity measures in Table 1 and use four of the most classical methods in the examples and
experiments of the paper to compete with MatchSim method. Interested readers are refereed
to [22], which contains an exhaustive list of link-based similarity measures.

The practical performance of neighbor-based methods relies on the specific nature of
the data they use. For example, in our experiments, Bibliographic Coupling performs much
poorer on scientific articles than it does on web pages. The methods originated from set the-
ory, such as Jaccard Measure, can use either inlink or outlink neighbors for measurement, but
may produce very different results. Therefore, how to choose the “right” properties of data
for similarity measurement is one of the most important practical concerns. More discussions
will be given in Sect. 5.
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3 Preliminaries

3.1 Basic notations

The Web graph is a directed graph G = (V, E) with vertices V representing web pages
vi (i = 1, 2, . . . , n) and directed edges E representing hyperlinks among web pages. We
denote by I (v) and O(v) the sets of inlink and outlink neighbors of page v, respectively.
Similarly, in citation graph, vertices represent papers and directed edges represent citations
from one paper to another. These are two types of graphs that are used as examples through-
out the paper. We denote similarity score between objects a and b by notation sim(a, b), the
value of which depends on the similarity function used in context.

3.2 Similarity

Similarity is a fundamental concept in almost all research domains. In philosophy, simi-
larity is regarded as the relation of sharing properties (or features) between two objects.
According to bundle theory, an object consists of its properties and nothing more. Therefore,
the similarity between objects is essentially the similarity between the collections of their
properties.

In [23], the authors proposed that similarity obeys the following three basic intuitions,
which are good guidelines for designing consistent similarity measures.

S1: the more commonality two objects share, the more similar they are;
S2: the more differences two objects have, the less similar they are;
S3: the maximum similarity is reached when two objects are identical, no matter how much

commonality they share.

3.3 SimRank algorithm

SimRank is an iterative neighbor-based similarity measure. Numerically, for objects a and
b in a graph, this is specified by defining sim(a, b) = 1 for a = b and

sim(a, b) = γ · �u∈I (a)�v∈I (b)sim(u, v)

|I (a)||I (b)| (1)

for a �= b, where γ ∈ (0, 1) is a constant. If I (a) or I (b) is empty, then sim(a, b) is zero by
definition. The SimRank iteration starts with sim(a, b) = 1 for a = b and sim(a, b) = 0
for a �= b. The SimRank score between a and b is defined as the fixed point of Eq. (1). I (a)

and I (b) can also be replaced by O(a) and O(b) when SimRank uses outlinks instead.
From Eq. (1), we can see that �u∈I (a)�v∈I (b)sim(u, v) is the sum of similarity over all

neighbor pairs between I (a) and I (b). |I (a)||I (b)| is the number of all possible neighbor
pairs. Therefore, sim(a, b) is the product of constant γ times the average similarity over all
possible neighbor pairs between I (a) and I (b).

4 MatchSim algorithm

4.1 What inspired MatchSim?

MatchSim is inspired by two major drawbacks of classic neighbor-based similarity measures.
One is that the neighbor-counting methods ignore similarities between neighbors. The other
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Fig. 1 Objects a and b have similar neighbors

Fig. 2 Objects a and b have n common neighbors

is that the SimRank method violates intuition (S1) of similarity in some cases. By over-
coming these drawbacks, potentially our method can produce more accurate results. In the
following examples, we illustrate the problems and introduce the basic idea of MatchSim.
In next subsection, we give MatchSim’s formal definition, and in Sect. 4.2.1, we explain its
advantages by showing how it solves the problems.

Example 1 Figure 1 presents a snippet of citation graph in which a1 and b1 are scien-
tific papers about SVM (Support Vector Machine), and a2 and b2 are about DB (Data-
base). Assume it is known that sim(a1, b1) = 0.7, sim(a2, b2) = 0.5, and sim(a1, b2) =
sim(a2, b1) = 0.3

Neighbor-counting methods will conclude that a and b are not similar at all (i.e.,
sim(a, b) = 0) because they have no common neighbors, which is clearly inaccurate. Sim-
Rank takes the similarities between neighbors into account. More precisely, in SimRank,

sim(a, b) = γ ·
∑

i=1,2

∑

j=1,2

sim(ai , b j )/4 = 0.3γ > 0,

which makes more sense. But if we remove the most similar neighbor pairs (a1, b1), sim(a, b)

will increase to γ × sim(a2, b2)/1 = 0.5γ , which is evidently counterintuitive.

Example 2 Here, we reveal the drawback of SimRank with an extreme case. It has been
criticized in [8] that when objects a and b have exactly n(n > 0) common neighbors, and
the SimRank score between any distinct neighbors is 0, then sim(a, b) approaches to 0 as
n increases (see Fig. 2). This means that in this case, the more common neighbors that a
and b have, the less similar they are. Clearly, in this case, SimRank violates intuition (S1) of
similarity.

The problem of SimRank is caused by its strategy of “considering the overall sum of simi-
larities between neighbors.” Intuitively, in Example 1, we say that a and b are similar simply
based on the fact that they have pairwise similar neighbors (a1, b1) and (a2, b2). Therefore,
we can use the average similarity of the pairwise similar neighbors as the measurement of
sim(a, b). This is the key idea of MatchSim.

3 The assumption is reasonable since papers with the same topic should be more similar as they are prone to
citing more common references.
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4.2 MatchSim definition

Given two distinct objects a and b in a graph of size n, we obtain a weighted bipartite
graph Ga,b = (I (a), I (b), E, w), where E = {(u, v)|u ∈ I (a), v ∈ I (b)} and w(u, v) =
sim(u, v). The MatchSim score is defined by

sim(a, b) = Ŵ (a, b)

max(|I (a)|, |I (b)|) . (2)

In the cases that |I (a)| = 0 or |I (b)| = 0, since there is no way to infer any similarity, we
define sim(a, b) = 0. When a = b, we define sim(a, b) = 1.

