Online Protocol Verification in Wireless Sensor
Networks via Non-intrusive Behavior Profiling

Yangfan Zhou'2, Xinyu Chen', Michael R. Lyu'2, and Jiangchuan Liu?

! Shenzhen Research Institute, The Chinese U. of Hong Kong, Shenzhen, China
2 Dept. of Comp. Sci. and & Eng., The Chinese U. of Hong Kong, Shatin, Hong Kong
3 School of Computing Sci., Simon Fraser U., Burnaby, BC, Canada

Abstract. Wireless communication protocols are centric to Wireless
Sensor Network (WSN) applications. However, WSN protocols are prune
to defects, even after their field deployments. A convenient tool that can
facilitate the detection of post-deployment protocol defects is of great
importance to WSN practitioners. This paper presents Probe-I (sensor
network Protocol behavior Inspector), a novel tool to obtain, visualize,
and verify the behaviors of WSN protocols after their field deployments.
Probe-I collects the protocol behaviors in a non-intrusive manner, i.e.,
via passively listening to the packet exchanges in the target network.
Then with a role-oriented behavior modeling approach, Probe-I mod-
els the protocol behaviors node by node based on the sniffed packets,
which well reflects how the target protocol performs in each node. This
allows the WSN practitioners to readily see if the target protocol behaves
as intended by simply verifying the correctness of the behavior metrics
in a simple, baseline test. Finally, the verified metrics allow Probe-I
to automatically check the protocol behaviors from time to time dur-
ing the network lifetime. The suggested behavior discrepancy can unveil
potential protocol defects. We apply Probe-I to verify two WSN data
collection protocols, and find their design defects. It shows that Probe-I
can substantially facilitate WSN protocol verification.

1 Introduction

Wireless communication protocols are centric to wireless sensor networks (WSNs)
in reporting the physical information of interest. The successful application of
a WSN largely relies on whether its protocols can work as intended. However,
recent publications have reported that various protocol defects are frequently
encountered in field deployments, leading to their failures [1I2]. Trustworthy
protocol remains a critical concern towards the extensive deployments of WSNs.
Unfortunately, discovering protocol defects after deployment is a very challeng-
ing task. It is hard to identify the subtle symptoms of a defect before it causes
notable problems that may lead to fatal system failures.

This paper presents Probe-I (sensor network Protocol behavior Inspector), a
novel tool to unveil post-deployment protocol defects in WSNs. A WSN practi-
tioner can load Probe-I into a mobile device and carry it to the deployment field.

X. Wang et al. (Eds.): WASA 2012, LNCS 7405, pp. 100 2012.
© Springer-Verlag Berlin Heidelberg 2012

Online Protocol Verification in WSNs via Non-intrusive Behavior Profiling 101

Probe-I can then profile the runtime of a protocol, learn its behavior models,
and automatically produce alarms when suspicious protocol defect symptoms are
found. To this end, Probe-I incorporates two key components: a non-intrusive
mechanism to collect the protocol runtime data and accurately model the proto-
col behaviors, and an anomalous behavior detection approach that can identify
protocol defect symptoms from the tremendous behavior data.

Key to Probe-I in modeling protocol behaviors is that the packet exchanging
profiles of a protocol can well reflect its behaviors, since packet exchanging is
centric to WSN protocols in nature. Hence, leveraging on the broadcasting nature
of wireless communications, Probe-I equips a wireless interface (e.g., that on a
compatible sensor node) compatible with that adopted in the target network,
and passively eavesdrops the packets in the air. A profiling approach specifically
tailored for WSN protocols is then employed to model the behaviors of the target
protocol based on the sniffed packets. Thus, unlike instrumentation-based tools
(e.g., EnviroLog [3] and Declarative Tracepoints [4]) that will inevitably intrude
the executions of the target protocol, Probe-I requires no modifications to both
the software and hardware of the target sensor nodes. Most importantly, it will
not alter the original executions of the target protocol. This provides it nice
fidelity and no overhead in capturing the protocol behaviors.

