Journal of Network and Computer Applications 36 (2013) 167-177

Contents lists available at SciVerse ScienceDirect

NETWORK&
COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

MDiag: Mobility-assisted diagnosis for wireless sensor networks

Junjie Xiong *P, Yangfan Zhou *®* Michael R. Lyu®P, Evan F.Y. Young®

2 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
b Department of Computer Science & Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

ARTICLE INFO

ABSTRACT

Article history:

Received 18 March 2012
Received in revised form

10 August 2012

Accepted 21 September 2012
Available online 11 October 2012

Keywords:

Wireless sensor networks
Mobile

Smartphone

Diagnosis

Though widely employed in various applications, wireless sensor networks (WSNs) are liable to
failures, especially after deployment. Since the on-site failures are difficult to reproduce, it is of critical
importance to perform in-situ diagnosis. Current in-situ diagnosis methods are either intrusive or
inefficient, because they either inject diagnosis agents into each sensor node or build up another
network for diagnosis purpose. To tackle these issues, we propose MDiag, a mobility-assisted diagnosis
approach that employs smartphones to patrol the WSNs and diagnose failures. Diagnosing with a
smartphone which is not a component of WSNs does not intrude the execution of the WSNs. Moreover,
patrolling the smartphone in the WSNs to investigate failures is more efficient than deploying another
diagnosis network. Statistical rules are designed to guide the detection of abnormal cases. Aiming at
improving the patrol efficiency, a patrol approach MSEP (maximum snooping efficiency patrol) is
proposed. MSEP is designed to achieve better performance than the naive method, the greedy method,
and the baseline method in increasing the detection rate and reducing the patrol time of MDiag.
Experiments with real sensor nodes and emulations validate the effectiveness of MDiag in detecting

anomalous cases caused by faults.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless sensor networks (WSNs) have been widely employed
in various applications, such as structure monitoring, traffic
surveillance, environment monitoring (Xu et al., 2004; Akyildiz
et al., 2002). A wireless sensor network is usually composed of a
capable base station (BS) and many resource-limited sensor nodes
that self-organize into a distributed system. Recently, many
efforts have been devoted to improve the reliability of WSNs in
various aspects, such as simulation (Levis et al., 2003), debugging
(Yang et al., 2007), and most importantly in-situ network diag-
nosis that observes real-time network status and enables timely
network failure detection (Ramanathan et al., 2005). WSNs are
liable to failures, especially after the deployment (Langendoen
et al., 2006). In addition, on-site failures are difficult to reproduce
(Luo et al., 2006). Hence, it is critical to perform in-situ diagnosis.

One in-situ diagnosis approach is to implant diagnosis agents
into each sensor node (Ramanathan et al,, 2005). However, many
already-deployed WSNs are not facilitated with diagnosis functions
(Langendoen et al., 2006). We have to update the software of the

* Corresponding author at: Shenzhen Research Institute, The Chinese University of
Hong Kong, Hi-tech Park, Nanshan, Shenzhen 518057, China. Tel.: +852 3943 4257.
E-mail addresses: jjxiong@cse.cuhk.edu.hk (J. Xiong),
yfzhou@cse.cuhk.edu.hk (Y. Zhou), lyu@cse.cuhk.edu.hk (M.R. Lyu),
fyyoung@cse.cuhk.edu.hk (E.F.Y. Young).

1084-8045/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jnca.2012.09.008

whole WSN so as to embed the diagnosis agents. Nevertheless,
programming the agent into each sensor node will inevitably affect
the normal execution of a running WSN application (Heo et al., 2010;
Hui and Culler, 2004). In addition, the diagnosis agent in each sensor
node is usually required to transmit specified metrics back to a
centralized station for diagnosis. In a sensor node with limited
resources, such diagnosis affects the on-site application performance
by consuming the bandwidth and the related resources (Ramanathan
et al., 2005). Furthermore, as we know, the execution of logging
statements could change the actual execution of a system and
then may introduce bugs (Reynolds et al., 2006). It is very costly to
insert agents at each protocol layer although this would result in
high granularity diagnosis. How many agents to insert is a similar
problem. The more the agents are embedded, the more logs the
diagnosis can obtain, and the less efficient and more intrusive the
diagnosis is.

To avoid the intrusion caused by agent injection, some
approaches deploy another network (such as another WSN) to
monitor a WSN, but this approach is neither efficient nor cost-
effective. SNTS deploys several monitoring sensor nodes (they
formulate a snooping network) in the real field along with the
original sensor nodes (Khan et al., 2007). The monitoring sensor
nodes sniff and record the packets sent from the monitored
sensor nodes, which are manually retrieved to a PC for investiga-
tion. For a large WSN, SNTS needs to deploy many monitoring
sensor nodes; as a result, SNTS does not adapt to large WSNs well.

www.elsevier.com/locate/jnca
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2012.09.008
dx.doi.org/10.1016/j.jnca.2012.09.008
dx.doi.org/10.1016/j.jnca.2012.09.008
mailto:jjxiong@cse.cuhk.edu.hk
mailto:yfzhou@cse.cuhk.edu.hk
mailto:lyu@cse.cuhk.edu.hk
mailto:fyyoung@cse.cuhk.edu.hk
dx.doi.org/10.1016/j.jnca.2012.09.008

168 J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177

SNIF deploys a temporary wireless network to snoop a WSN
(Ringwald et al., 2007). It is better than SNTS in that it does not
need to manually fetch back the monitoring nodes, but its nodes
are required to be equipped with two radio sets.

To tackle the above disadvantages, we are the first to propose a
mobility-assisted diagnosis (MDiag) approach to examine failures
in WSNs with an independent mobile device. Nowadays, mobile
smartphones are increasingly popular. By the end of 2011, there
are 6 billion mobile subscribers globally, and smartphone users
show the strongest growth (Global mobile phone statistics). It is
now convenient to patrol a deployed WSN with smartphones to
collect packets sent from sensor nodes. Then the smartphones can
perform diagnosis by analyzing these packets. Such a diagnosis
process can be flexibly turned on or off, allowing users to perform
an on-demand diagnosis. For WSNs that are deployed in harsh
areas without human traces, mobile robots are able to carry the
smartphones (Johnson et al., 2006).

A diagnosis scenario with one smartphone is shown in Fig. 1,
where the dotted lines are the patrol path of the smartphone. The
smartphone starts snooping sensor node 1 for a certain interval,
continues traveling along the path and snooping sensor nodes 2,
3, 4, and 5 for some intervals, and then returns to the starting
sensor node 1.

The most important feature of such an approach is that it is not
intrusive to WSN applications because the smartphones them-
selves are not components of WSNs. MDiag does not need to
implant diagnostic agents to the applications, and thus it does not
need to modify the applications as the proactive approaches do.
Hence, MDiag can be employed to scrutinize any deployed WSNs
when needed without affecting the WSN performance. In addi-
tion, the mobility of smartphones allows users to apply one or
several smartphones to record the packets sent from the WSN
instead of many debugging sensor nodes that need laborious
manual placement and retrieval. Finally, MDiag can collect all
kinds of raw packets (packet created from the radio frequency
chip that contains packet header information of the upper layer
protocols), which is especially useful in finding more failures.
To analyze raw packets of all types, the agent approaches need
to inset agents at all the protocol agents, which is very inefficient.
For example, MDiag can collect control packets exchanged locally,
which are not transmitted back to the BS for diagnosis in
Sympathy (Ramanathan et al., 2005).