In Eq. (2), Ŵ (a, b) denotes the weight of a maximum matching between I (a) and I (b),
i.e.,

Ŵ (a, b) = W (m∗
ab) =

∑

(u,v)∈m∗
ab

sim(u, v), (3)

where m∗
ab is a maximum matching between I (a) and I (b). Because we always convert

I (a) and I (b) to be “equally sized” before computing m∗
ab, we just define lab = |m∗

ab| =
max(I (a), I (b)). Since any matching between I (a) and I (b) is of size lab, the factor

Ŵ (a,b)
max(I (a),I (b))

in Eq. (2) is actually the average similarity of the maximum matching between
a’s and b’s neighbors.

Each (ordered) pair of pages a and b corresponds to one equation of the form in Eq. (2),
resulting in a set of n2 MatchSim equations. The n2 MatchSim scores are defined by the (n2-
dimensional) fixed point of the equations, which can be reached by iterative computation.
The details of MatchSim iteration will be given in Sect. 4.3.

Finding the maximum-matched similar neighbor pairs is actually the well-known max-
imum matching or assignment problem [3] and can be solved by K-M (Kuhn-Munkres)
algorithm [19] in polynomial time. We give a brief introduction on the assignment problem
in Appendix B. Interested readers are referred to [12] for a comprehensive overview on this
topic.

4.2.1 Discussions on MatchSim

First, recall the examples in Sect. 4.1, we now show that MatchSim can successfully over-
come the drawbacks of the classic methods. (Note that we use outlink neighbors as input in
the examples.) 1) Compared to the neighbor-counting methods, MatchSim takes the sim-
ilarities between neighbors into account. Therefore, it can measure that in Example 1,
at least sim(a, b) is nonzero. 2) In Example 1, (a1, b1) and (a2, b2) are the maximum
matching between O(a) and O(b), thus MatchSim calculates sim(a, b) = (sim(a1, b1) +
sim(a2, b2))/2 = 0.6. If we remove (a1, b1), sim(a, b) = sim(a2, b2)/1 drops to 0.5, which
makes more sense than SimRank. In Example 2, obviously (pi , pi )(i = 1, . . . , n) are the
maximum matching. Therefore, we have sim(a, b) = ∑

i=1,n sim(pi , pi )/n = n/n = 1.
Particularly, MatchSim confirms to the intuition of similarity. In Example 2, MatchSim

outputs that

sim(a, b) = n

n
= 1 = maxa,b∈V sim(a, b),

which means MatchSim conforms to intuition (S3) of similarity. It is easy to see that Match-
Sim also conforms to intuitions (S1) and (S2). By this way, we can ensure that MatchSim
will not produce “unreasonable” results.
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Second, by considering similarities between neighbors, MatchSim can be viewed as an
extension of Jaccard Measure. In Eq. (2), Ŵ (a, b) is the “overlap” of similarity between
the maximum-matched neighbors, and max(I (a), I (b)) is the volume of union between the
maximum-matched neighbors.

Third, either inlink or outlink neighbors can be used in MatchSim, but may result in very
different accuracy. Actually, choosing the “right” type of neighbors as input is very impor-
tant to any neighbor-based similarity measures. Generally speaking, the more neighbors two
objects have, the more accurately can we measure their similarity. This conjecture is sup-
ported by the experimental results in Sect. 5 where we will give more discussions on this
issue.

Last, we list some other properties of MatchSim as follows, which are easy to deduce
from its definition.

1. It is symmetric: sim(a, b) = sim(b, a);
2. It is bounded: sim(a, b) ∈ [0, 1];
3. It reaches a maximum value of 1, if and only if a and b are identical, i.e., sim(a, b) =

1 ⇔ a = b or, a �= b and I (a) = I (b) �= ∅.

4.3 MatchSim computation

For a graph G of size n, we compute the n2 MatchSim scores iteratively. For each iteration
k, we can keep the n2 scores simk(∗, ∗), where simk(a, b) is the score between a and b in
iteration k. We successively compute simk+1(∗, ∗) based on simk(∗, ∗). That is, on each
iteration k + 1, we update the simk+1(a, b) using the similarity scores from the precious
iteration k. Formally speaking, we compute simk+1(a, b) from simk(∗, ∗) as follows:

simk+1(a, b) = Ŵk(a, b)

max(|I (a)|, |I (b)|) , (4)

where Ŵk(a, b) is computed based on the scores simk(∗, ∗).
The MatchSim computation starts with sim0(a, b) = 1 for a = b and sim0(a, b) = 0 for

a �= b. The MatchSim score between a and b is defined as limk→∞simk(a, b). We proved
that with the given initial values, the limiting values exist and are unique, i.e., the MatchSim
iteration converges. The detailed proof of convergence is given in Appendix A. In all of
our experiments, MatchSim converges after about 15 iterations, so we may choose to fix a
number K = 15 of iterations to perform.

4.4 Complexity analysis

Time complexity: For any two objects a and b in a graph G = (V, E) of size n, we adopt
K-M algorithm to compute Ŵ (a, b) in Eq. (2), so the corresponding time complexity is
l3
ab, where lab = |m∗

ab| = max(|I (a)|, |I (b)|). In each iteration, MatchSim invokes K-M
algorithm n2 times. Suppose there are K iterations and let L = maxa,b∈V (lab), the time
complexity of MatchSim is thus O(K n2 L3).