Although the protocol behaviors can be profiled, manually inspecting the
data to identify the potential defect symptoms becomes a daunting task, which
may be extremely labor intensive. Probe-I addresses this challenge with a two-
step approach. First, it allows a WSN practitioner to perform a baseline test,
where the protocol behaviors are easy to be verified. After the correctness of the
protocol is confirmed in the baseline test, Probe-I saves the verified behavior
data to the mobile device. During the system runtime, the WSN practitioner can
from time to time bring the device again to the network field. The newly collected
protocol behavior data will be compared with the verified data obtained in the
baseline test. The discrepancy of the two set of data indicates suspicious protocol
behaviors. Probe-I will then issue an alert, suggesting further inspection of the
protocol implementation.

The rest of the paper is organized as follows. We overview the design of
Probe-I in Section [2l Section [B] elaborates how Probe-I collects the protocol
runtime data of a WSN protocol and models its behaviors. In Section E we
discuss the details on detecting defect symptoms in Probe-I. Two case studies
are provided in Section Bl to demonstrate the effectiveness of Probe-I. Section
presents the related work. We conclude this paper in Section [1

2 Overview of Probe-I

Figure[Ilshows the concept of our mobile device assisted non-intrusive approach,
namely, Probe-I, to discover post-deployment protocol defects. The packet ex-
changes of the target WSN can be eavesdropped with a compatible wireless in-
terfacing device, namely, a sniffer, connected to a more powerful mobile device
(e.g., a tablet computer). A convenient choice of such a sniffer is a compatible

102 Y. Zhou et al.

@5 @5

3

CGRDY
> (@S (@

S \
3

Fig. 1. Probe-I concept

Verified = s =
I behavior data= = <

Model
(((. | @ comparison
Behavior
i&_;smffin : %}vrofnina — Visulization
- 9 - > ==

Protocol A
behavior data
I Packets

Probe-I on l:gg::;;lor
|£>bi1e device y

Fig. 2. System overview of Probe-I

A
2 7

} Defects
— Manual

inspection I

sensor node. Exploiting the computational and visualization capabilities of the
mobile device, Probe-I models and shows the protocol behaviors. Suspicious be-
haviors can be detected, which help discover post-deployment protocol defects.

Such a new conceptual design is feasible with the recent advancement in mo-
bile computing. For example, the current version of Android [5] enables mobile
devices to connect through a USB (Universal Serial Bus) cable to a peripheral
device via the on-the-go (OTG) mode or the host mode. It is convenient to
connect a mobile device to a sniffer to obtain the packets it has captured.

Figure [overviews the Probe-I design. Probe-I can collect the protocol be-
haviors in a simple test scenario and plot them. A WSN practitioner can then
readily examine whether the protocol behaves as intended. We call such a veri-
fication process a baseline test. If the correctness of the protocol in the baseline
test is verified, the behavior data can be saved in the mobile device for further
verification processes, namely, the runtime tests: During the network lifetime,
the WSN practitioner can from time to time carry the mobile device into the
network field to verify the protocol. Each time when a node is accessed, Probe-I
can collect its behaviors, and compare them with those collected in the baseline
test. The discrepancy means that the protocol behaviors are different from the
baseline test unexpectedly, which, as a result, indicates potential defect symp-
toms. Hence, such discrepancy will be shown to the WSN practitioner.

Next, we will discuss how Probe-1I collects and models the protocol behaviors
in Section Bl and how Probe-I finds behavior discrepancy in Section [l

Online Protocol Verification in WSNs via Non-intrusive Behavior Profiling 103

3 Protocol Behavior Profiling and Modeling

3.1 Profiling Protocol Behaviors

When a protocol defect is triggered, it will change the correct behaviors of the
protocol, resulting in a malfunction or a performance degradation. Since packet
exchanges are centric to a protocol, the malfunction or performance degradation
of a protocol will generally cause the packet exchanging behaviors to deviate from
the normal. Examples include packet loss, large packet delay, and low packet
throughput. Hence, we can verify the protocol via a “black box” approach, i.e.,
by monitoring the packet exchanging behaviors.

