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Abstract—Web services are integrated software components for the support of interoperable machine-to-machine interaction over
a network. Web services have been widely employed for building service-oriented applications in both industry and academia in
recent years. The number of publicly available Web services is steadily increasing on the Internet. However, this proliferation makes it
hard for a user to select a proper Web service among a large amount of service candidates. An inappropriate service selection may
cause many problems (e.g., ill-suited performance) to the resulting applications. In this paper, we propose a novel collaborative
filtering-based Web service recommender system to help users select services with optimal Quality-of-Service (QoS) performance.
Our recommender system employs the location information and QoS values to cluster users and services, and makes personalized
service recommendation for users based on the clustering results. Compared with existing service recommendation methods, our
approach achieves considerable improvement on the recommendation accuracy. Comprehensive experiments are conducted
involving more than 1.5 million QoS records of real-world Web services to demonstrate the effectiveness of our approach.

Index Terms—Web service, quality of service (QoS), recommendation, collaborative filtering

Ç

1 INTRODUCTION

WEB services are software components designed to
support interoperable machine-to-machine interac-

tion over a network, usually the Internet. Web service
employs WSDL (Web Service Description Language) for
interface description and SOAP (Simple Object Access
Protocol) for exchanging structured information. Benefit-
ing from the cross-language and cross-platform character-
istics, Web services have been widely employed by both
enterprises and individual developers for building service-
oriented applications. The adoption of Web services as a
delivery model in business has fostered a paradigm shift
from the development of monolithic applications to the
dynamic set-up of business processes.

When developing service-oriented applications, devel-
opers first design the business process according to
requirements, and then try to find and reuse existing
services to build the process. Currently, many developers
search services through public sites like Google Devel-
opers (developers.google.com), Yahoo! Pipes (pipes.yahoo.
com), programmableWeb (programmableweb.com), etc.

However, none of them provide location-based QoS
information for users. Such information is quite important
for software deployment especially when trade compli-
ance is concerned. Some Web services are only available
in EU, thus software employing these services cannot be
shipped to other countries. Without knowledge of these
things, deployment of service-oriented software can be at
great risk.

Since selecting a high quality Web service among a
large number of candidates is a non-trivial task, some
developers choose to implement their own services
instead of using publicly available ones, which incurs
additional overhead in both time and resource. Using an
inappropriate service, on the other hand, may add
potential risk to the business process. Therefore, effective
approaches to service selection and recommendation are
in an urgent need, which can help service users reduce
risk and deliver high-quality business processes.

Quality-of-Service (QoS) is widely employed to repre-
sent the non-functional characteristics of Web services and
has been considered as the key factor in service selection
[33]. QoS is defined as a set of properties including
response time, throughput, availability, reputation, etc.
Among these QoS properties, values of some properties
(e.g., response time, user-observed availability, etc.) need
to be measured at the client-side [26]. It is impractical to
acquire such QoS information from service providers, since
these QoS values are susceptible to the uncertain Internet
environment and user context (e.g., user location, user
network condition, etc.). Therefore, different users may
observe quite different QoS values of the same Web service.
In other words, QoS values evaluated by one user cannot be
employed directly by another for service selection. It is also
impractical for users to acquire QoS information by
evaluating all service candidates by themselves, since
conducting real world Web service invocations is time-
consuming and resource-consuming. Moreover, some QoS
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properties (e.g., reliability) are difficult to be evaluated as
long-duration observation is required.

To attack this challenge, this paper investigates person-
alized QoS value prediction for service users by employing
the available past user experiences of Web services from
different users. Our approach requires no additional Web
service invocations. Based on the predicted QoS values of
Web services, personalized QoS-aware Web service re-
commendations can be produced to help users select the
optimal service among the functionally equivalent ones.
From a large number of real-world service QoS data
collected from different locations, we find that the user-
observed Web service QoS performance has strong corre-
lation to the locations of users. Google Transparency
Report1 has similar observation on Google services.

To enhance the prediction accuracy, we propose a
location-aware Web service recommender system (named
LoRec), which employs both Web service QoS values and
user locations for making personalized QoS prediction.
Users of LoRec share their past usage experience of Web
services, and in return, the system provides personalized
service recommendations to them. LoRec first collects user-
observed QoS records of different Web services and then
groups users who have similar QoS observations together
to generate recommendations. Location information is also
considered when clustering users and services. The main
contributions of this work are two-fold:

. First, we propose a novel location-aware Web
service recommendation approach, which signifi-
cantly improves the recommendation accuracy and
time complexity compared with existing service
recommendation algorithms.

. Second, we conduct comprehensive experiments to
evaluate our approach by employing a real-world
Web service QoS data set. More than 1.5 millions
real-world Web service QoS records from more than
20 countries are engaged in our experiments.
Comprehensive analysis on the impact of the
algorithm parameters is also provided.

The rest of this paper is organized as follows: Section 2
reviews related work of collaborative filtering and Web
service recommendation. Section 3 presents the system
architecture. Section 4 describes the proposed Web service
recommendation algorithm. Section 5 shows our extensive
experiment results, employing QoS values of real-world
Web services, and Section 6 concludes the paper.

