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Abstract—An increasing number of companies are beginning to deploy services/applications in the cloud computing environment.

Enhancing the reliability of cloud service has become a critical and challenging research problem. In the cloud computing environment,

all resources are commercialized. Therefore, a reliability enhancement approach should not consume too much resource. However,

existing approaches cannot achieve the optimal effect because of checkpoint image-sharing neglect, and checkpoint image

inaccessibility caused by node crashing. To address this problem, we propose a cloud service reliability enhancement approach for

minimizing network and storage resource usage in a cloud data center. In our proposed approach, the identical parts of all virtual

machines that provide the same service are checkpointed once as the service checkpoint image, which can be shared by those virtual

machines to reduce the storage resource consumption. Then, the remaining checkpoint images only save the modified page. To

persistently store the checkpoint image, the checkpoint image storage problem is modeled as an optimization problem. Finally, we

present an efficient heuristic algorithm to solve the problem. The algorithm exploits the data center network architecture characteristics

and the node failure predicator to minimize network resource usage. To verify the effectiveness of the proposed approach, we extend

the renowned cloud simulator Cloudsim and conduct experiments on it. Experimental results based on the extended Cloudsim show

that the proposed approach not only guarantees cloud service reliability, but also consumes fewer network and storage resources than

other approaches.

Index Terms—Cloud service, reliability, optimization, cloud data center, network resource, storage resource

Ç

1 INTRODUCTION

RECENTLY, cloud computing has emerged as a new par-
adigm for offering computing as services via the In-

ternet [1], [2]. Many companies are beginning to deliver
cloud application services/applications to lower the cost
of maintaining their own computing infrastructure.
Unfortunately, cloud data center downtime has badly
affected the public’s expectation of cloud computing.
With tens of thousands of host servers in a cloud data
center, it is difficult to ensure that all host servers always
work well. Therefore, a statistically rare failure event may
become common in a cloud data center [3]. Moreover,
cloud computing adopts a multi-tenancy model in which
all cloud service providers share with each other the
same physical infrastructure. Unlike other computing
models, a downtime incident in a cloud data center may
cause serious damage to many cloud service providers.
Therefore, the issue of how to enhance the cloud service

reliability when the host servers fail has become a critical
problem [4], [5].

In recent years, many fault tolerance approaches have
been proposed to enhance cloud service reliability [6], [7].
Most of these approaches are based on exploitation of
redundancy. Replication and checkpointing are two widely
used basic mechanisms. In replication mechanism [8], [9],
[10] the same task is synchronously or asynchronously proc-
essed on several virtual machines (VM). It only ensures that
at least one replica is able to complete the task on time.
However, the replication mechanism is more suitable for
critical or real-time services [11], [12], [13] because of its
large implementation cost. The checkpointing mechanism
periodically saves the execution state of a running task as a
checkpoint image file [14], [15]. When the server crashes, it
can resume the task on a different server based on the latest
saved checkpoint image. The task does not need to be
restarted from the beginning but only from the latest saved
state. Therefore, it can reduce lost time caused by the failure
and improve the cloud service reliability.

State-of-the-art solutions [16], [17] have been proposed
by extending the basic checkpointing mechanisms. Because
all resources in cloud computing are commercialized, the
goal of these solutions is to reduce resource consumption
based on data center characteristics while enhancing cloud
service reliability.

In checkpointing, a significant amount of data must be
periodically transferred to persistently store checkpoint
images. A checkpoint image can be a gigabyte size, and it
contains all information to restart the service in another
host server. In traditional approaches, because data center
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network resource is limited, checkpoint traffic may congest
the network and affect QoS of other cloud services. To
address this problem, smart checkpointing approaches
have been proposed [14], [15], [16]. They provide the notifi-
cation that a small percentage of data have changed since
the last checkpointing time. The checkpoint images are clas-
sified into two subsidiary sets: system checkpoint image
and delta checkpoint image. The checkpoint image contain-
ing the base system is called the system checkpoint image.
The remaining checkpoint images, which contain only the
modified data, are called the delta checkpoint images. Use
of these subsidiary sets reduces the bandwidth required to
transfer the checkpoint images to the central storage server.

While the checkpoint images are stored in the central
storage server [15], [16], however, the checkpoint traffic
may still be routed by the core switches. Core switches play
an important role in the cloud data center by bridging the
cloud data center and the outside world. Core switches,
therefore, are the bottleneck of the cloud data center net-
work. To prevent checkpoint traffic from con-gesting core
switches, Limrungsi et al. [17] proposed a distributed delta
checkpointing approach. The VM images are not stored on
the central storage servers but on neighboring host servers.
Therefore, the images may only require to be transferred by
the aggregation and edge switches.

Although the above approaches can reduce network
resource usage, some limitations of them remain. For one,
these approaches do not consider reducing storage resource
consumption through system checkpoint image sharing.
Because the base system, ram disk content, and code page
are the same among the VMs, similarity exists among the
system images generated from the VMs that provide the
same service. Therefore, there is no need to save a system
image copy for each VM. Second, when the checkpoint
images are stored in neighboring host servers, host server
crashes may result in the checkpoint image inaccessibility.

In this paper, we propose a reliability-aware distributed
image-sharing checkpoint approach for minimizing net-
work and storage resource usage called reliability-aware,
distributed storage checkpointing (RADS-CKP). First, the
checkpoint images are classified into two sets: service check-
point image and delta checkpoint image. The identical parts
of all VMs that provide the same service are checkpointed
once as the service checkpoint image. All VMs that provide
the same service can share with each other the service
checkpoint image. The remaining checkpoint images, the
delta checkpoint images, only save the modified page.
Second, the checkpoint image storage issue is modeled as
an optimization problem. Finally, the optimization problem
is divided into two sub-problems: storage node selection
and routing path selection. In addition, we also present an
efficient heuristic algorithm to solve these sub-problems.
Based on characteristics of the data center network and
server failure predictor, the algorithm tried to minimize net-
work resource consumption. To verify the effectiveness of
our approach, we extend Cloudsim, a well-known cloud
simulator, to a new simulator FTCloudsim by adding fat-
tree data center network construction modules, failure and
repair event trigger modules, checkpoint-based service
recovery modules, and so on. We implement all approaches
in FTCloudsim and compare RADS-CKP with the other

approaches on total task execution time, average lost time,
total network resource consumption, total storage space
usage, and other performance metrics. Experimental results
show that our proposed approach can reduce network
resources and storage resources consumption while still
guaranteeing cloud service reliability.