Note that it is possible that the sniffer successfully receives a packet intended
to a node, while the node per se fails to receive the packet, or vice versa. Such
inconsistency will make the sniffer get distorted knowledge of the protocol. To
avoid it, Probe-I focuses on one node at a time (namely, the target node u) by
putting the sniffer close to u. Thus, it can obtain high-fidelity packet receiving
events of the target node. In this way, Probe-I observes the behaviors of the
protocol running on w by monitoring the packets that involve u (i.e., those
intended for v and those sent by u).

Header Payload

SenderID | = =

Receiver ID L]

Sequence'
nuniber)| ==

Fig. 3. Typical packet structure of WSNs

To do this, Probe-I should be packet content-aware. It obtains the sender and
receiver information by analyzing the packet header. Figure Bl shows the typical
packet structure of WSNs, where a packet p consists of a header and a payload.
Let p.data denote the payload. In the header, the sender ID is the node that
sends the packet (i.e., the sender). The receiver ID is its intended recipient (i.e.,
the receiver). When a node sends or relays a packet, it will update the sender
ID to its own ID, and the receiver ID to its next-hop neighbor. Let p.src and
p.dest denote the sender and receiver of p. Note that such a packet structure is
generally adopted in typical WSN protocols. For example, the Active Message
packet format bears such a structure, which is generally used in the protocols
for TinyOS applications [6] (e.g., Collection Tree Protocol (CTP) [7]).

Provided the packet format information, Probe-I can then parse the packets it
has eavesdropped during ¢. For a sniffed packet p, if either p.src or p.dest is node
u, Probe-I will save p (together with the capturing time, denoted by p.time).
Thus, during the monitoring period t, Probe-I can obtain a sequence of packets
that are sent to or sent by u in a chronological order of their capturing time.
Let P:(u) denote such a sequence. Probe-I then models the protocol behaviors
running on u during ¢ based on Pi(u), which is illustrated next.

104 Y. Zhou et al.

3.2 Role-Oriented Protocol Behavior Modeling

Data packet flows in a WSN typically follow two types, data collection and
data dissemination. The former is generally for obtaining the readings from the
sensor nodes, while the latter for distributing information to the sensor nodes.
Considering the major purpose of WSNs is typically for obtaining the sensor
readings, we focus on modeling the behaviors of data collection protocols in this
paper. Data dissemination can be deemed as the reverse traffic of data collection,
and therefore can be modeled with a similar approach.

There are three kinds of nodes involved in a typical data collection protocol,
specifically, source, sink, and relay, as shown in Figure[d A source node generates
a packet (e.g., a packet carrying the sensor readings of the node), a sink node is
the intended final destination of the packet, and a relay is an intermediate node
that helps forward the packet to its next-hop neighbor towards the sink.

» » »
> 1 >

Source Relay Relay Sink
Fig. 4. A simple scenario where three roles of nodes are shown

Probe-I identifies that a target node u is a source if it captures packets from
u which are not previously received by u. We say such a packet p is generated
by node u. A target node u is a sink if Probe-I captures packets intended for
u which will not again be sent out by u. We say such a packet p is collected by
node u. Finally, Probe-I can know that a target node u is a relay if it captures
packets intended for u which is again sent out by u. We say such a packet p is
relayed by node u. The above notions are formally described as follows.

source - if 3 p € Py(u) with p.src = v and # ¢ with q.dest = u and q.data = p.data
sink - if 3 p € Py(u) with p.dest = u and 3 ¢ with g.src = u and q.data = p.data
relay - if 3 p and ¢ € Pi(u) with p.dest = u, g.src = u, and g.data = p.data

Naturally, nodes with different roles (i.e., source, sink, or relay) have different
protocol behavior specifics, which should be modeled separately. What follows
discusses our role-oriented behavior modeling considerations.