2 RELATED WORK

2.1 Collaborative Filtering
Collaborative Filtering (CF) is widely employed in com-
mercial recommender systems, such as Netflix and Amazon.
com [4], [18], [19], [22]. The basic idea of CF is to predict
and recommend potential favorite items for a particular
user employing rating data collected from other users. CF
is based on processing the user-item matrix. Breese et al. [3]
divide the CF algorithms into two broad classes: memory-
based algorithms and model-based algorithms. The most

analyzed examples of memory-based collaborative filtering
include user-based approaches [3], [11], [15], item-based
approaches [9], [18], [23], and their fusion [27]. User-based
approaches predict the ratings of users based on the ratings
of their similar users, and item-based approaches predict
the ratings of users based on the information of item
similarity. Memory-based algorithms are easy to imple-
ment, require little or no training cost, and can easily take
ratings of new users into account. However, memory-
based algorithms do not scale well to a large number of
users and items due to the high computation complexity.

Model-based CF algorithms, on the other hand, learn a
model from the rating data using statistical and machine
learning techniques. Examples include clustering models
[30], latent semantic models [12], [13], latent factor models
[5], and so on. These algorithms can quickly generate
recommendations and achieve good online performance.
However, these models must be rebuilt when new users or
items are added to the system.

2.2 Service Selection and Recommendation
Service selection and recommendation have been exten-
sively studied to facilitate Web service composition in
recent years. Wang et al. [28] present a Web service
selection method by QoS prediction with mixed integer
program. Zhang et al. [34] provide a fine grained reputation
system for QoS-based service selection in P2P system.
Zheng et al. [37] provide a QoS-based ranking system for
cloud service selection. Zhu et al. [38] employ clustering
techniques to their QoS monitoring agents and provide
Web service recommendations based on the distance
between each user and their agents. El Hadadd et al. [10]
propose a selection method considering both the transac-
tional properties and QoS characteristics of a Web service.
Hwang et al. [14] use finite state machine to model the
permitted invocation sequences of Web service operations,
and propose two strategies to select Web services that are
likely to successfully complete the execution of a given
sequence of operations. Kang et al. [16] propose AWSR
system to recommend services based on users’ historical
functional interests and QoS preferences. Barakat et al. [2]
model the quality dependencies among services and
proposes a Web service selection method for Web service
composition. Alrifai and Risse [1] propose a method to
meet users’ end-to-end QoS requirements employing
integer programming (MIP) to find the optimal decompo-
sition of global QoS constraints into local constraints.

A certain amount of work has been done to apply CF to
Web service recommendation. Shao et al. [24] employ a
user-based CF algorithm to predict QoS values. Works in
[17], [25] apply the idea of CF in their systems, and use
MovieLens data for experimental analysis. Combination
tasks of different types of CF algorithms are also engaged
in Web service recommendation. Zheng et al. [36] combine
user-based and item-based CF algorithms to recommend
Web services. They also integrate Neighborhood approach
with Matrix Factorization in their work [35]. Yu [32]
presents an approach that integrates matrix factorization
with decision tree learning to bootstrap service recom-
mender systems. Meanwhile, several tasks employ location
information to Web service recommendation. Chen et al. [7]1. http://www.google.com/transparencyreport/
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use a region-based CF algorithm to make Web service
recommendation. To help users know more about Web
service performance, they also propose a visualization
method showing recommendation results on a map.
Lo et al. [31] employ the user location in a matrix factorization
model to predict QoS values. Different from existing work,
this paper interprets Web service QoS information from
both user’s perspective and Web service’s perspective.
Clustering technique and location information are em-
ployed to achieve more accurate recommendation result
and better online performance. Experiments in Section 5
demonstrate the result of the proposed method.

3 PRELIMINARY

3.1 System Overview
Web 2.0 applications such as social networking sites and self-
publishing sites encourage users to share their knowledge and
learn from others. LoRec employs the idea of user collaboration
and provides a platform for users to share observed Web
service QoS values and search Web services. This system will
generate personalized service recommendations based on
user shared QoS values. The more QoS records users
contribute, the more accurate the recommendations will
be, since more information can be mined from the user-
contributed QoS values. In this paper, we assume that
users are trustworthy. How to detect and handle malicious
users and inaccurate QoS values will be addressed in our
future work. Fig. 1 shows the architecture of our LoRec
recommender system, which includes the following
procedures:

. Web service users log on to LoRec system and share
observed Web service QoS records with other users. In
this paper, users who have submitted Web service
QoS records to LoRec are called training users. If a
training user requires Web service recommendation,
then the user becomes an active user. QoS values of
training users will be employed to make personalized
recommendation for the active user.

. LoRec clusters training users into different regions
according to their physical locations and past Web
service usage experiences (details will be introduced
in Section 4.1).

. LoRec clusters functionally similar Web services
based on their QoS similarities (details will be
introduced in Section 4.2).

. LoRec maps the active user to a user region based on
historical QoS and user location (details will be
introduced in Section 4.3).

. The recommender system predicts QoS values of
candidate Web services for the active user and
recommend the best one. (details will be introduced
in Section 4.3).

. The active user receives the predicted QoS values
of Web services as well as the recommendation
results, which can be employed to assist decision
making (e.g., service selection, service composition,
service ranking, etc.).