—_—

PR E s I
,’, \\\ //@ ~ (2 |
af/ A 1>:/ ’i
G N
/\/!5_,/ l \ﬁ
! gl = |
|
\
\

Fig. 1. A MDiag patrol scenario. The smartphone first visits sensor node 1, then
sensor nodes 2, 3, 4, and 5.

The design of MDiag mainly faces two challenges. First, it is
difficult to determine the abnormal behaviors from the collected
various packets, such as routing packets, MAC layer control
packets, and application data packets. We define a few statistical
rules to identify anomalies based only on minimum prior knowl-
edge of the system. Second, the patrol pattern of the smartphones
influences the failure detection rate. How to design the patrol
method for visiting the sensor nodes in order to collect packets is
crucial and difficult. We propose a method called MSEP (max-
imum snooping efficiency patrol) which identifies the sensor
node set to patrol and collect relevant packets for analysis.
Consequently, it increases the failure detection rate. Finally, in
comparison with the naive method, greedy method, and baseline
method, we perform extensive experiments to demonstrate the
effectiveness of MDiag and show its effective detection of several
interesting failures.

The rest of this paper is organized as follows. First, Section 2
highlights the related work. Next, Section 3 clarifies the network
architecture and failure classification for MDiag. Section 4 designs
the framework of MDiag while Section 5 proposes the algorithm
for the smartphone patrol approaches. Section 6 presents the
results of our experimental evaluation. Finally, Section 7 con-
cludes the paper.

2. Related work

There has been tremendous work in finding faults that will cause
network failures in WSNs. Some of them are based on simulations,
such as ns-3 (http://www.isi.edu/nsnam/ns/), a general network
simulator, and TOSSIM (Levis et al., 2003), a simulator for WSNs
running on TinyOS (Levis et al., 2005). More advanced simulation-
based failure detection tools include T-Check (Li and Regehr, 2010)
and KleeNet (Sasnauskas et al., 2010). T-Check (Li and Regehr, 2010)
is an event-driven simulator developed from TOSSIM, while KleeNet
(Sasnauskas et al., 2010) is based on the low-level symbolic virtual
machine. Given the fact that the behaviors of nodes in a simulation
environment and real sensor nodes are not the same, in-situ
diagnosis approaches for WSNs are indispensable.

One kind of in-situ diagnosis approaches is to embed diagnosis
agents into each sensor node. For example, by injecting the
diagnosis agent, Sympathy (Ramanathan et al., 2005) actively
collects run-time status from sensor nodes, such as routing table
and flow information, and detects possible faults after transmit-
ting them to the BS. Nevertheless, these approaches are not
adaptable for WSNs that have already been deployed without
such agents. Because we have to update the software of WSNs so
as to embed the agents, which unavoidably affects the running
of WSN applications (Demirbas, 2008). Moreover, Sympathy
asserts that it only employs one rule that insufficient data at
the sink implies a failure, which means that it cannot detect
certain network failures, such as overenthusiastic transmission
which results in reduced battery lifetime.

For WSNs deployed with these diagnosis agents, the agent
injection methods inevitably intrude the WSN applications. The agent
execution may cost extra CPU computation, communication band-
width, and energy of the sensor nodes, which imposes heavy burden
on the resource-limited networks. Since Sympathy costs extra com-
munication bandwidth and energy consumption to actively transmit
the information, PAD (Liu et al., 2008) and PassiveAssertions (Romer
and Ma, 2009) reduce the diagnosis efforts by piggybacking the logs
in regular data packets. Self-Diagnosis (Liu et al., 2011) involves
multiple local nodes in cooperation to detect WSN failures based on
finite state machines. This approach reduces the communications
effort of transmitting the logs to the BS. Since all the existing in-situ
diagnosis approaches are intrusive to the WSNs, we propose a new

J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177 169

MDiag approach. Instead of changing the WSN systems, MDiag
employs mobile phones to travel in deployed WSNs and to passively
collect packets sent from the passing sensor nodes. The collected
packets can then be utilized for diagnosis. Because mobile phones are
not a part of WSNs, MDiag does not intrude the WSNs and is thus
adaptable to all WSN applications.

Another type of approaches to avoid the intrusion to WSN
applications is deploying another network to monitor the WSN.
SNTS deploys several monitoring sensor nodes in the real field
along with the original sensor nodes (Khan et al.,, 2007). The
monitoring sensor nodes sniff and record the packets sent from
the sensor nodes that they observe. Although the debugging
sensor nodes can formulate a network, they cannot communicate
with each other and transmit the recorded packets to the BS
because their transmissions would cause interference to the
original WSN. As a result, in fetching the recorded packets, all of
the debugging sensor nodes have to be manually retrieved, which
are quite labor-intensive. In addition, for a large WSN, SNTS
should deploy many debugging sensor nodes so as to guarantee
that all the original sensor nodes can be monitored, hence SNTS
does not suit large WSNs.

To avoid the efforts of manually retrieving the nodes in the
monitoring network, SNIF deploys a different monitoring network
which is composed of nodes with two sets of radio equipment
(Ringwald et al.,, 2007). One set is used to passively listen to
the packets sent from the WSN. The other set employs a
different wireless channel to transmit the sniffed packets to the
BS without interfering the original WSN. Nevertheless, dual radios
are generally not facilitated in the off-the-shelf sensor network
products. Moreover, like SNTS, SNIF also deploys an additional
diagnosis network, which is not cost-effective. With our MDiag
approach, the mobility of diagnosis devices saves the cost of
the large monitoring network deployment, and the employment
of smartphones eliminates the extra hardware requirement of
monitoring nodes.

Finally, mobile sensor nodes have already been introduced to
improve WSN coverage (Liu et al., 2005; Xing et al., 2008a) while
multiple, mobile base stations are also deployed to prolong the
lifetime of the WSNs (Xing et al., 2008b; Shi and Hou, 2008).
However, no prior work has employed mobile platforms, such as
the smartphones, for diagnosing WSNs. MDiag is the first work to
utilize mobile platforms for WSN diagnosis purpose.

3. MDiag background
3.1. Network architecture

We consider a network which involves a BS and static wireless
sensor nodes deployed in a sensing field for monitoring tempera-
ture, humidity, noise level, etc., from the environment. A smart-
phone is able to receive the raw packets sent from the sensor
nodes within its reception range as long as it is equipped with the
same reception device as the sensor nodes or it is attached with a
sensor node for snooping purpose only (Ngai et al., 2011; Rensfelt
et al., 2010). To diagnose, the smartphone can patrol in the WSN
field as shown in Fig. 1. The patrol can start at any time and last
for any duration according to the requirement of WSN main-
tainers. For example, they may want to patrol a WSN once each
day, or they only turn on the diagnosis for a long period when
they need to ascertain and find more information about suspi-
cious phenomena.