1) Source: For a source node, an important consideration is the number of
packets it has generated in a given period of time. In this regard, Probe-I divides
the monitoring period into many disjoint time intervals, each with a fix length .
Then it considers the packets g; (i = 1,2, ...,]) generated by u in every time
interval as the metrics that reflect the behaviors of the protocol running at wu.
2) Sink: For a sink node, the number of packets it can collect in a given pe-
riod of time is an important parameter. Hence, similarly, Probe-I also divides
the monitoring period into disjoint time intervals, each with length 7. Then it
considers the packets ¢; (i = 1,2, ..., uj) collected by u in every time interval
as the metrics that reflect the protocol behaviors at u.

Online Protocol Verification in WSNs via Non-intrusive Behavior Profiling 105

Moreover, if packet sequence number is available in the packet structure (see
Figure [B]), it is then feasible to check the end-to-end packet loss rate. Again,
packet loss rate is measured in each of the intervals with length 7.

3) Relay: Critical to a packet relay process is how long a packet has been
staying in the relay node. This indicates the hop-by-hop delay, and contributes
in sum to the end-to-end delay of the packet. Therefore, Probe-I obtains the
time between when a packet arrives at node v and when the packet leaves the
node. Specifically, consider packets p and ¢ in P;(u) with p.dest=q.src=u and
q.data=p.data. Then the relay delay is q.time-p.time. Probe-I uses such delays
of all forwarded packets in ¢ to model the protocol behaviors in t.

Note that it is possible that a packet p may be resent if the packet cannot
be successfully delivered. Hence, in the above considerations, ¢ is the packet
with the largest g.time in all packets with source field src identical to v and
payload field data identical to p.data. In other words, we only consider the last
(successful) relay attempt of a packet.

Moreover, to describe such retransmissions, for the source and the relay nodes,
Probe-I records the number of transmission attempts for each packet being sent.
This metric can capture the link quality.

Finally, Probe-TI also measures the protocol overhead for all nodes. Specifically,
it divides the monitoring period into disjoint time intervals, each with length 7,
and calculates the ratio between the number of data packets and that of control
packets in each interval.

4 Detecting the Anomalous Protocol Behaviors

Now we discuss how Probe-I compares the verified behaviors (i.e., those col-
lected in the baseline test) with those collected in a runtime test. The protocol
behaviors of a node may change in two aspects, i.e., role or behavior metrics
discussed in Section Bl We illustrate them as follows.

4.1 Role Changes

We consider the role change of a node because it may reflect dramatic changes
of the protocol behaviors. For example, when a node recognized as a relay in
the baseline test is found to be a sink in a runtime test, it means that the node
has not relayed some received packets as it should have done. This indicates
unexpected packet drops for the relay node. Hence, such a model violation should
be presented to the WSN practitioner.

Finally, note that it is straightforward to detect the role change of a node
with the role identification approach described in Section

4.2 Discrepancy in Behavior Data

Probe-I compares the protocol behaviors in terms of their data distributions.
Specifically, given each protocol behavior metric, we suggest that for the two

106 Y. Zhou et al.

sets of corresponding behavior data B and R collected in the baseline test and
the runtime test respectively, their distributions should be compared. If their
distributions have no significant difference, Probe-I considers that the protocol
behaviors in the runtime test is similar to those in the baseline test. As a result,
the protocol functions correctly in the runtime test.

Probe-I detects the discrepancy of the behavior data in B and R with a
statistical hypothesis test approach as follows. First, Probe-I assigns the samples
in B into k different bins according to their values. We consider two cases: 1)
The data of the performance metric are continuous; 2) They are discrete. The
relay delay is an example of the first case, while the transmission times is an
example of the second case.