Space complexity: MatchSim has to store n2 MatchSim scores. Moreover, the K-M algo-
rithm invoked needs to store the similarity matrix of two objects, the size of which is O(L2).
Therefore, the space complexity of MatchSim is O(n2) + O(L2) = O(n2 + L2).

The impact of L on the space complexity of MatchSim is rather limited, since usually
n � L . The impact on the time complexity, however, can be very large due to the factor L3.
Thus, to accelerate MatchSim computation, we need to reduce the factor L3.
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4.5 Accelerating techniques

From complexity analysis, we can see that the speed of MatchSim heavily depends on that
of K-M algorithm, which is O(L3) where L = maxa,b∈V (lab). We suggest two accelerating
techniques for MatchSim. First, an approximation algorithm of complexity O(L2) is intro-
duced to replace K-M algorithm. Second, for each object, we sort the importance of its neigh-
bors by their PageRank [28] scores and compute MatchSim scores between objects using the
top F(�L) important neighbors of them only. This may significantly reduce L and accelerate
the K-M algorithm as a result. Three approximation algorithms for MatchSim are proposed
based on these two techniques and their combination. They are MatchSimA, MatchSimF ,
and MatchSimAF , respectively.

4.5.1 Approximate maximum matching algorithm

In [6], the authors proposed an approximation algorithm, known as the Path Growing Algo-
rithm (PGA), for finding a maximum weight matching in an arbitrary graph. The authors
proved that the performance ratio of GPA is 1/2. Technically, we say that an approxima-
tion algorithm has a performance ratio of c, if for all graphs it finds a matching with a
weight of at least c times the weight of an optimal solution. The computation time of GPA is
O(|E |) = O(n2) for a bipartite graph of size n. Therefore, in MatchSim, the time required to
compute a maximum matching between two objects a and b using GPA drops to O(l2

ab). The
complexity of the resulting “approximate” MatchSim, called MatchSimA, is consequently
reduced to O(K n2 L2).

4.5.2 Pruning unimportant neighbors

Because objects in a graph are not equally important (such as web pages), we suggest pruning
unimportant neighbors to reduce the value of L . It is based on an intuitive assumption that
unimportant neighbors contribute less to the measurement of similarity. In this paper, the
importance of objects is measured by PageRank (PR) scores. Therefore, we suggest another
approximate version of MatchSim, named MatchSimF , which uses only the top F important
neighbors of objects.

The pruning strategy accelerates MatchSim by reducing the value of L . We will show in
Sect. 5 that it reduces more than 90% runtime of MatchSim algorithm in the experiments. In
this paper, we always assume that PR scores are available; otherwise, we may need to choose
other pruning strategies since computing PR scores is also a time-consuming task.

4.6 A toy example

We conclude this section with a toy example, which illustrates the basic process of Match-
Sim computation. Figure 3 presents a more complete version of the graph G in Fig. 1. For
simplicity, we suppose objects pi (i = 1, . . . , 5) have no outlink neighbors. We can easily
know that sim(pi , v) = 0(∀v ∈ G and v �= pi , i = 1, . . . , 5).

At the beginning, MatchSim assigns initial values to MatchSim scores, with sim(x, y) = 0
if x �= y or sim(x, y) = 1 if x = y, for any x, y ∈ G. Next, the MS scores are updated
iteratively by applying Eq. (2) until convergence.

In the first iteration, suppose we first update sim(a, b). Because the initial values of
sim(ai , b j ) (i, j = 1, 2) are zeros, we get sim(a, b) = 0. Next, by applying Eq. (2), we com-
pute sim(a1, b1) = (sim(p1, p1)+ sim(p2, p2)+ sim(p3, θ))/3 = 2/3 and sim(a2, b2) =

123
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Fig. 3 A toy example

(sim(p4, ϕ)+sim(p5, p5))/2 = 1/2, where θ and ϕ are dummy objects. We omit the similar
process of updating other MS scores, which are evidently zeros.

In the second iteration, because sim(a1, b1)= 2/3, sim(a2, b2)= 1/2, and sim(a1, b2) =
sim(a2, b1) = 0, we can find out that {(a1, b1), (a2, b2)} is the maximum matching between
O(a) and O(b). Therefore, we have sim(a, b) = (sim(a1, b1)+ sim(a2, b2))/2 = 7/12. In
the third iteration, MatchSim will end because the MS scores remain the same.

5 Experimental results

First, we evaluate the effectiveness of the accelerating techniques on MatchSim and esti-
mate the optimal pruning parameter F . Second, we test MatchSim against other classical
neighbor-based methods including Co-citation, Bibliographic coupling, Jaccard Measure,
and SimRank. Throughout the experiments, we focus on the top N = 20 similar objects
returned by the algorithms and fix the iteration numbers of MatchSim and SimRank to be
K = 15. The hardware environment is Celeron 2.8 G CPU, 4 G memory, and 80 G hard disk.
The programs are written in C, and the OS is Windows XP Pro SP2.

5.1 Datasets

We have four real-world datasets. The CW and GS datasets are crawled by ourselves from
the Web using BFS (Breadth-First Search) algorithm. The CiteSeer and Cora datasets are two
commonly used datasets containing pre-classified academic papers [32]. Brief descriptions
on the datasets are as follows.

1. The CSE Web (CW) dataset is a set of web pages crawled from the website of our
department.4 It contains 22,615 textual web pages (html or text pages) and 120,947
hyperlinks connecting them together. The average inlink/outlink number is about 5.3.

2. The Google Scholar (GS) dataset is a set of academic papers crawled from Google
Scholar.5 It contains 20,000 papers (without fulltext) and 87,717 citations linking them
together. To obtain the papers, we first submitted the keyword “web mining” to Google
Scholar and employed the top 50 returned papers as seeds to crawl the remaining papers
by following the “Cited By” hyperlinks of the returned papers.