Table 1 shows an example of one QoS property in LoRec
data set. There are five users (rows) and seven services
(columns). Each value in the table stands for the response time
of a Web service observed by a user, and ‘‘?’’ indicates that the
user has not used the service yet. Assume Amy is an active user
who needs to pick one service with low latency among three
candidates, Service 2, Service 4, and Service 5. LoRec will make
personalized response time predictions for these three services
by using response time values submitted by training users (i.e.,
Bob, Carol, David, and Edward), and recommend the one with
best predicted response time value to Amy. LoRec stores
different QoS property records separately, which means that
for different QoS properties you will find different tables like
Table 1. If Amy wants a service with low latency and high
availability, LoRec will search both response time table and
availability table and predict two property values separately
for all candidate services and recommend the best for Amy.

3.2 Region Definition and Features

3.2.1 User Regions and Service Regions
Given a recommender system consisting of m users and n
Web services, the relationship between users and Web
services can be denoted by an m� n user-item matrix. An
entry in this matrix ru;i represents a vector of QoS values
(e.g., response time, failure rate, etc.) observed by user u on
Web service i. If user u has never used Web service i before,
then ru;i ¼ null.

A service region is a group of services with similar QoS
performance. In LoRec, service regions are used to
discover potential services and recommend them to active
users. A user region is defined as a group of users who are
closely located with each other and have similar Web
service QoS usage experience. Each user belongs to exactly
one region. Building regions help LoRec identify relation-
ships in the QoS data set that might not be logically derived
through casual observation. Details of building user regions
and service regions are presented in Section 4.

3.2.2 Region Centers
Region center is a feature employed by both user region
and service region. A user region center reflects the average
performance of Web services observed by a set of similar
users who belong to one region. A user region center is
defined as the median vector of all QoS vectors associated
with the region users (row vectors in Table 1). Median is the
numeric value separating the higher half of a sample from
the lower half. When there is an even number of samples,
the median is defined to be the mean of the two middle
values. The ith element of the median vector of a region

Fig. 1. System overview of LoRec.
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center represents the median QoS value of the ith service
observed by users in the region. For example, suppose a
user region consists of Bob, Carol, and David (see Table 1).
The response time dimension of the user region center will
be (620, 2600, 1100, 1900, 2000, 2000, null). Similarly, a
service region center is defined as the median QoS vector of
all services (column vectors in Table 1). It reflects the
average QoS values of a set of similar services that each
user may experience. Suppose Services 2, 3, and 6 form one
service region, the response time dimension of the service
region center will be (2000, 3300, 1400, 2000, 2400) which
means that for Amy, David and Edward, the average
response time of Services 2, 3, and 6 will be 2000 ms; for
Bob, it will be 3300 ms and 1400 ms for Carol.

3.2.3 Sensitive Web Services
Besides region centers, QoS fluctuation is another feature
that deserves attention. From a large scale real data
analysis, we discover that some QoS properties (e.g.,
response time) usually varies from one user region to
another. Some services have unexpected long response
time in certain user regions, and some services are even
inaccessible to a few user regions. Inspired by the three-
sigma rule which is often applied to test outliers, we
employ a similar method to distinguish services with
unstable performance and regard them as user region-
sensitive services.

For ease of discussion, let’s pick one QoS property r (i.e.,
response time) as an example. The set of non-zero QoS
values of service s, r:s ¼ fr1;s; r2;s; . . . ; rk;sg; 1 � k � m, col-
lected from users of all regions is a sample from the
population of service s. To estimate the mean � and the
standard deviation � of the population, we use two robust
measures: median and Median Absolute Deviation (MAD).
MAD is defined as the median of the absolute deviations
from the sample’s median

med ¼medianiðri;sÞ; i ¼ 1; . . . ; k;

MAD ¼mediani jri;s �medj
� �

; i ¼ 1; . . . ; k: (1)

Based on median and MAD, the two estimators can be
calculated by

b� ¼medianiðri;sÞ; i ¼ 1; . . . ; k (2)b� ¼MADiðri;sÞ; i ¼ 1; . . . ; k: (3)

Definition 1. Let r:s ¼ fr1;s; r2;s; . . . ; rk;sg; 1 � k � m be the
set of non-zero response times of Web service s provided by
users. Service s is a sensitive service to region M iff 9rj;s,
where ðrj;s 9 b�þ 3b�Þ ^ ðregionðjÞ ¼MÞ.
In the above definition, b� and b� can be calculated by

Eqs. (2) and (3), and the regionðjÞ function identifies the

region of user j. The basic idea is that if a user observed QoS
is so different from others, we will pay special attention
when recommending this service to other users. Take
Service 1 from Table 1 as an example, the user-observed
response time values are {600, 620, 650, 1000, 20000}.
Compared with others, Amy observed response time is
unacceptable and deviates greatly from the median value
650. Intuitively, we want to find a way to distinguish this
service from others for Amy. With Eqs. (2) and (3), we find
t h a t b� ¼ 650 a n d b� ¼ 50. I t i s o b v i o u s t h a t
20000 9 650þ 3� 50, and Service 1 is sensitive to Amy’s
region. Furthermore, if some users from Amy’s region log
on to LoRec and require service recommendation, it is
unlikely that Service 1 will be highly recommended.

Definition 2. The sensitivity of a region is the fraction between
the number of sensitive services in the region over the total
number of services.