1) The data are continuous: SUppose byqz and by, are the samples with largest
and smallest values in B respectively. Then, (—o0, 400) is divided into k intervals,

where [byin + b"'g‘(k:bl")Li"L7me - b””é‘(”kibl")””] is divided into k-2 intervals with

3 bmaz—bmin i3 . bmaz —bmin
equal size z— ™, and two tail intervals are (—o00,byin + 501] and

(bmaz — b””é‘(”kibl")”” ,+00). A bin is then assigned to each interval. A sample is
put into a bin if the value of the sample falls into the corresponding interval of the
bin. Figure[l(a) shows an example of how to divide (—o0, +00) into k=5 intervals,

while Figure Bl(b) shows the resulting bins corresponding to the intervals.

bmin bmax djﬂ]
(a) (b)

Fig. 5. An example showing how to put the samples (each denoted by a ‘x’) into 5 bins

2) The data are discrete: Suppose there are k different values of the samples in
B. A bin is then assigned to each value. A sample is put into a bin if the value
of the sample is equal to the corresponding value of the bin.

Thus, for either case, all the samples in I can be put into the bins. Let By, B,
..., By, denote the number of samples in the bins respectively. Then, for all the
samples in R collected in the runtime test, they will also be put into k bins,
according to the same value intervals as those for B (for the continuous data
case), or according to the same values as those for B (for the discrete data case).
Let R1, Ro, ..., Ry denote the number of samples in the bins respectively.

Note that for the discrete-data case, it is possible that a sample in R cannot be
put into any of the k bins. In other words, its value does not match the values
of any samples in B. In this case, such a sample is an outlier. This indicates
an anomaly in the protocol behaviors in the runtime test, comparing with the
baseline test. Hence, Probe-I will report such discrepancy in behavior data
immediately and suggest further inspection of the protocol implementation.

Otherwise (i.e., all the samples in R can be put into the bins), let us suppose
the number of the data samples in R is n. If the data samples in R follow the
distribution of the data samples in B, the expected number of the samples in
each bin i, denoted by R;, should be:

Online Protocol Verification in WSNs via Non-intrusive Behavior Profiling 107

B;

= . on (1)
Zi:l B;

If the expected number of samples in any bin in either tail is less than 5, the bin

is pooled with a neighboring bin, until the count in each extreme bin is at least

5. Suppose in the end, there are m resulting bins. Let R}, R}, ..., R}, denote tlrlle

R;

numbers of samples in R that are put in the m bins respectively, and Rll, RIQ, v Ry,
denote the expected numbers of samplesin R that should be in the bins respectively.
Probe-TI then adopts Pearson’s chi-squared (x?) hypothesis test to test the

/

goodness of fit of the two sets of data (i.e., [R}, RY, ..., R,] and [Rll, R/27 o R
in terms of their distributions [§]. Its null hypothesis is that the distribution of
[R], R, ..., R.)] is consistent with the expected distribution, i.e. that of [Rll,
R;, e R;n], while the alternative hypothesis is that it is not.
For the x? test, the value of the test-statistic is calculated as [8]:
m / /N2
XQ — Z (Rz R/Rz) (2)

i=1 i
The x? statistic can then be used to calculate a p-value by comparing the value
of the statistic to a y? distribution with the number of degrees of freedom equal
to m-1. The p-value represents the uncertainty in the claim that the null hy-
pothesis is false. Probe-I considers that when the p-value is larger than 0.1, a
conventional significance level threshold, the null hypothesis will not be rejected.
In other words, we will consider that the protocol behaviors in the baseline test
are different from those in the runtime test if the difference in the distributions
of B and R is statistically significant, i.e., the probability that the alternative
hypothesis is true is larger than 90%. In this case, Probe-I will output such
a protocol behavior anomaly detected in the runtime test, and suggest further
inspection of the protocol implementation.

Finally, note that the statistical hypothesis test is non-parametric, which does
not require any a priori knowledge of the distribution. This fits our problem do-
main since we do not know how a performance metric should actually distribute
for the target protocol.

5 Evaluation

To show the effectiveness of Probe-I in modeling and verifying WSN protocols,
we provide two representative case studies in this section. We will examine how
protocol behavior anomalies caused by design defects can be conveniently iden-
tified with Probe-I. The target WSN protocols in these two case studies are
based on the codes distributed with TinyOS [6].

We implement Probe-I with Java. Such a platform independent implementa-
tion makes it convenient to port it to various mobile devices. In our experimental
studies, for convenience consideration, we use a laptop computer as the mobile
device and a sensor node as the sniff to eavesdrop the packets exchanged in our
target WSNs. The computer is connected with the sniff with a USB cable.