The rest of this paper is organized as follows. In Section 2,
we review related work. In Section 3, background is pre-
sented. We introduce the motivation and technical details of
our proposed approach in Section 4. In Section 5, the experi-
mental results are outlined, and we conclude the paper in
Section 6.

2 RELATED WORK AND DISCUSSION

Cloud service reliability enhancement is an important
research problem in cloud computing. Although reliabil-
ity enhancement and various fault tolerance techniques
have been widely studied in distributed systems and
high-performance computing, cloud computing and the
special architecture of data center network bring new
challenge to the research.

To address these challenges, researchers have outlined
service reliability problem details that are particular to the
cloud environment. Basic cloud computing design philoso-
phies have been shown by [18], [19]. Special factors that can
influence cloud service reliability have been focused on by
[20], [21]. Lin et al. [22] have presented the data availability
assurance problem in case of the data node failure. Bilal
et al. [23] have presented a new procedure to quantify the
robustness of data center network to failures. Because of the
complexity of the cloud environment, modeling cloud ser-
vice reliability is a critical but difficult problem. Ghosh et al.
[24] analyzed the cloud system and systematically evalu-
ated the availability and reliability of cloud service.

Some cloud service reliability enhancement approaches
[6], [8], [9] have also been proposed by researchers.

When a host server crashes, VMs hosted on it will go
down. Therefore, the services delivered by the VMs will be
interrupted. The greater the number of VMs that pro-vide the
same service are hosted on the same server, the more serious
the damage a failure causes. To address this issue, the work
[8], [9] proposed a redundant VM placement approach for
multiple applications. The approach serves to ensure that all
cloud services can bemaintained while any k host servers fail
at the same time. In [6], all VMs and their backups that
together provide a workflow service are referred to as a
“survivable virtual infrastructure”. A mapping algorithm is
proposed to map the group to the physical data center. In
addition to determining how to map each node to a VM, the
algorithm shows how to reserve bandwidth for traffic
between each service providing VMand its backup VMs, and
between each backupVMand all service providingVMs.

Moreover, in the cloud computing environment, in
addition to ensuring cloud service reliability, the cloud
service reliability enhancement approach should reduce
resource consumption as much as possible based on data
center characteristics. Because of the large costs incurred
by the replication mechanism, the approach based on it is
only suitable for the critical task. To overcome the prob-
lem, notable approaches were proposed in [10], [11], [12]
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to identify the significant part of the complex task to
reduce the implementation cost. These approaches first
calculate the significance value of each sub-task according
to the invocation structures and frequencies. Then, they
rank the sub-tasks according to the significance value and
determine the redundancy of each sub-task based on it.
Unlike the fixed redundancy level approach, Jung et al.
[13] reduced the implementation cost by changing the
redundancy of a component when a failure occurs.

Even after the above mentioned improvement [10], [11],
[12], [13], the implementation of replication mechanism
remains costly. Therefore, such a mechanism is more suit-
able for a real-time task or critical task. However, for some
non real-time large-scale tasks, the checkpoint is a relatively
more effective approach. If the checkpoint image is stored
in the service providing node and then the service provid-
ing node crashes, the checkpoint image will become inacces-
sible. For this reason, the checkpoint images must be
periodically transferred to the persistent storage node. But
because the data center network resource is limited, the
checkpoint traffic may congest the network and affect other
cloud services. To solve this problem, Zhang et al. [15] pro-
posed a theoretical delta-checkpoint approach. Moreover,
Goiri et al. [16] implemented the approach in [15] and

presented a smart checkpoint infrastructure, which only
saves the base system once the first checkpoint is complete.
The next checkpoint image then only contains the pages
modified since the last checkpoint was created.

Nevertheless, these approaches [15], [16] overlook two
important factors. For one, the system checkpoint images
of VMs that provide the same service to some extent are
similar since the base system, ram disk content, and code
page are the same among the VMs. Second, the core
switches are the bottleneck of the data center network.
When the checkpoint images are stored in central storage
servers, the checkpoint traffic may congest the core
switches. Limrungsi et al. [17] proposed a distributed
delta-checkpointing approach. The approach stores the
checkpoint images on the neighboring host servers. When
the service-providing server and image-storage server shar-
ing the same aggregation switches, the checkpoint images
may only require transferring by the aggregation switches
and edge switches. However, if the checkpoint image-stor-
age server crashes, the checkpoint image will become inac-
cessible. Moreover, the approach in [17] cannot take full
advantage of the two factors.

Different from all the above work, our proposed
approach can optimize the cloud service reliability enhance-
ment approach by using checkpoint image sharing and a
failure predictor. Taking advantage of the first factor, we
reduce the storage resource usage through checkpoint
image sharing. Taking advantage of the second factor and
selecting the checkpoint image storage node by using the
node failure distribution [25], [26], [27], we reduce the net-
work resource and storage resource usage.

3 PRELIMINARIES

To effectively outline the proposed approach, we first intro-
duce the background. We begin this section by introducing
the data center network architecture. Some basic knowledge
of checkpointing is also provided. Note that the notations in
Table 1 will be used throughout the paper.

3.1 Data Center Network

As shown in Fig. 1, a current data center network typically
consists of three-level trees of switches [30], [31], [32]. The
top layer is the core tier; the switches in this layer are core
(root) switches. The middle layer is the aggregation layer;
the switches in this layer are aggregation switches. The

TABLE 1
Notations

Symbol Meaning

PMi The ith physical machine or host server in the
data center, i ¼ 1; 2; . . .

CM Vector of maximum disk size; CM[i] stores
the maximum disk size of PMi

BM Vector of remaining disk size; BM[i] stores
the remaining disk size of PMi

SP ðPMiÞ Selection preference of PMi

VMij The jth virtual machine hosted on PMi

Switchx The xth switch in the data center, x ¼ 1; 2; . . .
Nodem The mth node of the data center network. A

node can be a host server or a switch.
m ¼ 1; 2; . . .