Definition 3. A region is a sensitive region iff its region sensi-
tivity exceeds the predefined sensitivity threshold �.

Identifying a region’s sensitive services is an important
step to make personalized Web service recommendations.
With that information, LoRec can make more accurate
QoS predictions and provide proper Web services to
different users.

3.3 Region Similarity
Pearson Correlation Coefficient (PCC) is widely used to
measure user similarity in recommender systems [21]. PCC
measures the similarity between two service users a and u
based on the QoS values of Web services they both invoked

Simða; uÞ ¼

P
i2I
ðra;i � raÞðru;i � ruÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2I
ðra;i � raÞ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2I
ðru;i � ruÞ2

r ; (4)

where I ¼ Ia \ Iu is the set of Web services invoked by both
user a and user u, ra;i is the QoS values of Web service i
observed by service user a, ra and ru represent the average
QoS values observed by service user a and u respectively.
The PCC similarity of two service users, Simða; uÞ ranges
from �1 to 1. Positive PCC value indicates that two users
have similar Web service usage experiences, while negative
PCC value means that the Web service usage experiences
are opposite. Simða; uÞ ¼ null when two users have no
commonly invoked Web service.

PCC only considers the QoS difference between services
invoked by both users, which may overestimate the
similarity of two users that are not similar but happen to
have a few services with very similar QoS records. To

TABLE 1
Example of LoRec Data Storage
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devalue the overestimated similarity, a correlation signif-
icance weight can be added [36]. An adjusted PCC for user
similarity is defined as

Sim0ða; uÞ ¼ 2� jIa \ Iuj
jIaj þ jIuj

Simða; uÞ; (5)

where Sim0ða; uÞ is the adjusted similarity value, jIa \ Iuj is
the number of services invoked by both users (co-invoked
services), jIaj and jIuj are the number of Web services
invoked by user a and user u, respectively. When the
number of co-invoked Web service jIa \ Iuj is small, the
significance weight 2�jIa\Iuj

jIa jþjIuj will decrease the similarity

estimation between users a and u. Since the value of 2�jIa\Iuj
jIajþjIuj

is in the interval of [0, 1], Simða; uÞ is in the interval of
½�1; 1�, and the value of Sim0ða; uÞ is in the interval of
½�1; 1�.

Similar to the way of clustering users, LoRec clusters
Web services based on their QoS performance to find
underlying relationships. PCC is used to measure the
similarity between Web services in LoRec as well. The
similarity of two Web services i and j can be calculated by

Simði; jÞ ¼

P
u2U
ðru;i � riÞðru;j � rjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

u2U
ðru;i � riÞ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u2U
ðru;j � rjÞ2

r ; (6)

where Simði; jÞ is the similarity between Web services i and
j, U ¼ Ui \ Uj is the set of users who have invoked both
Web services i and j, and ri represents the average QoS
values of Web service i submitted by all users. The range of
Simði; jÞ is ½�1; 1�. Simði; jÞ ¼ null when there is no user
who has used both services. The adjusted similarity value
is defined as:

Sim0ði; jÞ ¼ 2� jUi \ Ujj
jUij þ jUjj

Simði; jÞ; (7)

where jUi \ Ujj is the number of service users who have
invoked both Web services i and j. The range of Sim0ði; jÞ is
½�1; 1�.

4 METHODOLOGY

Values of some QoS properties (e.g., response time) on the
same Web service vary quite differently from user to user.
Through the analysis of a real world Web service QoS data
set2 (see Section 5 for details), which contains 1.5 millions
service invocation records evaluated by users from more
than twenty countries, we find that some QoS properties
highly relate to the physical locations of users.

For example, the response time of a service observed by
closely located users usually fluctuates mildly around a
certain value. On the other hand, the response time
observed by users who are far away from each other
sometimes varies significantly. Based on this finding, our
recommendation algorithm takes location information into
consideration to improve the recommendation accuracy.
Our recommendation algorithm is designed as a three-
phase process, i.e., 1) user region creation, 2) service region

creation, and 3) QoS prediction & recommendation, which
will be presented in Section 4.1 to Section 4.3, respectively.

4.1 Phase 1: User Region Creation
In this phase, users will be clustered into different regions
according to their locations and historical QoS records. At
the beginning, we retrieve users’ approximate locations by
their IP addresses.3 The location information reveals a
user’s country, city, latitude/longitude, ISP and domain
name. Then users from the same city will be grouped
together to form initial regions. These small regions will be
aggregated into large ones with a bottom-up hierarchical
clustering method [20].

The clustering method has two parts: initialization and
aggregation. In the initialization part, we select non-
sensitive user regions for aggregation, and compute the
similarity between each region pair with Eq. (5). To
aggregate regions,

1. Select the most similar region pair ðregioni; regionjÞ,
merge the two regions to regioni if their similarity
exceeds the similarity threshold �u, otherwise
stop this region aggregation process. To merge
the two regions,

a. Compute the sensitivity and region center of
this newly merged region regioni. Remove this
region from aggregation process if it becomes a
sensitive one.

b. Remove similarities between regionj and other
existing regions.

c. Update similarities between regioni and other
existing regions.

2. Repeat the above step.

Threshold �u is a tunable parameter that can be adjusted to
trade off accuracy for time and space requirements. �u’s
impact on prediction accuracy will be addressed in
Appendix A.