108 Y. Zhou et al.

5.1 Case Study I: Data Forwarding

In our first case study, we verify a lightweight multi-hop packet forwarding pro-
tocol based on BlinkToRadio distributed with TinyOS [6]. The target WSN
contains three sensor nodes. The correct behaviors of the target protocol are
simple: Node 2 will generate 25 packets per second, and send each packet to
node 1. Node 1, upon receiving a packet from node 2, will forward the packet
immediately to node 0. Node 0 will collect the packets intended for itself. In
other words, node 0 is a sink, node 1 is a relay, and node 2 is a source.

After the network is deployed, we perform a baseline test. The sniff is put
close the three nodes one by one. Since the baseline test should be a simple
verifiable test, for each target node, the monitoring period is short (nearly 30
seconds). Probe-I then collects the packets sent to or sent by each target node,
and models the protocol behaviors running on each node. 7 is set 1 second.
Probe-I then identify the role of each node successfully. For each node, the cor-
responding behavior metrics are also consistent with our design purpose. Hence,
the correctness of the protocol is confirmed in the baseline test.

We then again access the network with Probe-I to perform a runtime test.
This time we let Probe-I monitor each node for a longer period of time (nearly
3 minutes). Probe-I finds no behavior anomaly for the sink node and the source
node. Also, for the relay node, Probe-I does not find the data of the behavior
metrics (i.e., the relay delay and the transmission attempts) collected in both
tests have significant discrepancy. However, it issues an alert showing that node
1 has two roles: a new but unintended role sink, in addition to its designed role
relay. This is obviously a fault, which means node 1 must have received some
packets and have not sent them out.

We then inspect the protocol implementation for the relay node. Starting from
the codes that handle a packet receiving event, we instantly find that a received
packet can be actively dropped in function AMSend.send due to a busy flag. The
flag is set when the node is in the process of sending a packet. This means before
a previously-received packet has been sent, another packet arrives unexpectedly,
causing the protocol to drop the new arrival packet. To correct this fault, the
protocol should employ a buffer to cache packets until the previously-received
packet has been sent.

Note that such a fault is only triggered occasionally, and causes an occasional
packet loss, which tends to be neglected. We have shown that Probe-I can
however effectively model the protocol behaviors and successfully detect such a
subtle protocol defect via identifying role changes of sensor nodes.

5.2 Case Study II: Collection Tree Protocol

In this case study, we test a more sophisticated routing protocol CTP (Collection
Tree Protocol) [9]. CTP is frequently employed to transfer sensor readings to
sinks. We intend to examine whether CTP performs well in mobile networks.
The target WSN contains four sensor nodes. One is the sink, while three are
sources that will generate one packet per second. The packets from the sources

Online Protocol Verification in WSNs via Non-intrusive Behavior Profiling 109

will be conveyed to the sink possibly via other sensor nodes. Hence, a source
node may also serve as a relay. Since the packet rate is low, we set 7 10 seconds
in our tests, and let Probe-I monitor each sensor node for nearly 3 minutes.

In our baseline test, all nodes are stationary. Probe-I correctly identifies the
node roles. The behavior metrics are also correct. The baseline test has passed.

We then start a runtime test, where the sink and two nodes close to the sink
are stationary (which may serve as relays) and the rest one node is mobile. CTP
should be able to find another relay when the previous relay for the mobile node
cannot be reached due to its mobility. Probe-I reports that the distributions of
the number of packet transmission attempts and the overhead are inconsistent
with the baseline test. In particular, Probe-I shows that the number of packet
transmission attempts has a new value 30, i.e., some packets are retransmitted
for 30 times. By inspecting the CTP design, we find that a route is considered
broken only when a packet cannot be successfully transmitted after 30 attempts.
This may not be proper for mobile networks.

Probe-I reveals that CTP may not be a good choice for mobile networks, since
routes may be reestablished frequently, incurring larger overhead and transmis-
sion failures (and packet loss). The route reestablishing procedure should be
improved to cope with node mobility, which confirms the findings in [10].