Lmn The link that connects Nodem and Noden
Sk The kth service in the data center, k ¼ 1; 2; . . .
Tl The lth task submitted by the end user,

l ¼ 1; 2; . . .
Con (Sk) Concurrency of Sk, which denotes the num-

ber of virtual machines that provide Sk

SerImgk Service checkpoint image of Sk

SImgk System checkpoint image of Sk

DImgkt Delta checkpoint images that are generated
by the tth VM providing Sk

Size(image) Function that returns the size of a checkpoint
image

PM(image) Function that returns all servers storing image
podðSerImgkÞ Vector. pod(SerImgk)[i] equals 1 if a copy of

SerImgk is stored in a host server in the ith
pod

Store(image) Vector. Store(image)[i] equals 1 if a copy of
image is stored in PMi; otherwise it is 0

FlowlinkðimageÞ Vector. FlowlinkðimageÞ [m, n] equals 1 if
image is routed through Lmn; otherwise it is 0

FlowswitchðimageÞ Vector. Flow switch(image) [x] equals 1 if image
is routed through Switchx; otherwise it is 0

Eð�Þ Function that returns the mean value

Fig. 1. Fat-tree data center network.
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bottom layer is the edge layer; its switches are edge
switches. The host servers physically attach to the network
by connecting to an edge switch. A host server can simul-
taneously host one or more VMs. All host servers that con-
nect to the same edge switch are called in the same subnet.
All host servers that share the same aggregation switches
are called in the same pod. The link that connects a core
switch and an aggregation switch is a core link, while the
link connecting an aggregation switch and edge switch is
an aggregation link. The link that connects an edge switch
and a host server is an edge link. The upper layer switches
become congested more easily than the lower layer
switches. All traffic moving outside the cloud data center
should be routed through the core switch [33], [34]; conse-
quently, the core link easily becomes congested. Hence,
how to reduce the network resource comsumption of core
link becomes an important problem.

3.2 Basic Checkpoint Concept

Checkpointing is a conventional technique for enhancing
reliability. As shown in Fig. 2, the mechanism periodically
saves the current state of a task running on the VM as a
checkpoint image. In the event of a host server failure, the
task can be resumed from the last saved checkpoint image
on another VM.

Suppose task Ti is being processed by VMj, and VMj is a
host on server PMk. When the checkpointing technique is
adopted, the total lost time brought about by a failure of
PMk to Ti can be calculated by the following:

tlostðTiÞ ¼ ðtfailure � tavail-ckpÞ þ ðtrecovery � tfailureÞ; (1)

where tfailure denotes the time when the host server fails,
tavail-ckp denotes the time when the current, newest accessi-
ble checkpoint image is generated, and trecovery denotes the
time when the service resumes. (tfailure � tavail-ckp) is effected
by the following three factors: (1) The failure of the image
storage server: if the task execution server fails when the
image storage server fails, the current interrupted task
should restart from the beginning. (2) The time when the
failure occurs: if the failure occurs when the current check-
point image is being created, the current interrupted task
must be restarted from the last saved state. (3) The transfer
delay from the task execution host server to the image stor-
age server: if the failure occurs while the current checkpoint
image is being transferred to the storage node, the task
should restart from the last saved state. (trecovery � tfailure) is
the transfer delay from the image storage server to the
recovery server.

To reduce the impact of the failure, we must minimize
tlostðTiÞ to maximize cloud service reliability.

4 MOTIVATION AND PROPOSED APPROACH

In this section, we first introduce the motivation of our
approach. The detail of our approach is also provided in
this section.

4.1 Motivation

Storage resources must be consumed to persistently store
the checkpoint image and network resources for transfer-
ring the images to the storage server. The resource usage of
different checkpoint approaches is quite different and will
be discussed in this section. The overview is provided in
two aspects: checkpoint image generation and checkpoint
image storage node selection.

4.1.1 Checkpoint Image Generation

A checkpoint image can be a gigabyte size. As mentioned,
data center network resources are shared by all host serv-
ers or VMs in the cloud data center. The voluminous
checkpoint traffic may consume a significant amount of
network resources and congest the cloud data center.
Regular cloud services may be greatly affected. Work
[15], [16] observed that only a small percentage of data
has been changed compared with the last checkpoint
image. Consequently, they proposed two types of check-
point images in their approach: system checkpoint image
and delta checkpoint image. The checkpoint image con-
taining the base system is called the system checkpoint
image. The remaining checkpoint images are called delta
checkpoint image; they contain only the modified page
with respect to the last checkpoint image. The delta
checkpoint image is periodically generated and trans-
ferred. This approach reduces network resources used to
transfer the image to the central storage server.

In a typical scenario, the cloud service provider will
simultaneously receive a high number of cloud service
requests. To complete all service requests in time, the pro-
vider will employ several VMs. The requests are scheduled
to the VMs according to a certain schedule strategy. How-
ever, currently, the checkpoint image is generated and
saved in a VM unit [15], [16], [17]. In other words, current
approaches generate and save a copy of the system check-
point image for each VM that provides the same service.
Therefore, the total size of checkpoint images saved for a
service can be calculated by the following:

CkpSizeðSkÞ ¼
XConðSkÞ
t¼1

ðSizeðSImgktÞ þ SizeðDImgktÞÞ: (2)

Some similarity exists among the system checkpoint
images of VMs that provide the same service. Among
those VMs, the base system, RAM disk content, kernel,
configuration file, code page, and static data page are the
same. Therefore, saving a copy of the system image for
each VM is not required. We refer to the checkpoint
image that can be shared by all VMs providing the same
service as the service checkpoint image, which is a special
system checkpoint image. All other images are also delta
checkpoint images. Therefore, the total size of checkpoint
images which is saved for a service can be calculated by
the following:

Fig. 2. Task execution process with checkpointing mechanism.
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CkpSizeðSkÞ ¼
XSSk
i¼1

SizeðSerImgiÞ þ
XConðSkÞ
t¼1

SizeðDImgktÞ; (3)

where SSk (called service checkpoint image storage degree)
denotes the number of service checkpoint image copies
stored for Sk. SSk is always much smaller than the service
concurrency, which we will discuss in Section 5.4. Therefore,
we can reduce the storage resource usage. We will discuss
where the checkpoint images are stored in the next section.