Intuitively, the more the smartphones are available for WSN
diagnosis, the better the diagnosis effectiveness is. Nevertheless,
more efforts are required to carry them in the network field.
Without loss of generality, in the following we discuss the case of

Transient Short-term Permanent
| —,
0 time

Fig. 2. Failure classification.

using one smartphone to patrol a WSN and to passively collect
network packets. The case of using more smartphones can be
similarly extended.

3.2. Failure classification

MDiag is proposed to diagnose the failures in WSNs by
collecting and analyzing the packets sent by sensor nodes. Since
it can only diagnose the network failure according to the packets
sent out in the WSNs, it cannot detect failures that are not
triggered during the execution. The failures are divided into three
classes as shown in Fig. 2. The x-axis is failure lasting time, and it
increases from left to right. The first class is transient failures that
last for a very short period, such as random packet loss considered
in Zhou et al. (2010). The second class lasts only for a longer
period and then disappears, such as routing failures, link failures,
and congestion. It is called short-term failure. The third class is
permanent failures that stay in the network until they fixed or
they stay for a very long time, such as node crash and incorrect
resource allocation failures. We discuss some of the failures we
identified in our experiments in Section 6.

The transient failures hold for a very short time and they do
not affect the network behaviors distinctively, so we can hardly
detect them by in-situ diagnosis. In the following, we focus on
detecting the permanent failures and short-term failures.

4. MDiag framework

Referring to the diagnosis scenario shown in Fig. 1, we design
the MDiag framework as shown in Fig. 3.

In the first step, by visiting each sensor node in the WSN
for a sufficiently long time, the smartphone can get the neighbor-
ing information of each sensor node. It inputs the neighboring
information to the algorithm of patrol set selection which gen-
erates the set of K sensor nodes to patrol. Note that our algorithm
of patrol set selection does not require the full knowledge of
the WSN topology, although during the patrol the smartphone
could build up a coarse topology by locating each sensor node’s
approximate position with its GPS (global positioning system).
During the initial WSN visit, we can also estimate the traffic load
at each sensor node. Then the time that the smartphone stays
along with each sensor node in the patrol set is easy to be
calculated. The heavier the traffic load, the shorter the time that
the smartphone requires to collect enough data packets and other
control packets for the statistical analysis.

In the second step, on the basis of packet structures provided
by WSN developers or system specifications, packet decoder
and some statistical rules for packet analysis are applied on the
collected packets.

In the third step, the sequence of packets collected during the
patrol of the K sensor nodes is input to the packet decoder, which
will generate statistical results. Based on the statistical rules on
packet analysis, if the smartphone deducts that the network
behavior is abnormal, it can produce a failure report and trigger
the additional diagnosis. Further actions, such as collecting extra
packets for more detailed inspection, can be taken to analyze the
phenomenon and locate the potential bugs.

170 J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177

| ™7 WsNdevelopers | T 1
[(or specifications) | I |
- - -

Step 2 | | I | Step 1
— | | |+
| | !

Y I |
I Packet | | K sensor nodes to
| structures | | be patrolled |
1 —__l
: |
F————— —_———
| y Packet Y
Packet | Raw packets
| decoder in the |« I sequence collected by the
I smartphone | smartphone

»| Statistical results on raw packets

Step 3 y
— / Problem report
Fig. 3. MDiag framework.
802.15.4 | XMAC | Routing Application

header | header| header

data

Packet information deducted from the packet contents

Packet type : XMAC STROBE, XMAC STROBE_ACK, XMAC DATA, XMAC DATA_ACK,

Routing ANNOUNCEMENT,

Address Source address, destination address, intermediate address,

Fig. 4. Raw packet structure.

Next we focus on the input and output of the packet decoder
and the statistical rules on packet analysis. The algorithm of
patrol set selection will be discussed in the next section.

4.1. Packet decoder input and output

Packet decoder is used to analyze the various types of collected
raw packets in the network and to output statistical packet results
for inspection. First, we discuss the feature of the decoder input.
Then we show the format of the decoder output.

We can collect raw packets from the radio frequency chip.
Figure 4 shows a typical raw packet structure in WSNs whose
MAC layer protocol is X-MAC, a frequently used MAC protocol
(Buettner et al., 2006). Besides application data, the raw packet
contains a lot of low-level header information, from which we can
acquire the information on packet types, addresses, values, and so
on. Raw packets help us analyze the network behaviors from all
protocol layers, including interactions between layers.

The input of the packet decoder is a sequence of raw packets.
After decoding the raw packets according to the structures shown
in Fig. 4, the output is statistical results for the failure report
shown in Fig. 5. It shows the sensor node neighbor information,
the count of each type of packets, and so on.

4.2. Statistical rules on packet analysis

The aforementioned rules describe statical packet behaviors
in WSNs, therefore, they are not applicable to analyze a single

For sensor node W,

W1 has neighbors:

A, B,C,......

W, has sent out the following types of packets to neighbor A:
XMAC STROBE count: X

XMAC STROBE_ACK count: Y

XMAC DATA count: Z

XMAC DATA_ACK count: U

Routing ANNOUNCEMENT count: V

Fig. 5. Statistical results.

packet exchange process. For example, the rules cannot be used in
detecting the failure of the TCP three-way handshake caused by
random packet loss because a TCP three-way handshake process
does not compose a statistical packet behavior. Moreover, a
random TCP packet loss does not mean application failure or
performance degradation unless it happens frequently.

Because our rules are statistical and are provided by the deve-
lopers or the specification, they are a subset of the specification-
based rules as shown in Table 1. Unlike the state-of-the-art
approach Sympathy (Ramanathan et al., 2005) which employs

J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177 171

Table 1
Our statistical rules are a subset of the specification-based rules.

Table 2
Statistical rules for a typical WSN application.

Statistical
rules

Layer Specification-based rules

Application The value (e.g., temperature) of the application Yes
layer data falls within the range specified.

The number of data packets exchanged among the Yes
BS and the sensor nodes should be within the
specified range in a certain interval.
The data communication process No
(such as the packet order) is based
on the specification.

Routing The routing metric value is in the specified legal Yes
layer range
The number of each kind of routing packets sent Yes
out by the BS and sensor nodes is normal within
a certain period
The routing packet exchange sequence should No
conform to a specific routing protocol
(e.g., first routing request packet,
then routing reply packet)

MAC layer The number of each kind of MAC packets Yes
sent out by the BS and sensor nodes is normal

within a certain period

The MAC packet exchange process is based on the No

specification

only one rule, i.e., insufficient data at the sink implies failure, our
statistical rules are based on the targets of all protocol layers.
Hence our approach can detect more failures than Sympathy
(Ramanathan et al., 2005). By decoding the raw packet, we can
infer the following packet fields on which the statistical rules
utilize:

e Packet type.

e Packet count of each type.

e Packet directions.

e Neighbor information.

e Packet value, such as routing metric of routing packet, data
content of application data packet, and so on.

Without loss of generality, we take one kind of the most popular
WSN applications, the data gathering application, including
routing protocol CTP (Gnawali et al., 2009) and XMAC protocol
(Buettner et al., 2006), as an example and give the major
statistical rules in Table 2. This set of rules can be extensible
according to the statistical granularity. The parameters used in
the rules are represented in Fig. 5.