This case study demonstrates how Probe-I can greatly facilitate the verifica-
tion of a protocol in a new network scenario. Note that without such a tool, it
would be quite labor-intensive to manually inspect the design of CTP to justify
whether it is applicable in the new mobile scenario.

6 Related Work

Various research efforts have been put to enhance the reliability of WSN proto-
cols. Many techniques, including simulation-based testing and troubleshooting
approaches, network monitoring mechanisms, and debugging tools are proposed,
which are surveyed in what follows.

TOSSIM [11] and Avrora [12] are two widely-adopted simulation tools for WSNs.
Before field-deploying a protocol, WSN practitioners can resort to such simulation
platforms to confirm its correct behavior. But a comprehensive simulation will gen-
erate tremendous protocol behavior data. Verifying the correctness of the protocol
behavior largely depends on manual efforts, which is labor-intensive. T-Check [13]
and KleeNet [I4] are two simulation-based approaches that can find WSN bugs
by exploring program states extensively. Sentomist [I5] locates bug symptoms via
finding outliers in application behaviors collected via simulations. However, high-
fidelity simulation remains difficult, given the complexity of the real world and the
unexpected working scenarios [I6]. As a result, protocol defects may still escape
from being detected in simulation platforms. Probe-I, in contrast, focuses on de-
tecting protocol defects in deployed networks.

SNTS [I7] deploys many additional sensor nodes in the target network field to
collect the packets of the target WSN. These sensor nodes have to be collected
manually to retrieve their collected packets. It only suits small experimental

110 Y. Zhou et al.

network. PAD [I8] attaches logs in regular data packets to help the base sta-
tion diagnose network problems. The logging and piggyback mechanisms will
inevitably disturb the original protocol behaviors.

Sympathy [I9] introduces a diagnosis agent in the target sensor nodes to
collects their run-time data, and transmitting them to the base station. Tools
based on instrumentation (e.g., EnviroLog [3] and Declarative Tracepoints [4])
have also been proposed to log the protocol behaviors in a sensor node during
its runtime. PDA [20] inserts state hypotheses into the WSN codes. If they
do not hold during runtime, alerts can be issued. These tools can help detect
protocol defects. However, as real-time systems, WSN programs are sensitive
to timing. Running on the same hardware, such behavior data collection and
verification mechanisms will inevitably intrude the executions of the original
codes. As a result, a defect may hide when such a mechanism turns on, but can
still be triggered when it is disabled. Hence, these tools are still not adequate to
eliminating protocol defects, not to mention the human efforts in reprogramming
an existing WSN application to incorporate such tools. Probe-I avoids such
inadequacy via a non-intrusive protocol behavior data collection approach.

7 Conclusion

This paper presents Probe-I (sensor network Protocol behavior Inspector), a
mobile device assisted tool that can unveil post-deployment protocol defects in
WSNs. Probe-I collects the protocol behaviors by passively listening to the
packet exchanges with a mobile device equipped with a compatible wireless in-
terface (i.e., a USB-connected sensor node). Such a behavior data collection
mechanism is non-intrusive, i.e., it will not change the execution of the origi-
nal WSN protocols. This can provide Probe-I nice fidelity in obtaining the real
protocol behaviors, since the executions of WSN codes are sensitive to timing.

Probe-I then employs a node-by-node role-oriented approach to model the pro-
tocol behaviors based on the sniffed packets. Hence, it focuses on the protocol de-
fects that can cause packet exchanges to deviate from the normal. With Probe-I,a
WSN practitioner can verify whether a protocol works as well in field as it does in a
simple baseline test. It can illustrate potential protocol defect symptoms, i.e., the
behavior discrepancy found in a runtime test. This can facilitate manual inspec-
tion of the protocol implementation to locate the root cause of such discrepancy.
We successfully employs Probe-I to detect protocol design defects in two WSN
data collection protocols, which shows its effectiveness.