4.1.2 Storage Node Selection

The checkpoint image cannot be stored in the service-pro-
viding host server since the checkpoint image will become
inaccessible when the host server crashes. The checkpoint
images are therefore typically stored in the central storage
servers. When the images are stored in the central storage
servers, checkpoint traffic may still be routed by the core
switches. These switches play the role of exchanging out-
side data for host servers in the data center. The core
switches become the bottleneck resulting from the vast
amount of data flow. In addition, the upper layer switches
become congested more easily than the lower layer
switches. To reduce the checkpoint traffic which may con-
gest the core switches, work [17] proposed a distributed
checkpointing approach. In this approach, the VM images
are saved not on the central storage servers but on neighbor-
ing host servers. If the service-providing server and image
storage server are in the same pod, the checkpoint traffic
must be routed only by the aggregation switches and edge
switches. If the service-providing server and image storage
server are in the same subnet, the checkpoint traffic must be
routed only by the edge switches.

A major flaw of this approach [17] is that host server
crashes may make checkpoint image inaccessible. Many
researchers have analyzed the logs of large-scale systems.
They have shown that the failure event of host servers has a
certain relationship with time and space. Therefore, we can
employ these results as a failure predictor and select the
storage node based on the following rules.

Rule 1 (Space distribution rule). The researchers have found
that a machine failure event shows a strong space limitation
[25], [26], [27], [28]. The failures are not uniformly distributed
among all host servers. Most of the failures occur in a small
fraction of servers. The failure events hit a host server succes-
sively after the first failure. A host server that has recently
failed has a greater chance of failing in the future. The higher
the recent number of successive failure times f is, the node is
more prone to be an easy to failure host server recently. We can
therefore model the selection preference of a server based on f.
We refer to it as node selection preference on space, which is
denoted by SPsðfÞ. SPsðfÞ is modeled by using a monotone
decreasing function as follows:

SPsðfÞ ¼ a� b � expðf=cÞ; (4)

where f is the number of recent failure times of the host server,
“recent” is calculated by fmax � Tf , where fmax is the max
number of the successive failure among all host servers, Tf is
the average inter-arrival time between successive failures; a is
a number, b and c must be positive numbers to ensure the

function is a monotone decreasing function. The value selec-
tion of a, b and c must satisfy some comstraints, which we will
discuss later.

Rule 2 (Time distribution rule). In reliability theory [36], the
failure inter-arrival time of a machine consistently satisfies a
distribution. The studies [27], [28], [29] observed that the dis-
tribution of inter-arrival times between failures of a host server
is well modeled by a Weibull distribution. The probability den-
sity function (pdf) and cumulative distribution function (cdf)
of the Weibull distribution are as follows [35]:

pdfWeibullðtÞ ¼ shape

scale
� t

scale

� �shape�1

� e�
t

scaleð Þshape
! 

(5)

cdfWeibullðtÞ ¼ 1� e�
t

scaleð Þshape
� �

; (6)

where shape affects the shape of the distribution, and scale
affects the statistical dispersion of the probability distribution.
In these studies [27], [28], [29], shape is between 0 and 1,
scale is positive. Although the value of scale and shape in
these studies are different, the virtual resource provider can
calculate the actual value based on its own log.

The hazard function [36] is used in reliability theory to rep-
resent the probability that the system will fail in a specified
time given no failure before time t. The hazard function of Wei-
bull distribution is as follows:

hðtÞ ¼ pdfweibullðtÞ
1� cdfweibullðtÞ ¼

shape

scale

t

scale

� �shape�1

: (7)

With a greater the value, the host server tends to fail in the
future. We model the node selection preference on time of a spe-
cial host server by the following:

SPtðtÞ ¼ 1� hðtÞ ¼ 1� shape

scale

t

scale

� �shape�1

: (8)

Therefore, the greater the value is, the server tends to work
well in the future. 1 � h(t) is an ascending function when
parameter shape is smaller than 1. If hðtiÞ > 1� hðtjÞ for
PMi and PMj currently, 1� hðti þ D tÞ > 1� hðtj þ DtÞ.
Therefore, we can choose the best host server based on 1 � h(t).
Because it takes a period of time to start the host server, t is at
least greater than 1 s.

When sorting the host servers based on SPsðfÞ and SPtðtÞ,
we need to compare twice between any two host servers. To
obtain the selection preference by a single value and reduce the
number of comparisons, we model the selection preference of a
host server by the following:

SP ðf; tÞ ¼ 1þ sgnð�fÞ þ 1� shape

scale

t

scale

� �shape�1
 !" #

þ ½sgnðf�EðfÞÞ þ 1� � ½a� b � expðf=cÞ�:
(9)

The value selection of a, b and c can affect the combination,
which we will discuss later in proof 1.
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Proposition 1. If we properly select the value of a, b, c, and the
storage node selection of the checkpointing mechanism selects
the storage node by sorting the host servers based on SP ðf; tÞ,
the solution will be optimal based on both the space distribu-
tion rule and the time distribution rule. In other words, based
on SP ðf; tÞ, the storage node selection can select the node that
never fails recently, and avoid selecting the node with a very
high failure frequency. If several host servers all have low fail-
ure frequency, the selection will select the one with the largest
node selection preference on time.

Proof 1. Firstly, we need show that if several host servers all
have low number of failure times, the selection will select
the one with the largest SPtðtÞ. We can obtain that
SP ðfi; tiÞ equals SPtðtiÞ when 0 < fi < EðfÞ, and there-
fore, SP ðfi; tiÞ is determined by SPtðtÞ. The larger SPtðtiÞ
is, the higher SP ðfi; tiÞ is.

Then, we need make sure that the selection can select
the node that never fails recently, and avoid selecting the
node with a very high number of failure times. Clearly,
SP is a segmented function. Because scale is larger than
1 s in all studies, the range of SPtðtÞ is (0, 1]. Therefore,
the range of SP ðf; tÞ are (1,2], (0,1], ½0þ ða� b �
expðEðfÞ=cÞÞ, 1þ ða� b � expðEðfÞ=cÞÞ�, and [�1,1þ 2
ða� b � expðEðfÞ=cÞÞ] when f belongs to [0, 0], (0, EðfÞÞ,
½EðfÞ, EðfÞ�, and ðEðfÞ, 1Þ respectively. We now
need to make sure that if fi < fj, and fi,fj belong to dif-
ferent “segment”, thenminðSP ðfi; tiÞÞ > maxðSP ðfj; tjÞÞ.
Therefore, a and bmust satisfy:

ð1þ aÞ < b � expðEðfÞ=cÞ: (10)

Now, we must show that the SP ðfi; tiÞ fall quickly
when the frequency is high. In other respect, if
fi > fj > EðfÞ; 8ti; tj, then SF ðfi; tiÞ � SF ðfj; tjÞ;
therefore, SPtðtiÞ þ 2 � ½a� b � expðfi=cÞ� � SPtðtjÞ þ 2 �
½a� b � expðfj=cÞ�. Consequently, we must show that
maxðSPtðtiÞÞ þ 2½a � b � expðfi = cÞ� � minðSPtðtjÞÞ þ
2 ½a � b � expðfj = cÞ�. For maxðSPtðtÞÞ ¼ 1, and
minðSPtðtÞÞ ¼ 0, we can obtain the format that 1 þ
2½a� b � expðfi=cÞ� � 0þ 2½a� b � expðfj=cÞ�, and then
1� 2b � expðfi=cÞ � �2b � expðfj=cÞ.