4.2 Phase 2: Service Region Creation
Normally, each user only uses a limited amount of Web
services. Compared with the large number of services on
the Internet, the number of services with user submitted
QoS records is relatively small. Thus, it is difficult to find
similar users, and predicting missing QoS values only from
user’s perspective is not enough. Clustering Web services
can help LoRec find potential similar services. Different
from retrieving user location from an IP address, LoRec
directly clusters Web services based on their QoS similar-
ity. This is because some companies regard the physical
location of data center as a secret and use IP address to hide
the real locations. Take Google for example. It has data
centers located in Asia, Europe, America, etc, but physical
locations retrieved from Google’s IP addresses used in
different country-specific versions of Google Search are all
listed to Mountain View, California. Another reason is due
to the use of the distributed system architecture. To
enhance user interaction and to minimize delay, service

2. http://www.wsdream.net 3. http://www.iplocation.net/
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providers will route user requests to different servers
according to user locations or application types. Usually
the server that processes requests is different from the one
that responds to the users. Thus, retrieving a service
location from an IP address does not prove much value.

In LoRec, Web services are aggregated with a bottom-up
hierarchical clustering algorithm. We use median vector
rather than mean vector as the cluster center to minimize
the impact of outliers. The similarity between two clusters
is defined as the similarity of their centers. Each Web
service is regarded as a cluster at the outset. The algorithm
aggregates the pairs of the most similar clusters until none
of the pairs’ similarities exceeds threshold �w.

4.3 Phase 3: Personalized QoS Prediction
The first two phases aggregate users and Web services into
a certain number of clusters based on their respective
similarities. QoS predictions can be generated from both
service regions and user regions. With the compressed QoS
data, searching neighbors and making Web service QoS
predictions for an active user can be computed faster than
conventional methods.

4.3.1 Prediction from User Perspective
Instead of computing the similarity between the active user
and each training user, we only compute the similarity
between the active user and each region center. Moreover,
users in the same region are more likely to have similar QoS
experience on the same Web service, especially on those
region-sensitive ones. To predict the unused QoS value of
Web service s for active user a, we take the following steps:

. Identify the user region of active user a by IP
address. The active user will be treated as a member
of a new region if no appropriate region is found.

. If service s is sensitive to user a’s region, then the
prediction is generated from the region center.
Because QoS of service s observed by users from
this region is significantly different from others

cra;s ¼ rc;s: (8)

. For non-sensitive services, the prediction value drua;s
will be generated considering QoS values submitted
from similar regions. Eq. (5) is employed to calculate
the similarity between the active user and each
region center that has evaluated service s. Up to k
most similar centers with positive PCC values
c1; c2; . . . ; ck will be employed. We discuss how to
choose k (also called top k) in Appendix A.

. If the active user’s region center has QoS value of s, the
prediction is computed using the following equation:

drua;s ¼ rc;s þ
Pk

j¼1 Sim
0ða; cjÞðrcj;s � rcj:ÞPk

j¼1 Sim
0ða; cjÞ

; (9)

where rcj;s is the QoS of service s provided by center cj,
and rcj: is the average QoS of center cj. The prediction is
composed of two parts. One is the QoS value of the
active user’s region center rc;s, which denotes the

average QoS of service s observed by users of this
region. The other part is the normalized weighted sum
of the deviations of the k most similar neighbors.

. Otherwise, we use the service QoS observed by k
neighbors to compute the prediction. The more similar
the active user a and the neighbor cj are, the more
weights the QoS of cj will carry in the prediction

drua;s ¼
Pk
j¼1

Sim0ða; cjÞrcj;s

Pk
j¼1

Sim0ða; cjÞ
: (10)

4.3.2 Prediction from Service Perspective
Clustering Web services provides another way to view and
utilize the data set. It can enhance the prediction accuracy
when we only have limited knowledge of user preference.
To predict the QoS value of service s observed by user a
from the service perspective, we use the Web service
cluster center value of user a as a rough prediction if the
center has the record of a; otherwise, we do not predict
from the service perspective. According to our experiment,
good prediction accuracy is achieved with this rough
prediction. To achieve a better prediction result, we can
tune the result by using Eq. (11)

dria;s ¼ ra;c þ
Pk

j¼1 Sim
0ðs; cjÞðra;cj � rc:jÞPk

j¼1 Sim
0ðs; cjÞ

; (11)

where ra;c is the Web service cluster center value of user a,
Sim0ðs; cjÞ measures the similarity between Web service s
and service center cj. ra;cj is the QoS of user a from service
center cj, and rc:j is the average QoS of service center cj. Up
to k similar service cluster centers will be employed to
predict the value.

4.3.3 Prediction Generation
For user a, the final prediction QoS of service s consists of
two parts: prediction from user perspective and from
service perspective

cra;s ¼ !�drua;s þ ð1� !Þ �dria;s ; (12)

where drua;s is the QoS prediction generated from user
regions, dria;s is the prediction from Web service clusters,
and parameter ! determines how much we rely on each
prediction result, which ranges from [0, 1].