3. The CiteSeer and Cora datasets are two smaller datasets containing computer science
papers and can be downloaded freely on the Web.6 The papers in both datasets have been
classified into classes according to their topics. Because the citation graphs extracted from

4 http://www.cse.cuhk.edu.hk.
5 http://scholar.google.com.
6 http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html.

123

http://www.cse.cuhk.edu.hk
http://scholar.google.com
http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html


MatchSim: a novel similarity measure based on maximum neighborhood matching 151

Table 2 Properties of the datasets

CW GS CiteSeer Cora

Type of objects Web page Paper Paper Paper

Type of links Hyperlink Citation Citation Citation

# of objects 22,615 20,000 2,110 2,485

# of links 120,947 87,717 3,757 5,209

Inlinks/outlinks per object 5.3 4.4 1.8 2.1

Inlink dangling nodes (%) 0% 57.7% 39.4% 42.3%

Outlink dangling nodes (%) 14.7% 0.06% 24.7% 16.4%

the datasets are not fully connected, we use their maximum graph components instead
of the original graphs in the remaining of the paper. The new CiteSeer and Cora graphs
contain 2,110 and 2,485 papers, respectively.

One major problem of the above datasets is incompleteness, which results in large amounts
of dangling nodes. In GS dataset, due to the crawling strategy, about 57.7% of the papers have
no inlinks (we call them the inlink dangling nodes), but only about 0.06% have no outlinks
(we call them the outlink dangling nodes). Similar situation happens to the CW, CiteSeer,
and Cora datasets (see the last two rows in Table 2).

Many link-based methods can use both inlinks and outlinks as input, depending on the
properties of the datasets. In our experiments, large amounts of dangling nodes can signifi-
cantly reduce the accuracy of similarity measures. Therefore, choosing suitable kind of links
is a very important issue. Actually, in [25], we have reported that by combining both kinds
of links, the accuracy link-based similarity measures can be improved. In the experiments of
this paper, we choose inlinks for CW dataset and outlinks for other three datasets as default
input of the algorithms.

There are some differences between the web graph and citation graph extracted from the
datasets. First, the web graph of CW dataset is relatively complete, while apparently the cita-
tion graphs are not so, since typically a computer science paper has more than 10 references.
Second, the citation graphs are almost directed acyclic graphs since citations rarely form
cycles, while the web graph is more complex. The above differences may also influence the
practical performance of link-based methods.

We summarize the basic properties of the datasets in Table 2. The distributions of the
papers over classes in CiteSeer and Cora datasets are listed in Table 3. Histograms of links
in the datasets are given in Appendix C.

5.2 Ground truth

A good evaluation of similarity measure is difficult without performing extensive user studies
or having a reliable ground truth. In this paper, we choose different metrics to serve as ground
truth of similarity for different datasets.

1. For the CW dataset, we use the textual similarity between CW web pages as ground truth
and choose the cosine TFIDF, which is a widely used text-based similarity metric in IR.

2. For the GS dataset, we use the “Related Articles” provided by Google Scholar as a rough
ground truth. Based on our observation, the “Related Articles” are generally reasonable.
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Table 3 Distribution of papers
over classes

CiteSeer # of papers Cora # of papers

Agents 463 Case_based 285

AI 115 Genetic_algorithms 406

DB 388 Neural_networks 726

IR 304 Probabilistic_methods 379

ML 532 Reinforcement_learning 214

HCI 308 Rule_learning 131

Rule_theory 344

Total 2,110 Total 2,485

To achieve this, Google Scholar must have used various kinds of article properties, such as
textual information (title, keywords, abstract, or maybe full text), authors, or references.

3. For the CiteSeer and Cora datasets, since all of the papers have been classified, we use the
classifications as ground truth and adopt the classical precision, recall, and F-measure.

5.2.1 About the cosine TFIDF metric

It has been reported that TFIDF performs poorly in terms of accuracy when applied to the
Web [27]. We believe that it is mainly because generally web pages are (1) extremely diverse:
topics of web pages cover almost every field in the world, and (2) unreliable and untrustwor-
thy: large amounts of web pages with low-quality or even malicious textual content exist on
the Web [13]. All of these may influence the accuracy of text-based similarity measures.

The cosine TFIDF weighting scheme is widely used in IR to determine the similarity
between two documents [2,29–31]. However, its precision is not very high [34,35]. In this
paper, we use it as a rough metric of similarity for the web pages in CW dataset.

Cosine TFIDF is suitable for the CW dataset because the CW web pages contain high-
quality textual contents. First, the topics of CW web pages’ contents are more focused and
limited. Most of them are about several specific research topics in computer science and/or
mathematics. Second, the quality of CW pages are relatively high and can be guaranteed,
since they are created and edited by researchers or web administrators. In other words, the CW
web pages are more like a traditional well-written and well-organized corpus of academic
articles than the unreliable and untrustworthy general Web pages.

5.3 Evaluation methods

Let topA,N (v) denote the set of top N similar objects to object v retrieved by algorithm A. We
denote the “overall quality” of topA,N (v) by value scoreA,N (v). Here, “overall quality” may
refer to score of textual similarity or precision, etc, depending on the context. The average
of scoreA,N (v) over v ∈ V , denote by �(A, N ), is adopted to measure the quality of the top
N results retrieved by algorithms A. That is,

�(A, N ) =
∑

v∈V scoreA,N (v)

‖V ‖ .
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5.3.1 Basic metrics for the datasets

(1) CW dataset: The cosine TFIDF similarity score of two web pages u and v is just the
cosine of the angle between TFIDF vectors of the pages [2], which is defined by

cosT F I DF(u, v) =
∑

t∈u∩v Wtu · Wtv

‖u‖ · ‖v‖ ,

where Wtu and Wtv are TFIDF weights of term t for web pages u and v, respectively,

‖u‖ =
√∑

t∈u W 2
tu and ‖v‖ =

√∑
t∈v W 2

tv . For the CW dataset, we define

scoreA,N (v) =
∑

u∈topA,N (v)

cosT F I DF(u, v),

and �T (A, N ) = �(A, N ), which measures the average cosine TFIDF score of the top
N similar web pages returned by algorithm A.
Before applying cosine TFIDF, we pre-process CW dataset with common data cleaning
techniques including stemming and removing stop words.