Suppose that f1 < f2 . . . < fn, we let dfx ¼ fx � fx�1;
dSPsðfxÞ ¼ SPsðfxÞ � SPsðfx�1Þ. Firstly, note that:

@2SFsðfÞ
@f2

¼ �ðb=c2Þexpðf=cÞ < 0: (11)

Then, SPsðfÞ is a convex function. Suppose that 8x 8y;
fx � fx�1 ¼ fy � fy�1. For SPsðfÞ is a convex function, we
can obtain the following:

dSPsðf1Þ < dSPsðf2Þ:::::::dSPsðfnÞ: (12)

Moreover, we note that:

dSPsðfÞ
df

¼ �ðb=cÞ � expðf=cÞ < 0:

Then, SPsðfÞ is a decreasing function. We can obtain
the following:

dSPsðfxÞ < dSPsðfyÞ when dfx < dfy: (13)

Based on (10), (11), and (12), we must show that
1� 2b � expðfi=cÞ � �2b � expðfj=cÞ when fi ¼ 1; fj ¼ 0.
In other words, we must show the following:

1þ 2b < 2b � expð1=cÞ: (14)

Therefore, if a, b, and c satisfy (10) and (14), the stor-
age node selection can obtain the solution that is optimal
based on Rule 1 and Rule 2. We choose a ¼ �5, b ¼ 10,
c ¼ 10. As we can see, 1� 5 < 0, 10 � expðEðfÞ=10Þ > 0,
and 1þ 20 < 20 � expð1=10Þ. tu

If a checkpoint image is stored in a host server PMi,
the storage reliability of the checkpoint image is propor-
tional to the selection preference of the host server. Then,
the storage reliability of the checkpoint image is modeled
as follows:

SRðimgÞ ¼ SP ðf; tÞ: (15)

We will select the storage node based on (15) in our
approach.

4.2 Proposed Approach

The objective of our approach is to select the storage node
and routing path for the checkpoint image. We intend to
minimize network and storage resource consumption based
on the available information. In this paper, unless otherwise
specified, the checkpoint image generation host server is
called the source node of the checkpoint image.

Fig. 3 depicts the system architecture of our approach,
which includes the following three modules.

1. Checkpoint image classification. The module divides
the checkpoint image into two sets: service check-
point images and delta images. Note that a service
image can be shared by all VMs that provide the
same service.

Fig. 3. RADS-CKP architecture.

ZHOU ETAL.: ON CLOUD SERVICE RELIABILITY ENHANCEMENT WITH OPTIMAL RESOURCE USAGE 457

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 08:21:23 UTC from IEEE Xplore.  Restrictions apply. 



2. Service checkpoint image storage. The module
selects the optimal storage node and routing path for
the service image.

3. Delta checkpoint image storage. The module selects
the optimal storage node and routing path for the
delta checkpoint image.

We will consider the image storage reliability and the
network congestion when selecting the storage node and
transfer path. The details of our approach will be intro-
duced in Sections 4.2.1, 4.2.2, and 4.2.3.

4.2.1 Checkpoint Image Classification

We first discuss creation of the service and delta images. In
traditional approaches, the system checkpoint image is gen-
erated after an initial time offset. Therefore, the task context,
memory content, and disk content are not the same among
the VMs when checkpointing, and the system checkpoint
image cannot be shared among the VMs. In a cloud data
center, the VMs are created from VM images [38], [39].
Therefore, the virtual resource provider can create a check-
point image containing all application programs required
by a cloud service provider and maintain the image in the
database. It services as a service checkpoint image. All VMs
providing the service will be started from the service check-
point image. The virtual resource provider can readily per-
form this task.

The existing delta checkpointing approaches [15], [16]
add a bit table for each VM to indicate which memory page
or disk page has been modified since the last checkpointing.
The bit table is cleared after each checkpointing. To support
the service checkpoint image in our approach, another new
bit must be added to the table to indicate which page has
been modified with respect to the service image. The bit
table is only used when a delta image storage node crashes.
We must re-generate the delta image, which contains the
modified page compared with the service checkpoint image.
Because it only requires one bit to indicate one page, the bit
table uses minimal space.

4.2.2 Service Checkpoint Image Storage

This section describes how to select the optimal storage
node and routing path for the service checkpoint image.
Given the importance of the service checkpoint image, our
approach stores a copy of the service image in the central
storage server. The size of the service checkpoint image is
relatively large; it may therefore consume too much time to
transfer a service image from the storage node to the recov-
ery node in the recovery stage. Considering the tradeoff
between the recovery time and disk usage, we therefore
store a copy of the service checkpoint image in each pod in
an adjoining style. To start or recover the service, our
approach must transfer a copy of the service image to the
target service-providing server. We copy one image from
the service-providing server to a host server in the same
pod if there is currently no service checkpoint image in the
pod. Consequently, the transfer will not use the core link,
and our approach can thereby reduce the recovery time if
the recovery node is in this pod the next time.