According to the application target, the data flow is only from
the sensor nodes to the BS, and hence we derive Rules 1 and 2 in
Table 2. Rule 1 means that the BS does not send data packets. Rule
2 means that other sensor nodes send the required amount of
data packets.

Based on the routing protocol target, Rules 3 and 4 clarify the
legal range of the routing metric, and Rule 5 means no routing
fluctuation. There should be no bidirectional data exchange
between two sensor nodes; otherwise, it is possible that the
routing is unstable and causes the two sensor nodes to use each
other as the forwarding counterpart.

Rule 6 comes from the X-MAC behavior between a pair of
communicating sensor nodes, i.e.,, for each sensor node, the
number of X-MAC STROBE_ACK packets sent should be almost
equal to the number of X-MAC DATA_ACK packets sent and the
number of X-MAC DATA packets received. If Rule 6 is violated, say

Layer Statistical rules

Application Rule 1. For BS, Z, the number of

layer application data sent out is 0
Application Rule 2. For sensor nodes other than BS,
layer Z is within the application requirement

Routing layer Rule 3. For BS, the legal routing metric is 0
Routing layer Rule 4. For sensor nodes other than BS,
routing metric value is legal
Routing layer Rule 5. For sensor nodes other than BS,
no bidirectional data exchange exists, i.e., Z#U =0
Rule 6. For sensor nodes other than BS, the
number of each kind of MAC packets sent is normal, i.e.,
Y~UX> or >Z

MAC layer

the number of X-MAC STROBE_ACK packets sent is far more than
the number of X-MAC DATA_ACK packets sent, then the X-MAC
works inefficiently.

The application mechanism, the CTP protocol, the X-MAC
protocol should be working well when these rules are satisfied.
The BS receives its expected data regularly, and the CTP and
X-MAC protocols work efficiently without too much extra energy
consumption for communications.

5. Coverage-oriented smartphone patrol algorithms

By patrolling the WSN, we can collect the packets sent out by
the sensor nodes in the patrol set. By analyzing these packets, we
can diagnose the WSN. Collecting more packets can help detect
more failures. If the packets from some sensor nodes are never
collected, failures happening at these sensor nodes are less likely
to be discovered. As a result, the patrol approach should try
to cover all the sensor nodes in the WSN. Due to their different
coverage efficiency, different patrol methods can affect the
detection efficiency, especially for the short-term failures.

We do not consider the cost during the travel, hence the
visiting order of the sensor nodes in the patrol set is not a concern
in our patrol set establishment process. The key is the patrol set
rather than the patrol path. Moreover, our experiments also verify
that the difference is very small (less than 3% in most cases) for
visiting the sensor nodes in the same patrol set in different order.

5.1. Naive method (NM)

The first method is the naive method that the smartphone
visits all the sensor nodes one by one, but it needs long time to
traverse the deployed WSN for only one round. If a failure
happens at the last sensor node that will be patrolled, it is very
likely that when the smartphone finally arrives at the sensor
node, the failure phenomenon has already disappeared. Corre-
spondingly, the failure detection rate of NM is low. If we can cover
all the sensor nodes in a shorter period, then the failure missing
rate would be lower.

5.2. Greedy method (GM)

To reduce the patrol time, we utilize the broadcast nature of
wireless transmissions and thus design methods that perceive all
the sensor nodes without visiting each sensor node one by one.
For example, in Fig. 6, since node 2 is only neighboring to nodes
1 and 3, a smartphone that visits node 2 can also overhear the
packets sent from node 1 and node 3. As a result, to patrol all
the senor nodes in this topology, we only need to visit node 2
and node 4 instead of visiting all the four nodes one by one. By

172 J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177

patrolling the sensor nodes in the patrol set, all the sensor nodes
could be snooped without visiting them one by one.

However, to find the patrol set with the minimum sensor nodes
is a set cover problem, and it is shown to be NP-complete (Karp,
1972). An intuitive method is the greedy method (GM) (Johnson,
1973). To simplify the GM explanation, we choose a regular 9-node
network topology as shown in Fig. 7, in which sensor node 1 is the
BS, and the other eight nodes are sensor nodes. Sensor node 5’s
neighbors are: 2, 4, 6, and 8. The degree of each sensor node v is the
number of its neighbors, denoted as Degree(v). For example, for
node 5, Degree(5)=4, and for node 1, Degree(1)=2.

We define the snooping efficiency of visiting a sensor node v as
Degree(v). Visiting v can overhear the other (Degree(v)—1) sensor
nodes. The larger the snooping efficiency the better, because
more packets can be collected on the visit. The snooping efficiency
of a patrol set S with K sensor nodes is defined as (1/K)}", .5
Degree(v). Improving the patrol set snooping efficiency can
increase the packets collected for diagnosis, and hence raise the
failure detection probability.

By them our target is to improve the patrol set snooping
efficiency rather than to solve the minimum set cover problem.
When the sensor node coverage is satisfied, minimizing the patrol
set size can increase the patrol set snooping efficiency, and
increasing the patrol set snooping efficiency helps reduce the
patrol set size.

In the GM algorithm, the smartphone always selects to visit
the sensor node whose current degree is the largest. Each time a
sensor node is selected into the patrol set, its neighbors and itself
are removed from the neighbors of the remaining sensor nodes.
Hence, the degrees of the remaining sensor nodes are updated for
the next greedy selection. The sensor node selection continues
until all the sensor nodes can be snooped.

5.3. Maximum snooping efficiency patrol (MSEP)

GM can result in selecting several sensor nodes with small
degree. For example, the selection results with GM are shown in

Fig. 6. Network topology I. The smartphone stays near sensor node 2.

@

®

sub-figure (a) of Fig. 7. Sensor nodes 1, 3, 7, and 9 are visited with
low snooping efficiency because their degrees are 2. In contrast,
sensor node 5 is visited with high snooping efficiency. Never-
theless, since many sensor nodes are visited with low snooping
efficiency, GM cannot achieve high patrol set snooping efficiency
which is 2.4. Eliminating or reducing such visiting can help
enhance the snooping efficiency and reduce the patrol set size.
Therefore, we design a different method called maximum snoop-
ing efficiency patrol (MSEP) that can traverse all the sensor nodes
with a smaller patrol set size. In comparison, its patrol set
selection of the regular 9-node network is shown in sub-figure
(b) of Fig. 7, which contains only three sensor nodes rather than
five sensor nodes for the GM algorithm. The snooping efficiency of
this patrol set is 2.67, higher than that of GM patrol set.

MSEP aims at enhancing the snooping efficiency by reducing
small degree node selection probability. Therefore, it can corre-
spondingly reduce the patrol set size. On one hand, it should
guarantee to cover every sensor node, including the sensor node
with a small degree. Therefore, MSEP first finds i, the sensor nodes
with the minimum degree. On the other hand, to reduce small
degree node selection probability, it selects a sensor node j with
the largest degree from i’s neighbor set. By visiting j, the smart-
phone can also snoop i, and the snooping efficiency is increased.
Then j is added to the patrol set M. Nevertheless, such selection
may still result in selecting sensor nodes with a small degree in
the future. Hence, MSEP rewinds and corrects sensor node j and i
selection for a few times. The details are shown in Algorithm 1.