4.4 Phase 4: Web Service Recommendation
Web service QoS prediction is used in different ways in
LoRec to facilitate Web service recommendation. First,
when a user searches Web services using LoRec, predicted
QoS values will be shown next to each candidate service,
and the one with the best predicted value will be
highlighted in the search result for the active user. It will
be easier for the active user to decide which one to have a
try. Moreover, LoRec selects the best performing services
(services with the best submitted QoS) and services with
the best predicted QoS from the whole service repository
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for the active user so that he/she can quickly find potential
valuable ones instead of checking the service one by one.

4.5 Time Complexity Analysis
We discuss the worst case time complexity of LoRec
recommendation algorithm. We analyze the clustering
phase and QoS value prediction phase in Sections 4.5.1
and 4.5.2 respectively. We assume the input is a full matrix
with m users and n Web services.

4.5.1 Time Complexity of Clustering
The time complexity of calculating the median and MAD of
each service isOðm logmÞ. For n services, the time complexity
is Oðmn logmÞ. With MAD and median, we identify the
region-sensitive services from the service perspective. Since
there are at most m records for each service, the time
complexity of each service is OðmÞ using Definition 1.
Therefore, the total time complexity of region-sensitive service
identification is Oðmn logmþmnÞ ¼ Oðmn logmÞ.

In terms of the user region aggregation part, we
assume there are l0 user regions in the beginning. Since
there are at most n services used by both regions, the time
complexity of the region similarity is OðnÞ using Eq. (5).
We use a matrix to store the similarity between each two
regions, and the complexity for computing similarity
matrix is Oðl20nÞ.

The aggregation of two user regions will be executed at
most l0 � 1 times, in case that all regions are non-sensitive,
extremely correlate to each other and finally aggregate into
one region. In each iteration, we first compare at most l0 � 1
heads of the priority queues to find the most similar pairs.
Since the number of user regions that can be aggregated
decreases with each iteration, the real search time will be
less than l0 � 1 in the following iterations. For the selected
pair of user regions, we calculate the new center and
update their similar user regions. Because the number of
users involved in the two user regions is uncertain, we use
the number of all users as the upper bound and the
complexity is Oðmn logmÞ. We employ the priority queue
to sort similar user regions, and the insertion and deletion
of a similar region is Oðlog l0Þ. Thus, the time complexity is
Oðl20ðlog l0 þmn logmÞÞ ¼ Oðl20mn logmÞ. As the above
steps are linearly combined, the total time complexity of
user clustering is Oðl20mn logmÞ.

In the phase of service region creation, there are n
services at the beginning. The aggregation of two service
regions will be executed at most n� 1 times, in case that all
services are merged into one cluster. In each iteration, we
first compare at most n� 1 heads of the priority queues to
find the most similar pairs. Since the number of clusters
that can be aggregated decreases with each iteration, the
real search time will be less than n� 1 in the following
iterations. For the selected pair, we calculate the new center
and update their similar clusters. Because the number of
services involved in two clusters is uncertain, we use the
number of all services as the upper bound and the
complexity is Oðmn lognÞ. The insertion and deletion of a
similar region is OðlognÞ, since we employ the priority
queue to sort similar regions. Thus, the time complexity is
Oðn2ðlognþmn lognÞÞ ¼ Oðmn3 lognÞ.

4.5.2 Time Complexity of QoS Prediction
Let l1 be the number of user regions after the region creation.
To predict QoS value for an active user, Oðl1Þ similarity
calculations between the active user and user region centers
are needed, each of which takesOðmÞ time. Therefore the time
complexity of similarity computation is Oðl1mÞ.

For each service that the active user has not evaluated,
the QoS value prediction complexity is Oðl1Þ, because at
most l1 centers are employed in the prediction as Eq. (9)
and Eq. (10) show. There are at most m services without
QoS values, so the time complexity of the prediction for an
active user is Oðl1mÞ. Thus the time complexity for online
prediction from the user region perspective including
similarity computation and missing value prediction is
Oðl1mÞ � OðmÞ (l1 is rather small compared to m or n).
Similarly, the online prediction from service region
perspective is Oðl2nÞ � OðnÞ, where l2 is the number of
service regions. Compared to the memory-based CF
algorithm used in previous work with OðmnÞ online
time-complexity, our approach is more efficient and better
suited for large data set, and the corresponding experi-
ments confirm this in Section 5.

5 EXPERIMENTS

5.1 Experiment Setup
In this experiment, we crawl publicly available Web services
from three sources 1) well-known companies (e.g., Google,
Amazon, ect.); 2) portals listing publicly available Web services
(e.g., xmethods.net, webservicex.net, etc.); and 3) Web service
search engines (e.g., seekda.com, esynaps.com, etc.). Java classes
are generated using WSDL2Java tool of Axis2 package.

To obtain QoS values of Web services, we employ 150
computers in 24 countries from Planet-Lab [8] to monitor
100 real Web services in 22 countries. About 1.5 millions
Web service invocation records are collected in two days’
time. For each user (a computer node from Planet-Lab),
there are around 100 profiles, and each profile contains the
response time (also called Round Trip Time, RTT) records
of 100 services. We randomly extract 20 profiles from each
node, and generate 3000 users with RTTs ranging from 2 to
31407 milliseconds.

We divide the 3000 users into two groups, one as
training users and the rest as active (test) users. To simulate
the real situation, we randomly remove a certain number of
RTT records of the training users to obtain a sparse training
matrix. We also remove some records of the active users,
since active users usually use a small number of Web
services in reality.