The storage node and routing path selection problem can
be formulated as the following optimization problem:

MaxUSP ðSerImgkÞ andMin ULðSerImgkÞ: (16)

Subject to:

ULðSerImgkÞ ¼
X
i

X
j

FlowlinkðSerImgkÞ½i; j� � delayðLijÞ

þ
X
i

FlowswitchðSerImgiÞ½i� � delayðswitchiÞ;

(17)

USP ðSerImgkÞ ¼ SP ðSerImgkÞ; (18)

podðSerImgkÞ½x� ¼ 1; 1 � x � maxpodnum; (19)

PMðSkÞ \ PMðSerImgkÞ ¼ null; (20)

PMðSerImgkÞ \ PMðDImgktÞ ¼ null; (21)

BM þ sizeðSerImgkÞ � StoreðSerImgkÞ � CM; (22)

X
j

FlowlinkðSerImgkÞ½i; j� �
X
n

FlowlinkðSerImgkÞ½n; i�

¼
1 if nodei is the generation node of SerImgk

0 otherwise

�1 if nodei is the storage node of SerImgk;

8>><
>>:

(23)

where the objective function is to maximize SP, while the
minor objective function is to minimize the storage and net-
work resources that the approach consumes. The constraint
in (19) ensures that each pod stores a copy of the service
image. The constraint in (20) indicates that a service image
cannot be stored in a node that provides the service. The
constraint in (21) specifies that the service image and delta
image cannot be stored in the same node. The constraint in
(22) indicates that the size of the service image should not
exceed the spare disk space. The constraint in (23) specifies
that we need to find a transfer path for the service check-
point image.

The above optimization problem can be divided into
two sub-problems: storage node selection and routing path
selection. However, there are a huge number of host serv-
ers, switches and links in the data center; therefore, the
possible solutions are exponentially large. We conse-
quently must find a subset of good host servers and search
for the best solutions from them. As we know, information
exchanged between hosts in the same subnet must only be
transferred by an edge switch. When two hosts are in the
same pod, all communicated traffic must be routed
through the edge switches and aggregation switches.
Therefore, the delay becomes greater. If the two host serv-
ers are in different pods, the delay becomes even larger.
Therefore, we first verify the nodes in the subnet against
the checkpoint image generating node. If no node in the
same subnet satisfies all constraints, we then search the
storage node in the same pod.
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Algorithm 1 describes the details of our storage node and
routing path selection algorithm. First, we sort all hosts in
the same subnet with the source node by the selection pref-
erence. We then traverse the node list. If free space of the
current node is larger than the service image size, and if it
also satisfies all other constraints, we select it as the storage
node. Otherwise, we sort all host servers in the same pod
with the source node by the selection preference. We then
traverse the list and ensure the current node satisfies all con-
straints. The first node that satisfies all constraints will be
selected as the storage node. Each time the service check-
point image only need to be saved once. Therefore, the
transfer will have little effect on the network. We randomly
select a path for the transfer to reduce the time cost.

4.2.3 Delta Checkpoint Image Storage

Storage node and routing path selection problem for the
delta image can be formulated as the following optimization
problem:

MaxUSP ðDImgktÞ andMin ULðDImgktÞ: (24)

Subject to:

ULðDImgktÞ ¼
X
i

X
j

FlowlinkðDImgktÞ½i; j� � delayðLijÞ

þ
X
i

FlowswitchðDImgktÞ½i� � delayðswitchiÞ;

(25)

USP ðDImgktÞ ¼ SP ðDImgktÞ; (26)

PMðSkÞ \ PMðDImgktÞ ¼ null; (27)

PMðSerImgkÞ \ PMðDImgktÞ ¼ null; (28)

\conðskÞ
i¼1

PMðDImgkiÞ ¼ null; (29)

BM þ sizeðDImgktÞ � StoreðDImgktÞ � CM; (30)

X
j

FlowlinkðDImgktÞ½i; j��
X
n

FlowlinkðDImgktÞ½n; i�

¼
1 if nodei is thegeneration node ofDImgkt
0 otherwise
�1 if nodei is thestoragenode ofDImgkt;

8<
:

(31)

where the objective function of the optimization problem is
to maximize the selection preference, while the minor
objective function is to minimize the storage and network
resources that the approach consumes. The constraint in
(27) indicates that a service image cannot be stored in a
node that provides the service. The constraint in (28) speci-
fies that the service image and delta image cannot be
stored in the same node. The constraint in (29) indicates
that delta checkpoint images of VMs providing the same
service cannot be stored in the same node. The constraint
in (30) indicates that the size of the service image should
not exceed the spare disk space. size(DImgkt) grows with
the increase of the checkpoint interval. We model the size
of DImgkt according to [16], [17]. The constraint in (31)
specifies that we need find a transfer path for the delta
chekpoint image.
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Algorithm 3 describes the details of our storage node
and routing path selection algorithm. The core of the algo-
rithm is the same as the one outlined in Section 4.2. How-
ever, the delta images must be periodically generated and
transferred; an optimal routing path must be identified for
the checkpoint traffic. First, the storage node in the same
subnet as the source node is searched. If no node in the
same subnet satisfies all constraints, all host servers in the
same pod are added to the candidate list.

The candidate list is then sorted by the SP. At that point,
the list is traversed and the current node is verified in terms
of satisfying all constraints. If a node satisfies all constraints,
the shortest path is then sought using the Dijkstra algorithm
[37] to balance the load. If there is no node and path that sat-
isfies all constraints, the delta check point image is stored in
the central storage server.

If a delta image storage node crashes, the new node must
be searched and the delta image regenerated. The newly
generated delta image contains the modified page compari-
son of the service checkpoint image. The re-selection algo-
rithm is the same as Algorithm 2.

5 EXPERIMENTS

To verify the effectiveness of our approach RADS-CKP, we
extend Cloudsim for our experiments. The following sec-
tions outline the experimental setting. We then compare the
proposed approach with other approaches in terms of total
execution time, average lost time, disk usage, and other per-
formance metrics. Finally, we study the parameters of our
approach.

5.1 Cloudsim Extension

Cloudsim [40], [41] is a renowned extensible simulation
framework that supports modeling of virtual resource allo-
cation, service scheduling, and other functions. We extend
Cloudsim as FTCloudsim and add the following modules to
support our experiments. More details are in our Demo

1

[42] about FTCloudsim.

� Fat-tree data center network construction. A fat-tree
data center network is constructed to connect the
host servers.

� Failure and repair event triggering. Host failure and
repair events are triggered. An event can be gener-
ated according to a specified distribution. The failure
event data and the repair event data can be saved to
a file so the experiment can be repeated.

� Checkpoint image generation and storage. A checkpoint
image is periodically generated, transferred, and
stored based on a checkpoint mechanism. This mod-
ule is extensible, and we implement our approach
and other existing approaches by an extension.