The first step in Algorithm 1 is the sensor node selection and
degree update. At line 7, sensor node i with the minimum degree
is selected. At line 14, sensor node j with the largest degree is
chosen to be included in the patrol set. To calculate how many
sensor nodes remain to be patrolled, line 16 deletes j and sensor
nodes in its neighbor set N; from S" and W'. Corresponding to the
deletion, line 17 updates the degree of the remaining sensor
nodes in S and W’ (i.e., the degree is decreased because of sensor
node deletion).

Next is the refinement of sensor node selection. Line 19 checks
whether selecting j will result in the remaining sensor nodes with
a small degree, e.g., degree 1. If the answer is no, we select the j
and add it to M (line 22). Otherwise, we refine the sensor node
selection. We select a different j (back to line 14). If all sensor
nodes in H; result in sensor nodes with a degree 1, remove i from
S, add it to W (line 20), and repeat to find a sensor node with the
minimum degree in S (back to line 7). Doing such check and
sensor node selection refinement can improve the snooping
efficiency. In our algorithm we choose to refine the selection of

b

O IO,

@ ©

@

© @

@ ¢ ©
O 6 ©

Fig. 7. Patrol set selection of GM (sub-figure a) and MSEP (sub-figure b). The blue circle is put into the patrol set. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)

J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177 173

sensor nodes with degree 1. We can also refine with a larger
degree, which can improve the snooping efficiency, but will cost
more computation efforts.

After handling all the sensor nodes in S, we visit the sensor
nodes in W. The difference is that when handling sensor nodes in
W, we do not take refining actions on sensor nodes with degree 1.

Algorithm 1. MSEP algorithm

1: Node set S = {all the nodes}

2: Patrol set M =0

3: Candidate node set W =0

4: S =SSW =W

5: k=0 //k is the size of set M

6: while S =0 do

7: Choose a node i e S with the minimum degree //from
neighbor information

8: Let H;=N;{Ji /| N; is node i’s neighbor set
9. repeat

10: S=SW=wW

11: if H; = =0 then

12: break

13: end if

14: Vv nodes e H;, choose j with the largest degree
15: Delete j from H;

16: Delete j and N; from S" and W’

17: Update Degree(v), Vv e S and W’

18: until Do not exists v e S with Degree(v) ==1
19: if H;= =0 and Jv e S’ with Degree(v) ==1 then
20: Delete i from S, add i to W\W' =W,§' =S

21: else

22: Addjto MW =W'S=Sk=k+1

23: end if

24: end while

25: while W =0 do

26: Choose a node i e W with the minimum degree
27: Vv nodes e N;Ji, choose j with the largest degree
28: Addjto M, Delete j and N; from W,K=K+1

29: Update Degree(v), Vv e W

30: end while

6. Evaluations

In evaluating the patrol set size and the snooping efficiency,
we perform extensive simulations in the most popular freeware
network simulator ns-3 (http://www.isi.edu/nsnam/ns/). The
results demonstrate that our MSEP requires smaller patrol size
than GM, and it achieves higher snooping efficiency. The results
imply that MSEP can obtain higher failure detection. In the
simulation, NM is not compared with MSEP because its patrol
set size is far too larger than that of GM and MSEP.

In evaluating failure detection effectiveness, for permanent
failure detection, we carry out the evaluations with 4 TelosB
sensor nodes (http://www.willow.co.uk/TelosB_Datasheet.pdf)
and 1 Andriod smartphone (Rensfelt et al., 2010), in which the
transmission range of the sensor nodes is about 20-30 m indoor.
We perform emulations on sensor node operating system Contiki-
2.4 (Dunkels et al., 2004) for short-term failure detection, in
which the transmission range of the emulated sensor nodes is
50 m. In all the experiments, an existing application, data collec-
tion application runs with underlying routing protocol CTP
(Gnawali et al., 2009) and XMAC protocol (Buettner et al., 2006).
We use real failures encountered in our experiments and also
failures found in Contiki, and passively collect the raw packets
sent from the radio frequency chip. The received packets can be

stored at the smartphone which is equipped with larger memory.
Then based on the packet format, we provide a packet decom-
position program (small enough to fit in smartphones) to analyze
the received packets online and then generate the failure report.

Besides NM and GM, we also implement a baseline method
called RM-K. RM-K randomly selects K sensor nodes to form the
patrol set. It does not care whether such set can cover all the
sensor nodes, i.e., visiting the sensor nodes in the set can
snooping all the sensor nodes in the WSNs. We repeat the random
patrol set selection for 100 times and use the averaged results
for RM-K.

6.1. Patrol set size and snooping efficiency

In this section, we perform extensive simulations of MSEP and
GM algorithms in ns-3. We use the setdest tool in ns-3 to
randomly generate connected network topologies of the following
sizes: 25, 100, 225, 400, 625, 900, 1225, and 1600 nodes. SMAC
(Ye et al, 2002), the classical MAC protocol for WSNs, is
employed. Each sensor node generates application data periodi-
cally. Both DSR (dynamic source routing) and static routing are
used. The reception range is 50 m.

Figure 8 shows that the patrol set size of the MSEP is smaller
than that of GM. It follows that the patrol set snooping efficiency
of MSEP is higher than that of GM when both MSEP and GM
guarantee the coverage of the WSNs. Figure 9 also verifies this

300 T T T T T T T

250
200(Gl

150 e KRB

Patrol set size

100

50

25 100 225 400 625 900 1225 1600
Network size

Fig. 8. Patrol set size.

8.5 \ T =

Patrol set snooping efficiency

25 100 225 400 625 900
Network size

1225 1600

Fig. 9. Patrol set snooping efficiency.

174 J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177

1.3 T T T T T T T
; &
%) 50
S 5
z o I
g = 12 F X PCx -
s 9 tox I et
T2 2R 7]
A % : X
g7 11t : .
[%
© X o %,
a2 e P \' S
| o B B : 8 e
25 100 225 400 625 1225 1600

Network size

Fig. 10. Ratio of packets collected by MSEP to packets collected by GM.

point. The theoretical patrol set snooping efficiency can be
calculated after knowing the degrees of each sensor node in the
patrol set. Next by running the WSN application in ns-3, we
calculate the packets that are snooped by the MSEP and GM in the
same period, through which we can get the practical patrol set
snooping efficiency in simulations. The results are shown in
Fig. 10. The ratio of packets collected by MSEP to packets collected
by GM is consistent with the ratio of the snooping efficiency of
MSEP and GM. Because the packets collected are of various kinds
and the staying time at different visited sensor node is different,
the actual total count of packets collected in simulations may vary
from those in the theoretical cases. Although small fluctuations
exist between the theoretical and practical scenarios, they both
verify that MSEP achieves higher snooping efficiency than GM.
We observe that the ratios for the 25-node and 100-node net-
works are much larger than those for the other networks. The
reason is that the node density of the 25-node and 100-node
network (1 sensor node per 51.84k sq m) is lower than that of the
rest of the networks (1 sensor node per 46.24 sq m). Hence the
snooping efficiency of them is also smaller than that of the other
networks as shown in Fig. 9. In larger networks with randomly
deployed sensor nodes, higher density is required in order to
guarantee that the networks are connected without holes. This
means that MSEP is much better than GM, especially in WSNs
with low node density.