(2) GS dataset: For an article v in citation graph G, the list of its “Related Articles” returned
by Google Scholar is denoted by R A(v). We define

relatedN (v) = {top N related articlesvi |vi ∈ R A(v) ∩ V }.
The precision of similarity measure A over top N results is:

GSprecA,N (v) = |topA,N (v) ∩ relatedN (v)|
|topA,N (v)| .

Therefore, for the GS dataset, we simply define

scoreA,N (v) = GSprecA,N (v),

and �P (A, N ) = �(A, N ), which measures the average precision of algorithm A over
top N results.

(3) CiteSeer and Cora datasets: In these datasets, two objects are similar if they are clas-
sified into the same class. Let similar(v) denote the set of papers whose class labels
are the same as that of v. We use the precision, recall, and F-measure to evaluate the
performance of algorithm A.

precision A,N (v) =
∑

v∈V

|topA,N (v) ∩ similar(v)|
|topA,N (v)| ,

recallA,N (v) =
∑

v∈V

|topA,N (v) ∩ similar(v)|
N

,

FscoreA,N (v) =
∑

v∈V

(
2 · precision A,N (v) · recallA,N (v)

precision A,N (v) + recallA,N (v)

)
.

Similarly, let �precision(A, N ),�recall(A, N ), and �Fscore(A, N ) denote the metrics
of “overall quality” of A over the top N results.
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5.3.2 Other metrics

We also designed additional measures to help us look more insights into the accuracy and
efficiency of the algorithms. They are described as follows.

(3) Overall Accuracy (OA) and Distance of Accuracy (DA) metrics: Given top N similar
objects, we respectively define the OA and DA metrics by

O A(A, N ) = 1

N

N∑

i=1

�(A, i), D A(A, B, N ) = 1

N

N∑

i=1

|�(A, i) − �(B, i)|
�(B, i)

.

For an algorithm A, we can plot a 2-dimensional accuracy curve, with the x-axis rep-
resenting N and the y-axis representing �(A, N ). We use O A(A, N ) to reflect the
“overall accuracy” of A over the top N rankings, and D A(A, B, N ) reflect the “dis-
tance” between accuracy curves of algorithms A and B.

(4) Ratio of OA (ROA) and Ratio of Runtime (RRT) metrics: ROA and RRT are
designed for computing the ratio of two algorithms’ performance over the top N results
in terms of accuracy and running time, respectively. We define the runtime of similarity
measure A as the time it needs for computing all of the similarity scores. It does not
include the time for loading or saving data from or into storage. We denote the average
runtime of A by RT (A).

RO A(A, B, N ) = O A(A, N )

O A(B, N )
, R RT (A, B) = RT (A)

RT (B)
.

5.4 Evaluations on the accelerating techniques

We first evaluate the effectiveness of the accelerating techniques on MatchSim (M S). In CW
dataset, inlinks are used by Matchsim as input, and in GS dataset, outlinks are used as input.
The accelerating techniques include:

T1 : the GPA algorithm for calculating maximum matchings, and
T2 : the pruning strategy based on PR scores.

Besides, we need to estimate the optimal pruning parameter F for M SAF .
We set the F to be 10, 20, 30, 40 and ∞, where ∞ means “no pruning” on neighbors. For

each F , we run M SF and M SAF on the datasets. Note that M S∞ and M SA∞ are actually
M S and M SA, respectively.

5.4.1 Results on GS dataset

Tables 4 and 5 show the results on CW and GS datasets. For an algorithm A (which is
M SF or M SAF ), we define D A = D A(A, M S∞, N ), RO A = RO A(A, M S∞, N ), and
R RT = R RT (A, M S∞) in the tables. That is, we use the results of M S as the benchmark
to assess algorithm A.

More precisely, D A(≥0) measures the closeness between the result of A and that of M S,
where smaller D A means closer results. RO A(≥0) measures the ratio of “overall accuracy”
of A to that of M S, where greater RO A means A achieves better results. R RT (≥0) measures
the “relative speed” of A to M S, where smaller R RT means A is faster. When the results of
A and M S are the same, the values of the metrics are 0, 100%, and 100%, respectively.
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Table 4 MatchSim: accelerating techniques on GS

F 10 20 30 40 ∞
P(%) 7.65 4.07 2.73 1.94 0.00

M SF D A(10−2) 12.44 6.06 3.34 1.42 0.00

RO A(%) 87.64 94.09 96.78 98.82 100

R RT (%) 4.81 8.24 11.88 15.86 100

M SAF D A(10−2) 11.88 6.00 2.89 1.21 0.94

RO A(%) 88.10 94.06 97.16 98.90 99.54

R RT (%) 1.81 2.35 2.76 3.13 6.50
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Fig. 4 Accuracy of accelerating techniques on GS dataset

Additionally, to reveal the number of nodes affected by parameter F , we denote by P the
percentage of the nodes whose neighbors are pruned given a certain F . From Table 4, we
can see that:

1. For M SF , its accuracy increases and approaches that of M S as F increases (i.e., F →
∞ ⇒ RO A → 100%, D A → 0). On the other hand, its runtime also increases with
F , but is much smaller than that of M S when F ≤ 40. These results show that the
pruning technique (T2) really works. That is, T2 accelerates MatchSim significantly with
relatively small loss of accuracy.