� Checkpoint-based service recovery. A service is recov-
ered from a host failure based on the latest available
checkpoint image. If there is no accessible checkpoint
image, it restarts the service and reprocesses the
interrupted task from the beginning.

5.2 Experimental Setup

We construct a 16-port fat-tree data center network in
FTCloudsim. Therefore, there are 64 core switches and 16
pods in the data center. Each pod is comprised of eight
aggregation switches and eight edge switches. That is,
there are 128 aggregation switches and 128 edge switches
in the cloud data center. According to [6], the capacity of
the core and aggregation links is set as 10 Gbps, and the
capacity of the edge link is set as 1 Gbps. The transfer
delays of the core, aggregation, and edge switches are 1, 1,
and 2 s, respectively. Each edge switch can connect to
eight host servers, and each host server can host four VMs.
Therefore, the data center contains 1,024 host servers and
4,096 VMs. The VM configuration is based on [16]. The
base system is 769 M, the RAM disk is 5.3 M, the kernel is
1.6 M, the memory size is 512 M, and the disk size is 1 G.
The memory and disk sizes of each host are 4 and 100 G,
respectively. There are 120 services delivered from the
datacenter, and service concurrency is uniformly distrib-
uted between 20 and 30. We design 3,000 total tasks for all
services. The task size is uniformly distributed between 10
and 20 h. All service requests are randomly allocated to a
VM that provides the given service. The distribution of
failure events is generated according to [25], [26], [27],
[28]. In space distribution, 8 percent of all host servers
experience almost all the failure events, the number of suc-
cessive failure times f is uniformly distributed between 1
and 3, the average number of successive failure times is 2.
In time distribution, the parameter shape is 0.75, and the
parameter scale is 60 h. The checkpoint image information
is modeled on [16], [17]. The checkpoint interval is 600 s.
The checkpoint image size grows with the increase of the
checkpoint interval, and the convex function is set as
(143 � log10T � 254) M, where T is the checkpoint interval.
The checkpoint image merge time is 0.9 s. The recovery
host server is searched in the center of the image storage
node. To study the performance of our approach (RADS-
CKP), we compare RADS-CKP with other six competing
approaches, which are as follows:

� Non-CKP. No reliability enhancement approach is
employed.1. http://youtu.be/yMyz2gesywA.
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� CB-CKP. The checkpoint image contains all informa-
tion required to resume the service. All checkpoint
images are stored on central storage servers.

� CD-CKP. This approach is proposed by [16]. The
checkpoint image is classified into system check-
point image and delta checkpoint image. All check-
point images are stored on central storage servers.

� RDD-CKP. This is a distributed checkpoint image
storage approach. The checkpoint images are classi-
fied into system checkpoint and delta checkpoint
images. It randomly selects the storage node.

� ODD-CKP. This approach is proposed by [17]. This is
a distributed checkpoint image storage approach.
The checkpoint images are classified into system
checkpoint image and delta checkpoint image. Addi-
tionally, the storage node is selected based on the
network characteristic.

� RADD-CKP. This is a distributed checkpoint image
storage approach. The checkpoint image is classified
into the system checkpoint image and delta images.
The storage node is selected based on the network
characteristic and the failure predictor.

All approaches are evaluated using the following perfor-
mance metrics:

� Total execution time. The total time the approach takes
to complete all tasks, which can be calculated by the
following:

ttotal ¼
X
i

ðtendðTiÞ�tstartðTiÞÞ; (32)

where tstartðTiÞ is the time Ti is submitted, and
tendðTiÞ is the time Ti is completed.

� Average lost time. Average lost time because of a host
failure, which can be calculated by the following:

tEðlostÞ ¼ 1

n

Xn
i¼1

ð 1

downðiÞ
XdownðiÞ
j¼1

tlostðTjÞÞ (33)

where n denotes the number of failure events, and
downðiÞ denotes the interrupted task caused by a fail-
ure event.

� Packets processed. This performance metric consists of
four sub-metrics.

The total size of packets transferred by the root
switches, which can be calculated by the following:

Packetroot ¼
X
i

Xi � sizeðpacketiÞ (34)

where Xi equals the frequency with which packeti
has been transferred by the root switches.

The total size of packets transferred by the aggre-
gation switches, which can be calculated by the
following:

Packetagg ¼
X
i

Yi � sizeðpacketiÞ (35)

where Yi equals the frequency with which packeti has
been transferred by the aggregation switches.

The total size of packets transferred by the edge
switches, which can be calculated by the following:

Packetedge ¼
X
i

Zi � sizeðpacketiÞ (36)

where Zi equals the frequency with which packeti has
been transferred by the edge switches.

The total size of packets transferred by all
switches, which can be calculated by the following:

Packetall ¼ Packetroot þ Packetagg þ Packetedge: (37)

We simply count the packets related to the sevice
start, restart, and recovery.

� Total disk usage. Disk usage for the storage of the
checkpoint image, which can be calculated by the
following:

Stotal ¼
X
i

imagesizeðhostiÞ (38)

where imagesize(hosti) returns the size of all check-
point images that are stored on hosti.

5.3 Performance Comparison

5.3.1 Reliability Enhancement

We first study the performance of reliability enhancement,
which is evaluated by the total execution time and average
lost time. The results are presented in Figs. 4 and 5. The two
figures show that:

Fig. 4. Total execution time. Fig. 5. Average lost time.
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� The total execution time and average lost time of
Non-CKP are longer than other approaches. This is
because all other approaches employ some fault-tol-
erance mechanism. Therefore, they can reduce the
time loss caused by a host server failure.

� Of all approaches, the total execution time and
average lost time of distributed approaches are
shorter than those of central storage server
approaches. This is because when the checkpoint
images are stored on the central storage server, the
checkpoint traffic should be transferred by all
three layer switches. However, when the images
are stored in neighboring host servers, the check-
point traffic only requires transfered by the aggre-
gation and the edge switches. If the storage node
and the recovery node are in the same subnet, the
checkpoint traffic only need to be transferred
through the edge switches. Therefore, it takes less
time to transfer the checkpoint image from the
storage node to the recovery node, which reduces
the total execution time and average lost time.