We apply Mean Absolute Error (MAE) to measure the
prediction accuracy of the recommendation algorithm.
The more accurately the algorithm predicts, the better
the recommendations are. MAE is the average absolute
deviation of predictions to the ground truth data, where
smaller MAE indicates better prediction accuracy

MAE ¼
P

i;j jri;j � bri;jj
N

; (13)

where ri;j denotes the expected QoS value of Web service j
observed by user i, bri;j is the predicted QoS value, and N is
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the number of predicted values. MAE reflects how close
predictions are to the eventual outcomes on average, which
gives an overview of the prediction quality.

5.2 Performance Evaluation
To study the prediction accuracy, we compare our
approach with an item-based prediction algorithm using
PCC (IPCC) [23], a user-based prediction algorithm using
PCC (UPCC) [3], WSRec [36], RegionKNN [6].

We randomly remove 90 percent and 80 percent RTTs of
the initial training matrix to generate two sparse matrices
with density 10 percent and 20 percent respectively. We
vary the number of RTT values submitted by active users
from 10, 20 to 30 and name them G10, G20, and G30
respectively. The removed records of active users are used
to study the prediction accuracy. In this experiment, we set
�u ¼ 0:3, �w ¼ 0:1, � ¼ 0:8, ! ¼ 0:1, and topk ¼ 10. To get a
reliable error estimate, we use 10 times 10 fold cross-
validation [29] to evaluate the prediction accuracy and
report the average MAE value.

The experiment is conducted on a laptop with Intel
Centrino Duo processor (1.836 Hz), 2GB memory, and
Window XP SP3 system. Table 2 shows the online time
usage of each algorithm predicting 27000 missing QoS
values for 300 users (one fold), and each user in that set
submits 10 QoS values with 90 missing ones. Obviously,
LoRec requires less time than memory-based methods
(IPCC, UPCC, and WSRec) to perform online prediction
and can scale well for large data sets.

Table 3 shows the prediction performance of different
methods employing 10 percent and 20 percent density
training matrices. To see how location information im-
proves the accuracy, we also compare LoRec with CBRec, a
similar method but removing the location information,
sensitive services and sensitive regions concepts. It shows
that LoRec significantly improves the prediction accuracy
and outperforms others consistently. Performance of all
recommendation approaches enhances with the increasing
number of QoS provided by active users, from 10 to 30
(G10, G20, G30). On the other hand, the density of training
matrix also impacts the performance. All approaches have
better prediction accuracy with training matrix density

20 percent than with density 10 percent. Moreover, the
approaches employing user similarity to generate recom-
mendations are more sensitive to the amount of data
provided by users. For example, the performance of UPCC
and WSRec enhances significantly with the QoS values
submitted by active users (the given number). IPCC stays
stable, since IPCC only employs service similarity instead
of user similarity.

5.3 Impact of Data Sparseness
Compared with the amount of services on the Internet, the
number of services consumed by each user is small. The
data set of recommender systems is usually sparse. We
examine how data sparseness impacts the prediction
results from two aspects: the density of training matrix
which indicates how many QoS records are collected from
all users, and the number of QoS values given by active
users (the given number).

We first study the impact of training matrix density. We
vary the density of the training matrix from 10 percent to
50 percent with a step of 10 percent, and given ¼ 10. For
parameters of LoRec, we set topk ¼ 10, ! ¼ 0:1, �w ¼ 0:1,
� ¼ 0:8, �u ¼ 0:3 with data sets of density 10 percent,
20 percent, and 30 percent, �u ¼ 0:6 with data sets of density
40 percent and 50 percent. Fig. 2a shows the experimental
results. It shows that: 1) With the increase of the training
matrix density, the performance of IPCC, UPCC,
RegionKNN and LoRec enhances, indicating that a better
prediction is achieved with more QoS data. WSRec is not
sensitive to the data sparseness, and it stays around a
certain value. 2) LoRec outperforms others consistently.

To study the impact of the given number on the
prediction quality, we employ the training matrix with
density 30 percent and vary the given number from 10 to
50 with a step of 10. Fig. 2b shows the experimental
results. It reflects that the prediction performance of
IPCC, UPCC, and WSRec generally grows with the
increasing given number. The prediction of LoRec im-
proves with the given number at first, but then it does not
have a steady improvement when the given number
exceeds 30. The above two experiments show that users
are more likely to have better prediction result when they
contribute more data records to LoRec. For more infor-
mation on how other parameters impact the accuracy,
please refer to Appendix A.

6 CONCLUSION

This paper presents a QoS-aware Web service recommen-
dation approach. The basic idea is to predict Web service
QoS values and recommend the best one for active users

TABLE 3
MAE Comparison on Response Time (Smaller Value Means Better Prediction Accuracy)

TABLE 2
Time Usage Comparison of Online QoS Prediction
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based on historical Web service QoS records. We combine
prediction results generated from service regions and user
regions, which achieves better results than existing
approaches. We also find that the combination result is
much better than the result from any single method, either
the prediction generated from user regions or the one
generated from Web service regions. This is because these
two methods analyze the problem from different aspects
and the combination of them counteracts the error of
individual methods.