6.2. Permanent failure detection

Initially, for the purpose of demonstrating an existing
WSN application in Contiki, we build up and run it with four
telosB sensor nodes and one smartphone shown in Fig. 6. Since
the indoor transmission range of TelosB is about 20-30 m, we
separate two neighboring sensor nodes for about 18 m apart.
We do not expect any failure because the topology is simple and
the application is provided by the developers. However, the
failure still happens.

Specifically, in the packets which sent from sensor node 2 to
sensor node 3, the ratio of XMAC STROBE_ACK packets to XMAC
DATA_ACK packets is about 52, while in fact the ratio should be
around 1 according to Rule 6. This means that node 2 agrees to
receive XMAC DATA packets from node 3 for 52 times, but it only
tells node 3 that it receives the expected data packets once.

This is a performance degradation failure because it costs a lot
of control packet exchange to transmit one required data packet
and the energy consumption is very high. It can hardly be
detected at the application layer because the BS receives the
expected data packets. Although this problem does not fail the

application in this simple topology, it will break down the
application when the network size increases. In this experiment,
the smartphone can detect the failure by staying near any sensor
node. It finds that the collected packets violate Rule 6.

It is very surprising that this failure is caused by the ‘printf’
statements in the application program. As we know, for the
program running in the PC, inserting a few ‘printf statements
can hardly affect the normal execution. Nevertheless, it damages
the WSN application execution. In this WSN application, every
time a sensor node is going to send out a data, it will first print
out a message ‘Sending’. By analyzing the actual running process
of the sensor node, we notice that the ‘printf’ statement will issue
the serial port interrupt, which will post a process to print out a
character. Printing out several characters means more processes
posted in the CPU queue. As a result, the ‘printf statement will
take up so many CPU resources that the CPU is too busy to handle
the packet transmission and reception in time. As a result, the
packets are dropped after the sensor node receives them at the
physical layer rather than being dropped on the way.

Forgetting to comment out the debugging ‘printf statements is
very common. Writing redundant statements is also common,
which may fail the WSN applications due to consumption of
limited resources. This kind of failures is not easy to be identified
because the programs are correct in the aspect of function and
logic. As performance degradation failure, they may not be
manifested in simple scenarios, such as small-scale testbed.
Nevertheless, since MDiag is able to collect packets of all types,
it can analyze the WSN application and detect failures at all
protocol layers. It can help find failures that do not just occur at
the application layer.

6.3. Short-term failure detection

The patrol approaches are very crucial in detecting short-term
failures. For the sake of easy identification of correct behaviors,
we use the regular network topology shown in Fig. 11, in which
node 1 and node 2 are 40 m apart considering that the transmis-
sion range of the emulated sensor node is 50 m. In fact, our MDiag
also works very well with sensor nodes randomly deployed
because our algorithm of patrol sensor node set selection relies
only on neighbor information of each sensor node rather than on
the precise topology and locations.

BS(1 2 3 4 5
6 T 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Fig. 11. Network topology II. The smartphone patrols the sensor nodes in the
network.

J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177 175

6.3.1. Short-term failure explanation

Then we run the existing application in a larger network
shown in Fig. 11. We find that the routing is very unstable when
the WSN starts to run. Many bidirectional data exchange happens,
which violates Rule 5. After a long time the routing stabilizes, i.e.,
no bidirectional data exchange. Due to node crash and application
fix, sensor node reboot is not rare in real deployment. We reboot a
sensor node during the application running process. Because such
reboot takes a very short time, according to the basic mechanisms
of routing protocol CTP, we expect that the routing may remain
unchanged or the routing of the surrounding sensor nodes may
change a little. Nevertheless, the reboot results in routing fluctua-
tion in a large range and for a long time. Rule 5 is violated again,
i.e., bidirectional data exchange happens.

This failure in the routing protocol CTP is caused by not
initializing the routing value of each sensor node to the maximum
value while the routing value of the BS is initialized as O.
According to the original value in the memory, the routing value
is O at the initial stage. As a result, a rebooted sensor node will
broadcast its routing value as 0. This means that it is the BS
whereas it is actually not. In this way, routing disturbance will
occur in the network when a sensor node is rebooted. Although
the routing will become abnormal after the correct routing value
from the BS arrives at the rebooted sensor node and its surround-
ing sensor nodes, failures last for a period of time because the
wrong routing value will propagate for a certain range. Specifi-
cally, the routing fluctuation caused by a sensor node reboot is a
short-term failure.

At time 600 s, the network stabilizes, and node 15 is rebooted
to repeat our previous failure detection process. To get the ground
truth, we analyze all the packets sent out from time 600 s to
1600 s and find many abnormal cases (ACs): bidirectional data
packet exchange between a pair of sensor nodes, which disobeys
Rule 5. The abnormal cases can be classified in two aspects. First,
in respect of lasting time, some of them last for a much longer
time than the others. We name them long AC and short AC.
Second, for some ACs, the bidirectional data packet exchange
happens frequently throughout their lasting period while for the
other ACs, it only happens for a very few times. We called them
frequent AC and infrequent AC. For example, R represents a datum
in the opposite direction of a datum D. In 200 s, the pattern of a
frequent AC can be DRDRDRDRDR and an infrequent AC can be
DDDDDRRRRR. Since patrolling the WSN cannot snoop all the
packets sent out by the network, a frequent and long AC is easy to
be discovered with high probability.

People are interested in knowing whether reboot happens, but
they always ignore the performance during reboot. In fact, many
potential bugs are trigger in corner situations, such as sensor
node reboot, random packet loss, packet duplication, and sensor
node crash (Sasnauskas et al., 2010). In addition, not initializing
variables is a frequently-made mistake, though its negative
influence is not always obvious. When such kind of frequently-
made mistakes meet the corner cases, failures are triggered.
Nevertheless, some of the failures do not persist for a very long
time. Hence, the BS may still receive its expected data at the
application layer. In this way, other methods that are unable to
collect packets of all types will have a lower chance to detect the
failures.

6.3.2. Short-term failure detection results

To evaluate the failure detection ability of MSEP, we compare
the AC detection probabilities of NM, GM, and MSEP and RM-K
because detecting any AC means detecting failure. In this experi-
ment, the patrol set of NM, GM, and MSEP contains 25, 10, and
7 sensor nodes respectively. RM-7's patrol set consists of seven

randomly selected sensor nodes while RM-10’s consists of 10.
To collect three (the data packet number can be adjusted) data
packets at each snooped node, the patrol time of NM, GM, MSEP is
around 625, 260, and 180 s respectively.