2. For M SAF , it always runs much faster than M SF for a given F(F = 10, . . . , 40,∞) with
almost the same accuracy. In the special case, when F = ∞ (i.e., only T1 is used), the
accuracy of M SA is very close to that of M S (D A = 0.94×10−2 and RO A = 99.54%),
while the runtime is much less (R RT = 6.50%). This shows that the T1 technique also
works.

We also plot some of the accuracy curves of the algorithms in Fig. 4. (We exclude the
curve of M S40, which are very close to those of M S, M SA, and M SA40, from Figs. 4 and 5
to make the figures clearer.) Based on these results, we conclude that the best version of
MatchSim for the GS dataset is M SA40.
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Table 5 MatchSim: accelerating techniques on CW

F 10 20 30 40 ∞
P(%) 6.42 2.77 1.46 0.84 0.00

M SF D A(10−2) 22 11.85 6.40 1.82 0.00

RO A(%) 78.08 88.20 94.58 98.81 100

R RT (%) 3.91 5.51 8.02 9.73 100

M SAF D A(10−2) 23.62 14.17 7.31 2.76 1.08

RO A(%) 76.45 85.87 93.12 97.22 98.99

R RT (%) 0.52 1.06 1.63 2.25 2.89
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Fig. 5 Accuracy of accelerating techniques on CW dataset

5.4.2 Results on CW dataset

We also conduct experiments on the CW dataset and show the results in Table 5 and Fig. 5.
It is easy to see that a similar conclusion can be drawn from the results. We therefore suggest
M SA40 to be the best version of the approximate MatchSim for CW dataset, too.

5.5 Testing MatchSim on CW and GS datasets

In this section, we compare the performance of M S and M SA40 with other neighbor-based
similarity measures, including Bibliographic coupling (BC), Co-citation (CC), Jaccard Mea-
sure (JM), and SimRank (SR). The formal definition of these algorithms has been given in
Sect. 2. For SimRank, we set γ = 0.8. Because of the reason explained in Sect. 5.1, when
applied to the CW dataset, MatchSim, SimRank, and Jaccard Measure use inlinks as input
and use outlinks when applied to other datasets.

5.5.1 The accuracy

We plot in Fig. 6 the �P (A, N ) curves of the methods on GS dataset and in Fig. 7
the �T (A, N ) curves of the methods on CW dataset. We also report in Table 6 the
RO A(∗, M S, 20) values of the algorithms to compare the overall performance in accuracy
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Fig. 7 Performance results on the CW dataset

Table 6 RO A of the algorithms on GS and CW datasets

BC CC J M S R M SA40 M S

GS 0.55 0.76 0.89 0.73 1.00 1.00

CW 0.89 0.85 0.94 0.85 0.97 1.00

of the algorithms. The observed results (in italic) and the corresponding discussions are listed
as follows.

1. The two versions of MatchSim, M S, and M SA40 outperform all of the other methods in
almost all cases. This demonstrates the effectiveness of the proposed MatchSim method
and the accelerating techniques.

2. Jaccard Measure also performs very well. Considering that it needs much less runtime
than MatchSim and SimRank, this method would be a good tradeoff between accuracy
and efficiency.

3. MatchSim and Jaccard Measure perform much better on the top results (e.g., top 5) than
other methods. This shows that these methods are particularly suitable for the scenarios
where top results are very important.
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Table 7 Given web page KING,
the top-1 results returned by the
algorithms

The most similar page # of inlinks # of common inlinks

MatchSim CHAN 10 5

Jaccard LYU 15 7

Co-citation LYU 15 7

SimRank MEMPM 1 1

4. Co-citation performs very poorly on the GS dataset. This is because Co-citation algo-
rithm uses inlinks in GS dataset, more than half of which are dangling nodes. Actually,
other methods including MatchSim and SimRank also have the same problem. This
indicates that choosing the “right” type of neighbors as input is very important to the
neighbor-based algorithms.

5.5.2 The runtime

In the experiments on CW and GS datasets, we observed that the runtime of M SA40 and
S R are more than 30 and 20 min, respectively, while the neighbor-counting algorithms need
only a few seconds. This is because MatchSim and SimRank are iterative algorithms; thus,
the cost of computing each similarity score is very high (both are O(K L2), where L is the
average number of neighbors and K is the number of iterations). The complexity of direct
algorithms is O(L). Theoretically, the runtime of MatchSim is O(K L) times longer than that
of direct algorithms, and typically K = 15 and L is around 5 in the experiments. Designing
specific techniques to significantly improve the efficiency of MatchSim is one of the most
important and challenging problems.

5.5.3 A qualitative example

Now let’s see a simple example to get more insights into the algorithms. Given web page
KING,7 which has 10 inlinks and 2 outlinks, we list the most similar web pages returned
by the algorithms in Table 7. Since no web page shares any common outlink with KING,
Bibliographic Coupling method cannot find any similar web pages. We thus omit it from the
table.

We can see that MatchSim returns CHAN,8 which has 10 inlinks and shares 5 common
inlinks with KING. Jaccard and Co-citation return LYU,9 which has 15 inlinks and shares 7
common inlinks with KING. All of these results seem reasonable, and it is hard to tell which
one is the best.

The MEMPM10 returned by SimRank is obviously not good. The only inlink of MEMPM
is the homepage of mempm_toolbox, which also links to KING. The reason why SimRank
choose MEMPM to be the most similar web page to KING is caused by the counterintuitive
loophole criticized in Sect. 4.1.