In our future work, we will consider several aspects to
further improve the proposed Web service recommenda-
tion approach. In terms of the clustering method, we will
consider probabilistic ones like EM to improve the
scalability of LoRec. EM only requires one scan of the
database with limited memory. For recommendation
accuracy, we find that contextual information can greatly
influence Web service QoS performance, such as server
workload, network condition and the tasks that users carry
out with Web services (e.g., computation-intensive or I/O-
intensive task). Besides physical location, we will take
these factors into account and refine the steps of similarity
computation and region aggregation. In terms of the

experiment, we use MAE to measure the overall recom-
mendation accuracy currently. Similar to Web page search
results, users may only consider and try the top three or
five recommended services. Thus improving the accuracy
of top recommended services is another task to investigate.
Our future work also includes investigating the correlation
between different QoS properties, and detecting malicious
users with inaccurate QoS information.

APPENDIX A
EXPERIMENT ON PARAMETER IMPACTS

A.1 Parameter Impact on Clustering
In phase one, users are clustered into regions based on
similarity and physical location. Two thresholds � and �u
determine the number of regions that are created. As
mentioned in Section 4.1, only regions with similarity
higher than �u and sensitivity less than � can be aggregated
into one region.

To study the single impact of �u on prediction accuracy,
we set given ¼ 20, �w ¼ 0:1, ! ¼ 0:1, � ¼ 0:2 and topk ¼ 10
for QoS prediction. We vary �u from 0.1 to 0.9 with a step of
0.1. Fig. 3a shows the relation between �u and prediction

Fig. 3. Impact of �u on prediction accuracy.

Fig. 2. Training matrix density’s impact on prediction accuracy.
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accuracy with three training matrices density 20 percent,
30 percent, and 40 percent. The prediction quality enhances
as �u grows at first, because higher �u helps obtain a set of
coherent regions, and better prediction is obtained from
very similar users. However, when �u grows beyond a
certain value (0.6 in this experiment), the prediction quality
fluctuates. We can see that the fluctuation is more severe
with a sparse data set than with a dense data set. We find
similar results with different � values. As Fig. 3b shows, we
set � ¼ 0:6 and keep other parameter settings the same. We
employ three matrices with density 10 percent, 20 percent,
and 30 percent respectively. We can see that the perfor-
mance with density 10 percent matrix dramatically fluc-
tuates, while the performance of others mildly changes.
This is because when it is difficult to find very similar users
to generate user based predictions, the final prediction
results will only come from service based predictions.

To investigate the single impact of � on prediction
quality, we employ three data sets with density 10 percent,
20 percent, and 30 percent respectively. Each data set contains
2700 training users and 300 active users. We set given ¼ 20,
�w ¼ 0:1, ! ¼ 0:1, and topk ¼ 10 for QoS prediction. Figs. 4a
and 4b show the results with �u ¼ 0:1 and �u ¼ 0:6 respec-
tively. Higher � allows similarly sensitive regions to be
aggregated into one region, and achieves better prediction
result. Note that the optimal value of � is related to the
sensitivity of the original regions at the outset. For the full
data set in the experiment, if we treat each user as a region, 4.
67 percent are with sensitivity around 0.8 and 81.3 percent are
with sensitivity less than 0.1.

A.2 Impact of Topk
Topk determines how many neighbors are employed in the
phase of QoS prediction, which relates to the prediction
accuracy. We employ a training matrix of density 30 percent,
and set � ¼ 0:3, �u ¼ 0:8, �w ¼ 0:2, and ! ¼ 0:1. After the
clustering phase, we obtain 42 user regions. To study the
impact of neighborhood size, we vary topk from 5 to 40 with
a step of 5. Fig. 5 shows the result with the given number
from 10 to 30. The trends of the three curves are similar,
which show that MAE decreases sharply with an increasing
neighborhood size at the beginning, and then stays around

a certain value. As topk grows, more regions that are not
very similar will be considered in QoS prediction, and these
regions make little contribution or even add noise to the
final result.

A.3 Impact of !
Different data sets have different data characteristics.
Parameter ! makes our prediction method more flexible
and adaptable to different data sets. If ! ¼ 1, we make
prediction mainly based on user information, and if ! ¼ 0,
we only consider valuable information from Web services.
In other cases, we leverage both similar users and services
to predict missing values for active users.

To study the impact of ! on our collaborative filtering
method, we use data sets with 2700 training users and 300
active users. We set Topk ¼ 10, �w ¼ 0:1 and �u ¼ 0:6. We
vary ! value from 0.1 to 1 with a step of 0.1. As Fig. 6a
shows, the first experiment employs three training matrices
with density 10 percent, 20 percent, and 30 percent
respectively, and each active user provides 20 records to
the recommender system. It is obvious that ! has an impact
on the prediction accuracy especially when the matrix is
not that sparse. The result indicates that the prediction
accuracy is very stable with matrix of 10 percent density.

Fig. 4. Impact of � on prediction accuracy.

Fig. 5. Impact of topk on prediction accuracy.
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However, for a dense data set, a better prediction accuracy
is achieved with smaller !, which means more information
provided by similar Web services is used.

Another experiment is to study the impact of ! with
different given number. As Fig. 6b shows, we employ the
training matrix with 30 percent density, and set the given
number 10, 20, and 30. Similarly, a better prediction result
is achieved when we employ more information from
similar Web services.
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