To compare the approaches, we first compare their perfor-
mance in finding one AC by filtering out all the other ACs. Then
we check their probability in finding at least one AC from all the
ACs. To do so, we select seven representative ACs as shown in
Fig. 12. Among them exist long, short, frequent, and infrequent
ACs. AC1, AC2, and AC3 are long ACs that last for about 500 s or
600 s, while AC4, AC5, AC6, and AC7 are short ACs that last for
about 200 s. AC1, AC3, AC4, and AC5 (red pillars) are frequent AC.
AC2, AC6, and AC7 (yellow pillars) are infrequent ACs.

Figures 13 and 14 statistically show the detection probability
of AC1 and AC3, two long and frequent ACs. In this scenario, the
lasting of all the ACs is no longer than 600 s, hence we do not
consider working for an interval longer than 600 s. Generally, as
the working time of the smartphone increases from 200 s to 600 s,
the detection probabilities of all methods increase because more
packets can be snooped. The detection probability of RM-7 and
RM-10 is similar and they represent the average level. NM is
worse than RM-7 and RM-10, i.e., its performance is below the
average. MSEP is better than other methods no matter how long
the smartphone works. Notice that GM performs worse than NM.
Because GM always chooses the sensor nodes with the largest

1600 T T T T T T T

1400

1200 -

Time (s)

1000

800

600 | | | | | | |
1 2 3 4 5 6 7
Abnormal case number

Fig. 12. Lasting time of the abnormal cases.

I
W
T
]

Detection probability

NM —4&—
GM —6—
MSEP —@—
RM-7 —H5—
RM-10 —&—

0 I I I
200 300 400 500 600

Working time of the smartphone

Fig. 13. Detection probability of AC1.

176 J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177

current degree, it will lead to local optimum rather than global
optimum. GM is not an ideal method because it cannot always
outperform NM.

In detail, for MSEP, the patrol time is 180 s, hence the smart-
phone can patrol the WSN once within 200 s and about three times
within 600 s. Nevertheless, the patrol time of NM is 625 s, and hence
NM can only patrol all the sensor nodes for about one time within
600 s. This results in a much lower detection probability of NM than
MSEP when the working time of the smartphone is 200 s. So do GM,
RM-7, and RM-10. When the working time is 600 s, all the methods
can patrol the WSN for at least one time. Because AC1 and AC3 are
long and frequent, they are easy to be discovered by all the methods
with high probability. Compared with other methods, MSEP can
save the working time a lot while still maintaining high detection
probability.

Figure 15 plots the detection probability of AC2. Since AC2 is
infrequent, the detection probability of AC2 is much lower than
those of AC1 and AC3, especially when the smartphone working
time is less than 500 s. Specifically, when the smartphone work-
ing time is less than 400 s, all methods can hardly collect enough
packets to detect AC2. Generally, the detection probabilities of all
the other methods are lower than that of MSEP. Unlike the case of

NM —&—

MSEP —e—
RM-7 —=—
RM-10 —<—

Detection probability

05 1

o 1 1 1
200 300 400 500 600
Working time of the smartphone
Fig. 14. Detection probability of AC3.

l —
2
'—§
=}
[
o
g
j5)
[a)

0® o=

200 300 400 500 600

Working time of the smartphone

Fig. 15. Detection probability of AC2.

AC1 and AC3, in the case of AC2, GM performs better than NM
though it is still below RM-7 and RM-10.

Figure 16 statistically shows the detection probabilities of AC4,
AC5, AC6, and AC7 when the working time is 200 s. Because they
are short AC lasting for about 200 s, the smartphone only works
for 200s. Since AC4 is more frequent than AC5, the detection
probability of AC4 is higher than that of AC5. AC6 and AC7 are
infrequent AC while AC4 and AC5 are frequent AC, hence the
detection probabilities of AC6 and AC7 are lower than those of
AC4 and AC5. For all the short AC, MSEP achieves higher detection
probability than the other methods. GM is better than NM for AC5
and AC6. It is worse for AC4 and AC7. The performance of RM-7
and RM-10 is similar. GM and NM are below the average level
while MSEP is above the average level.

In summary, Fig. 17 demonstrates that the detection prob-
ability of all ACs for MSEP is higher than that of all the other
methods. In addition, since more ACs exist, the detection prob-
abilities of all approaches are high when the smartphone working
time approaches 600 s. Furthermore, Fig. 17 shows that if MSEP is
employed, the smartphone only needs to work for about 300 s to
achieve high detection probability. When the ACs are not as
frequent as the ACs in this experiment, using MSEP to work for a

T T T T
NM XXX X
GM
MSEP
RM-7 =
RM-10

>
g 1F 7
£
S
©
&
=
S 2
Q
Q
05k § « -

% X X

% X e

% X X

% X X

% I I

% X I

0 Xl
4 5 6 7

Abnormal case number

Fig. 16. Detection probability of AC4, AC5, AC6, and AC7 when the working time is
200 s.

2 q

=

2

IS} i

& 4

8

g 05 - NM —2—1]

g GM —6—
MSEP —eo—
RM-7 —H—
RM-10 —%—

0 I I I
200 300 400 500 600

Working time of the smartphone

Fig. 17. Detection probability of all ACs.

J. Xiong et al. / Journal of Network and Computer Applications 36 (2013) 167-177 177

longer time can increase the detection probability a lot as shown
in Fig. 15. In a word, MSEP can reduce the smartphone patrol time
and increase the failure detection rate.

7. Conclusions

In this paper, we propose a mobility-assisted diagnosis
method called MDiag to diagnosis failures in WSNs with smart-
phones. The advantages of this approach are multi-fold: MDiag
does not intrude the WSNs and is more efficient than deploying
another network for diagnosis purpose. In addition, MDiag can
help the BS find more failures because it can snoop all kinds of
packets that are sent out. Aiming at the targets of all protocol
layers, we design statistical rules to guide the abnormal pheno-
mena determination. MSEP algorithm is further proposed to
improve the detection rate and reduce the patrol time of MDiag.
The permanent failure detection experiments demonstrate that
MDiag can help discover more failures than BS-centralized
methods. The experiments on short-term failure detection show
that MSEP algorithm suits WSNs better than NM, GM, and base-
line method RM-K.

Acknowledgments

This work was substantially supported by the National Natural
Science Foundation of China (Project No. 61100077), the National
Basic Research Program of China (973 Project No. 2011CB302603), the
Shenzhen Basic Research Program (Project No. JC201104220300A),
and the Research Grants Council of the Hong Kong Special Adminis-
trative Region, China (Project Nos. CUHK 415311 and N CUHK405/11).

References

Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: a
surveyComputer Networks 2002;38:393-422.

Buettner M, Yee G, Anderson E, Han R. X-mac: a short preamble mac protocol for
duty-cycled wireless sensor networks. In: Proceedings of the 4th international
conference on embedded networked sensor systems (SenSys); 2006.

Demirbas M. A transactional framework for programming wireless sensor/actor
networks. In: Proceedings of the international conference on information
processing in sensor networks (IPSN); 2008.

Dunkels A, Gronvall B, Voigt T. Contiki—a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the 29th annual IEEE
international conference on local computer networks (LCN); 2004.

Global mobile phone statistics, <http://mobithinking.com/mobile-marketing-
tools/latest-mobile-stats .