� The total execution time of all distributed
approaches is approximately the same; however,
RADS-CKP (our approach) consumes slightly
more time than ODD-CKP and RADD-CKP. This
is because there is at most one copy of a service
checkpoint image in each pod. Therefore, the ser-
vice checkpoint image must be routed by the
aggregation switches and the edge switches in the

recovery stage. In ODD-CKP and RADD-CKP,
however, the checkpoint image may only require
transference by the edge switch if the recovery
node and the storage node are in the same subnet.
Therefore, its recovery time (7.21 min) is slightly
longer than it is for ODD-CKP (7.12 min) and
RADD-CKP (7.07 min); nevertheless, the difference
is not obvious.

We can learn from the above overview that our approach
outperforms all centralized approaches. Moreover, it dem-
onstrates the same effect on service reliability enhancement
as other distributed approaches. However, as will be
shown, our proposed approach consumes fewer resources
than the other approaches.

5.3.2 Network Resource Consumption

The network resource consumption of all approaches is
studied. Figs. 6, 7, 8, and 9 present the experimental results.
Figs. 3, 4, and 5 provide the results of Packetroot, Packetagg,
and Packetedge, respectively. Fig. 6 displays the results of
Packetall, which is the total size of the check point image
data processed by all switches in the data center. The results
of Non-CKP in Figs. 8 and 9 are not zero but are below the
starting value of the y-axis. The figures show that:

� Compared to centralized approaches, the total data
processed by the core switches in distributed
approaches is much smaller. This is because the
distributed approaches store the checkpoint image

Fig. 6. Packetroot.

Fig. 7. Packetagg.

Fig. 8. Packetedge.

Fig. 9. Packetall.
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in the neighboring host servers. Therefore, the dis-
tributed approaches consume less core layer net-
work resources.

� Among the seven approaches, the total data proc-
essed by aggregation switches in distributed
approaches is much smaller than those in centralized
approaches. However, our approach consumes
slightly more aggregation layer network resources.
This is because the service-providing host and image
storage node may be in the same subnet or pod; the
checkpoint traffic does not need to traverse the core
layer. Therefore, the distributed approaches con-
sume less aggregation layernetwork resources. We
must store a copy of the service checkpoint image in
each pod, which would take up some aggregation
layer network resources.

� Of all seven approaches, our approach consumes the
least edge layer network resources and total network
resources. The number of RADS-CKP system check-
point image copies is smaller than other approaches.
In addition, when the checkpoint image is lost
because of a host server failure, the system check-
point image must be retransferred. The data retrans-
mission will require more network resources. We
consider the failure chance of the host servers; there-
fore, there is a smaller chance that a check-point
image must be transferred again.

5.3.3 Disk Usage

Fig. 10 presents the disk usage of all approaches. Although
the approaches consume varying amounts of bandwidth
resources, their disk usage is approximately the same. Com-
pared with other approaches, the disk usage of RADS-CKP
is much less since all other approaches store one copy of the
system checkpoint image for each VM. In the proposed
approach, however, the similar part of the system check
point image is shared by all VMs that provide the same ser-
vice. Therefore, our approach can save considerably more
storage resources. In the next section, we show how service
concurrency impacts performance.

5.4 Impact of Service Concurrency

To study the impact of service concurrency on reliability
enhancement and storage resource consumption, we com-
pare ODD-CKP and RADS-CKP with different service

concurrency value settings. For comparison, the task size is
set as 48,000 s for all the tasks. Other configurations are the
same as in Section 5.3.

5.4.1 Impact on Storage Resource Consumption

The performance metrics is average checkpoint image size,
which is calculated by dividing the total image size by the
number of service-providing VMs. As shown in Fig. 11, the
average checkpoint image size in ODD-CKP is not influ-
enced by service concurrency. However, the average image
size decreases with the increase of service concurrency.
When the average concurrency is below 5, the average
image size is even larger than that of ODD-CKP. This is
because a copy of the service checkpoint image is stored in
each pod in an adjoining style in addition to a copy being
stored in the central storage server. When the service con-
currency is smaller than the number of pods, the number of
RADS-CKP system checkpoint image copies is larger than
that of ODD-CKP. However, with the increase of service
concurrency, the service image can be shared by all VMs
that provide the same service. The number of RADS-CKP
system checkpoint image copies is smaller than for ODD-
CKP. Therefore, the average checkpoint image size
decreases. If the service concurrency is larger than the num-
ber of pods, our approach can save ample disk resources.
When the port number increases to 64, there are 65,536 hosts
in the data center. When the pod number increases to 128,
there are 524,288 servers in the data center. Therefore, it is a
common condition that the service concurrency is larger
than the pod number.

5.4.2 Impact on Reliability Enhancement

The performance metrics consist of total execution time,
average lost time. As shown in Fig. 12, the total execution
time of our approach is slightly longer than for ODD-CKP.
This is because the average lost time of our approach is lon-
ger than for ODD-CKP. In our approach, there is only one
copy of a service image in each pod; therefore, the images
must be transferred through aggregation switches and edge
switches in almost all conditions. Consequently, the average
lost time is slightly longer; as shown in Fig. 13, the differ-
ence is within 0.2 min. This difference is negligible and can
be disregarded. However, as shown in Fig. 13, the average

Fig. 11. Average checkpoint image size.

Fig. 10. Total disk usage.
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lost time of our approach increases when the service concur-
rency increases from 1 to 30. The average lost time remains
approximately the same when the service concurrency is
larger than 30. This is because when the concurrency is
increased to the pod number, there is a greater chance that
the recovery node and the image storage node are not in the
same subnet but are in the same pod. Therefore, the check-
point images must be transferred by the edge switches and
the aggregation switches in the recovery stage. Hence, the
delay increases.

6 CONCLUSION

In this paper, we examine the problem of cloud service
reliability enhancement. In our proposed approach,
checkpoint images are classified into service checkpoint
images and delta checkpoint images. Storage resource
usage is reduced through service checkpoint image shar-
ing. The checkpoint image storage node and routing path
selection problem are then formulated as an optimization
problem. By exploiting the characteristics of the data cen-
ter network and the host server failure information, we
present a heuristic algorithm to efficiently select the opti-
mal storage node and routing path. To verify the effec-
tiveness of our approach, we extended Cloudsim and
conduct extensive experiments. The experimental results
showed that the proposed approach can guarantee

reliability while consuming fewer network and storage
resources than other approaches.

Our future work will involve enhancing the reliability of
special cloud services, such as mapreduce service and
workflow service. We will also consider how provide reli-
ability-differentiated virtual resources for cloud service.
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