7 Prof. King’s homepage http://www.cse.cuhk.edu.hk/king.
8 Prof. Chan’s homepage http://www.cse.cuhk.edu.hk/lwchan/.
9 Prof. Lyu’s homepage http://www.cse.cuhk.edu.hk/lyu.
10 The register web page of mempm_toolbox.
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Fig. 8 Average precision, recall, and F scores on the CiteSeer dataset
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Fig. 9 Average precision, recall, and F scores on the Cora dataset

5.6 Testing MatchSim on citeSeer and cora datasets

In this section, we test MatchSim against other methods on two smaller datasets: the CiteSeer
and Cora datasets. The papers in both datasets have been pre-classified into classes according
to topics. On our observation, the algorithms using outlinks as input perform much better
than those using inlinks. Therefore, we use outlinks as input for MatchSim, SimRank, and
Jaccard Measure. Because Co-citation, which uses inlinks, performs very poorly in terms of
precision, we exclude its curves to make the figures clearer.

5.6.1 Experimental results

The results are presented in Figs. 8 and 9, respectively. In the figures, the average scores
are taken over the results returned by the algorithms to all the objects that have outlinks; we
omit the objects that have no outlinks to emphasize the difference of the competing algo-
rithms, since all of the algorithms return no similar objects in these cases. The runtime is
given in Table 8. We summarize the basic observations and interpretations as follows. More
discussions can be found in Sect. 5.6.2.

1. Precision: MatchSim performs the best on CiteSeer, but not very well on Cora. SimRank
achieves the worst precision on both datasets, which is actually caused by its counterin-
tuitive loophole.
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Table 8 Runtime (in second) of
the algorithms on CiteSeer and
Cora datasets

BC CC J M S R M S

CiteSeer 171 132 174 1,632 1,680

Cora 99 97 99 1,515 1,275

Table 9 Comparison of top the 5 results, given object article 36

Top SimRank (79) MatchSim (79) Jaccard (30)

1 114_Agents {329} 63_AI {5, 97, 274, 329, 661, 916} 63_AI {see left}

2 203_Agents {274, 661} 97_AI {5, 329, 661} 97_AI {see left}
3 735_Agents {274, 661} 813_ML {77, 339, 735, 916} 5_AI {97, 916}
4 948_AI {329, 661} 617_ML {126, 243, 328, 661, 916} 203_Agents {274, 661}
5 97_AI {5, 329, 661} 949_AI {5, 63, 97} 603_Agents {5, 661}

2. Recall: MatchSim and SimRank achieve much higher recall than the neighbor-counting
algorithms. This is because both algorithms take similarities between neighbors into
account. As a result, they can retrieve more objects which may certainly increase the
chance of finding more real similar objects.

3. F score: The overall performance of MatchSim is the best on both datasets. BC and JM
are the worst due to their low recall scores.

4. Runtime: From Table 8, we can see that the efficiency is the major bottleneck of Match-
Sim. The problem becomes worse as the size of graph increases.

5.6.2 A qualitative example

Let’s look further into the results by examining an example. The object is article 36 from
CiteSeer dataset, which has the label “AI” and cites six other articles {5, 97, 274, 329, 661,
916}. Table 9 lists the top 5 results (from the top down) returned by each algorithm, the
format of which is article’s id followed by its label and references. The numbers in the first
row indicate the total numbers of articles retrieved by the algorithms. Here, we omit BC
whose results are the same as those of JM.

From the table, we can see that

(1) MS and SR find more results. It can certainly lead to higher possibility of finding the
“real similar articles”, i.e., those having the same labels as those of the object article.

(2) The precision of SR is the worst. This is because of its loophole criticized before. For
example, although both reference lists of articles 114 and 97 are subsets of article 36’s
references, intuitively article 97, which has more references, should be ranked higher.
Obviously, SimRank made a mistake here.

(3) The rankings produced by MS and JM are more reasonable. The precision of JM is
even better than that of MS in this example. However, JM finds out less articles (lower
recall), which influences its overall performance. SimRank, on the other hand, can find
much more articles (much higher recall), which may lead to higher F scores.

To summarize, from this example, we can see that Matchsim can find out more results than
the neighbor-counting methods and at the same time ensure that the results are reasonable by
conforming to the intuitions of similarity. Therefore, it can achieve the best overall perfor-
mance (the highest F scores) in the experiments. Certainly, the major problem of MatchSim
is its computational efficiency, which is our future work.
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6 Conclusion and future work

In this paper, we propose a neighbor-based similarity measure called MatchSim, based on
the intuition that “similar objects have similar neighbors.” By taking neighbors’ similarity
into account and conforming to the intuitions of similarity, our method can produce higher
quality results. The main contributions of the paper are summarized as follows:

1. Proposing a novel neighbor-based similarity measure called MatchSim, which computes
object similarity based on maximum neighborhood matching.

2. Suggesting accelerating techniques to improve computational efficiency of MatchSim.
3. Conducting extensive experiments on real-world datasets to demonstrate the effective-

ness of MatchSim.

There are a number of avenues for future work: (1) The efficiency of MatchSim have to be
improved to make the algorithm more practical. (2) MatchSim can be easily extended to the
“bipartite” version, which can be employed in recommender systems. (3) Inlinks and outlinks
are two kinds of properties of networked objects. We have noticed that by combining both
kinds of links, the accuracy of the several link-based methods can be improved. We believe
this will also work on MatchSim and leave it one of our future work.
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Appendix A: Convergence proof of MatchSim

We now prove the existence and uniqueness of the n2-dimensional fixed point sim(∗, ∗) of
the n2 MatchSim equations (4). First, we give a simple fact that, for any a and b, the sequence
simk(a, b)(k = 1, 2, . . .) is bounded and nondecreasing.