Gnawali O, Fonseca R, Jamieson K, Moss D, Levis P. Collection tree protocol. In:
Proceedings of the 7th international conference on embedded networked
sensor systems (SenSys); 2009.

Heo], Gu B, Eo SI. Energy efficient program updating for sensor nodes with flash
memory. In: Proceedings of the 2010 ACM symposium on applied computing;
2010.

Hui JW, Culler D. The dynamic behavior of a data dissemination protocol for network
programming at scale. In: Proceedings of the 2nd international conference on
embedded networked sensor systems (SenSys); 2004. p. 266-79.

Johnson DS. Approximation algorithms for combinatorial problems. In: Proceed-
ings of the 5th annual ACM symposium on theory of computing; 1973.

Johnson D, Stack T, Fish R, Flickinger DM, Stoller L, Ricci R, et al. Mobile emulab: a
robotic wireless and sensor network testbed. In: Proceedings of the IEEE
international conference on computer communications (INFOCOM); 2006.

Karp RM. Reducibility among combinatorial problems; 1972.

Khan MMH, Luo L, Huang C, Abdelzaher T. SNTS: sensor network troubleshooting
suite. In: Proceedings of the IEEE international conference on distributed
computing in sensor systems (DCOSS); 2007.

Langendoen K, Baggio A, Visser O. Murphy loves potatoes: experiences from a pilot
sensor network deployment in precision agriculture. In: Proceedings of the
international workshop on parallel and distributed real-time systems; 2006.

Levis P, Lee N, Welsh M, Culler D. TOSSIM: accurate and scalable simulation of
entire tinyos applications. In: Proceedings of the 1st international conference
on embedded networked sensor systems (SenSys); 2003. p. 266-79.

Levis P, Madden S, Polastre], Szewczyk R, Woo A, Gay D, et al. TinyOS: An
operating system for sensor networksAmbient Intelligence 2005;5:115-48.

Li P, Regehr J. T-Check: Bug finding for sensor networks. In: Proceedings of the 9th
ACM/IEEE international conference on information processing in sensor net-
works (IPSN); 2010. p. 174-85.

Liu B, Brass P, Dousse O. Mobility improves coverage of sensor networks. In:
Proceedings of the 6th international symposium on mobile ad hoc networking
and computing (MobiHoc); 2005.

Liu K, Li M, Liu Y, Li M, Guo Z, Hong F. Passive diagnosis for wireless sensor
networks. In: Proceedings of the 6th international conference on embedded
networked sensor systems (SenSys); 2008. p. 1132-44.

Liu K, Ma Q, Zhao X, Liu Y. Self-diagnosis for large scale wireless sensor networks.
In: Proceedings of the 30th IEEE international conference on computer
communications (INFOCOM); 2011.

Luo L, He T, Zhou G, Gu L, Abdelzaher TF, Stankovic JA. Achieving repeatability of
asynchronous events in wireless sensor networks with envirolog. In: Proceed-
ings of the 25th IEEE international conference on computer communications
(INFOCOM); 2006.

Ngai EC-H, Huang H, Liu], Srivastava MB. Oppsense: Information sharing for
mobile phones in sensing field with data repositories. In: Proceedings of the
IEEE communications society conference on sensor, mesh and ad hoc com-
munications and networks (SECON); 2011.

Ramanathan N, Chang K, Kapur R, Girod L, Kohler E, Estrin D. Sympathy for the
sensor network debugger. In: Proceedings of the 3rd international conference
on embedded networked sensor systems (SenSys); 2005. p. 255-67.

Rensfelt O, Hermans F, Larzon L-A, Gunningberg P. Sensei-uu: A relocatable sensor
network testbed. In: Proceedings of the 5th ACM international workshop
on wireless network testbeds, experimental evaluation and characterization;
2010.

Reynolds P, Killian C, Wiener JL, Mogul JC, Shah MA, Vahdat A. Pip: detecting the
unexpected in distributed systems. In: Proceedings of the 3rd symposium on
networked systems design and implementation (NSDI); 2006.

Ringwald M, Romer K, Vitaletti A. Passive inspection of sensor networks. In:
Proceedings of the IEEE international conference on distributed computing in
sensor systems (DCOSS); 2007.

Romer K, Ma]J. PDA: Passive distributed assertions for sensor networks. In:
Proceedings of the 8th ACM]/IEEE international conference on information
processing in sensor networks (IPSN); 2009. p. 337-48.

Sasnauskas R, Landsiedel O, Alizai MH, Weisez C, Kowalewskiz S, Wehrle K.
KleeNet: discovering insidious interaction bugs in wireless sensor networks
before deployment. In: Proceedings of the 9th ACM/IEEE international con-
ference on information processing in sensor networks (IPSN); 2010. p. 186-96.

Shi Y, Hou YT. Theoretical results on base station movement problem for sensor
network. In: Proceedings of the IEEE international conference on computer
communications (INFOCOM); 2008.

Telosb datasheet, <http://www.willow.co.uk/TelosB_Datasheet.pdf).

The network simulator version 3, ¢ http://www.isi.edu/nsnam/ns/>.

Xing G, Wang], Shen K, Huang Q, Jia X, So HC. Mobility-assisted spatiotemporal
detection in wireless sensor networks. In: Proceedings of the international
conference on distributed computing system (ICDCS), Genova, Italy; 2008a.
p. 784-94.

Xing G, Wang T, Jia W, Li M. Rendezvous design algorithms for wireless sensor
networks with a mobile base station. In: Proceedings of the 9th international
symposium on mobile ad hoc networking and computing (MobiHoc); 2008b.

Xu N, Rangwala S, Chintalapudi KK, Ganesan D, Broad A, Govindan R, et al.
A wireless sensor network for structural monitoring. In: Proceedings of the
2nd international conference on embedded networked sensor systems
(SenSys); 2004. p. 13-24.

Yang], Soffa ML, Selavo L, Whitehouse K. Clairvoyant: a comprehensive source-
level debugger for wireless sensor networks. In: Proceedings of the 5th
international conference on embedded networked sensor systems (SenSys);
2007. p. 189-203.

Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor
networks. In: Proceedings of the 21st IEEE conference on computer commu-
nications (INFOCOM); 2002. p. 1567-76.

Zhou Y, Chen X, Lyu MR, Liu J. Sentomist: Unveiling transient sensor network bugs
via symptom mining. In: Proceedings of the international conference on
distributed computing system (ICDCS), Genova, Italy; 2010. p. 784-94.

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.isi.edu/nsnam/ns/

	MDiag: Mobility-assisted diagnosis for wireless sensor networks
	Introduction
	Related work
	MDiag background
	Network architecture
	Failure classification

	MDiag framework
	Packet decoder input and output
	Statistical rules on packet analysis

	Coverage-oriented smartphone patrol algorithms
	Naive method (NM)
	Greedy method (GM)
	Maximum snooping efficiency patrol (MSEP)

	Evaluations
	Patrol set size and snooping efficiency
	Permanent failure detection
	Short-term failure detection
	Short-term failure explanation
	Short-term failure detection results

	Conclusions
	Acknowledgments
	References