Fact. 0 ≤ simk(a, b) ≤ simk+1(a, b) ≤ 1, ∀a, b ∈ V, k ≥ 0.
By using mathematical induction, the proof is easy and thereby is omitted here. By the

Completeness Axiom of calculus, each sequence simk(a, b) converges to a limit sim(a, b) ∈
[0, 1]. Therefore, the fixed point sim(∗, ∗) of the MatchSim equations exists.

Next, we prove the uniqueness of fixed point sim(∗, ∗). Suppose sim(∗, ∗) and sim′(∗, ∗)

are two fixed points of the n2 MatchSim equations. For all a, b ∈ V , let δ(a, b) = |sim(a, b)−
sim′(a, b)| be their difference. Let D = δ(x, y) = maxa,b∈V δ(a, b), where x, y ∈ V , be
the maximum value of any difference. We need to prove D = 0. Certainly D = 0 if x = y,
in which case sim(x, y) = sim′(x, y) = 1, or if x or y has no neighbors, in which case
sim(x, y) = sim′(x, y) = 0.

In other cases (x �= y and |I (x)||I (y)| �= 0), we suppose sim(x, y) > sim′(x, y). From
Eq. (2),

D = δ(x, y) = sim(x, y) − sim′(x, y)

= Ŵ (x, y)

max(I (x), I (y))
− Ŵ ′(x, y)

max(I (x), I (y))
= 1

max(I (x), I (y))
· [W (mxy) − W ′(m′

xy)],

where mxy (m′
xy) is a maximum matching between I (a) and I (b) computed using sim(∗, ∗)

(sim′(∗, ∗)), and W (mxy) (W ′(m′
xy)) is the corresponding maximum weight.
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Let Mxy be the set of matchings between I (x) and I (y), then we have mxy, m′
xy ∈ Mxy ,

and

W ′(m′
xy) = maxm∈Mxy W ′(m) ⇒ W ′(m′

xy) ≥ W ′(mxy).

Thus,

W (mxy) − W ′(m′
xy) ≤ W (mxy) − W ′(mxy) =

∑

(u,v)∈mxy

sim(u, v) −
∑

(u,v)∈mxy

sim′(u, v)

=
∑

(u,v)∈mxy

[sim(u, v) − sim′(u, v)]

≤
∑

(u,v)∈mxy

|sim(u, v) − sim′(u, v)| (5)

≤
∑

(u,v)∈mxy

D. (6)

Therefore,

D = 1

max(I (x), I (y))
· [W (mxy) − W ′(m′

xy)]

≤ 1

max(I (x), I (y))
· [W (mxy) − W ′(mxy)]

≤ 1

max(I (x), I (y))
· max(I (x), I (y)) · D = D.

Here, we come to D ≤ D. Next, we continue the proof under two complementary conditions.
Condition (1): the “=” relationships in the above inequalities always hold for any

(x, y) ∈ S, where

S = {(x, y)|sim(x, y) − sim′(x, y) = D}.
From inequalities (5) and (6), it must follow that ∀(x, y) ∈ S ⇒ mxy ⊂ S. On the other

hand, we also have

sim(x, y) =
∑

(u,v)∈mxy
sim(u, v)

max(I (x), I (y))
.

Thus, we get fact(1): for any (x, y) ∈ S, the value of sim(x, y) only depends on those
of sim(u, v), where (u, v) ∈ mxy ⊂ S. (That is, the computation of sim(x, y) is closed on
set S.)

We also know fact(2): since x �= y for any (x, y) ∈ S, the initial value of
sim(x, y), (x, y) ∈ S, is zero. (Sect. 4.3)

From facts (1) and (2), it follows that sim(x, y) = 0, for any (x, y) ∈ S. Since sim(x, y)−
sim′(x, y) = D ≥ 0 and sim′(x, y) ≥ 0, it follows D = 0.

Condition (2): the “=” relationships in the above inequalities do not always hold for any
(x, y) ∈ S.

Evidently, we can always choose a (x, y) ∈ S so that at least one of the “=” relationships
in the inequalities does not hold. By restarting the proof process with this (x, y), we will
come to D < D, which does not hold for any D.

From the proofs under Conditions (1) and (2), it follows that D = 0.
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Appendix B: The assignment problem

The Assignment Problem consists of finding a maximum (weight) matching in a weighted
bipartite graph. Given two sets, A and B, of equal size n, together with a weight function
w : A × B → �+, we obtain a weighted bipartite graph G = (A + B, E, w), where
E = {(a, b)|a ∈ A, b ∈ B}. A matching in G is a set of pairwise non-adjacent edges, i.e., no
two edges share a common vertex. In other words, a matching in G is a bijection m : A ↔ B.
Let M denote the set of matchings between A and B, and W (m) = ∑

(a,b)∈m w(a, b) denote
the weight of matching m. The objective of the assignment problem is to find a maximum
matching, denoted by m∗, such that:

W (m∗) = maxm∈M W (m).

Evidently, m∗ may not be unique.
If the graph is not completely bipartite (A and B are not of equal size), dummy vertices

and zero-weighted edges are inserted to make up the missing part. The problem can then
be solved in the usual way and still give the best solution to the problem. Therefore, in the
paper, we always convert A and B to be “equally sized” before computing the m∗. Thus, we
always consider A and B to be of size max(|A|, |B|).

Appendix C: Histograms of links in the datasets

See Figs. 10, 11, 12 and 13

Fig. 10 Histograms of links in CW dataset (Inlink/Outlink Number ≤20)

Fig. 11 Histograms of links in GS dataset (Inlink/Outlink Number ≤20
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Fig. 12 Histograms of links in CiteSeer dataset

Fig. 13 Histograms of links in Cora dataset
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