Acknowledgements. This work was substantially supported by the National
Natural Science Foundation of China (Project No. 61100077), the National
Basic Research Program of China (973 Project No. 2011CB302603), the Re-
search Grants Council of the Hong Kong Special Administrative Region, China
(Project Nos. CUHK 415311 and N CUHK405/11). J. Liu’s work was supported
by a Canadian NSERC Discovery Grant, a Discovery Accelerator Supplements
Award, an NSERC Engage Grant, a MITACS Project Grant, and a China NSFC
Major Program of International Cooperation Grant (61120106008).

Online Protocol Verification in WSNs via Non-intrusive Behavior Profiling 111

References

1.

2.

ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M.: The hitchhiker’s guide to
successful wireless sensor network deployments. In: Proc. of ACM SenSys (2008)
Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield
in a volcano monitoring sensor network. In: Proc. of OSDI (2006)

. Luo, L., He, T., Zhou, G., Gu, L., Abdelzaher, T.F., Stankovic, J.A.: Achieving

repeatability of asynchronous events in wireless sensor networks with EnviroLog.
In: Proc. of the IEEE INFOCOM (2006)

. Cao, Q., Abdelzaher, T., Stankovic, J., Whitehouse, K., Luo, L.: Declarative trace-

points: A programmable and application independent debugging system for wireless
sensor networks. In: Proc. of ACM SenSys (2008)

. Google Inc.: Android operating system, http://www.android.com
. TinyOS Community Forum: TinyOS: An open-source OS for the networked sensor

regime, http://www.tinyos.net

. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-

col. In: Proc. of the ACM SENSYS, pp. 1-14 (November 2009)

. Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing. Wiley (1996)
. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-

col. In: Proc. of ACM SenSys (2009)

Chipara, O., Lu, C., Bailey, T.C., Roman, G.C.: Reliable clinical monitoring using
wireless sensor networks: Experiences in a step-down hospital unit. In: Proc. of
ACM SenSys (2010)

Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation
of entire tinyos applications. In: Proc. of the ACM SenSys (2003)

Titzer, B., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with
precise timing. In: Proc. of the IEEE IPSN, pp. 477-482 (May 2005)

Li, P., Regehr, J.: T-Check: Bug finding for sensor networks. In: Proc. of IPSN
(2010)

Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weisez, C., Kowalewskiz, S., Wehrle,
K.: KleeNet: Discovering insidious interaction bugs in wireless sensor networks
before deployment. In: Proc. of the ACM/IEEE IPSN (2010)

Zhou, Y., Chen, X., Lyu, M., Liu, J.: Sentomist: Unveiling transient sensor network
bugs via symptom mining. In: Proc. of the IEEE ICDCS (2010)

Stojmenovic, I.: Simulations in wireless sensor and ad hoc networks: matching and
advancing models, metrics, and solutions. IEEE Comm. 46(12), 102-107 (2008)
Khan, M.M.H., Luo, L., Huang, C., Abdelzaher, T.: SNTS: Sensor network trou-
bleshooting suite. In: Proc. of the IEEE DCOSS (2007)

Liu, K., Li, M., Liu, Y., Li, M., Guo, Z., Hong, F.: Passive diagnosis for wireless
sensor networks. In: Proc. of the ACM SENSYS (2008)

Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sympa-
thy for the sensor network debugger. In: Proc. of the ACM SENSYS (2005)
Rmer, K., Ma, J.: PDA: Passive distributed assertions for sensor networks. In:
Proc. of IPSN (2009)

http://www.android.com
http://www.tinyos.net

	Online Protocol Verification in Wireless Sensor Networks via Non-intrusive Behavior Profiling

	Introduction
	Overview of Probe-I
	Protocol Behavior Profiling and Modeling
	Profiling Protocol Behaviors
	Role-Oriented Protocol Behavior Modeling

	Detecting the Anomalous Protocol Behaviors
	Role Changes
	Discrepancy in Behavior Data

	Evaluation
	Case Study I: Data Forwarding
	Case Study II: Collection Tree Protocol

	Related Work
	Conclusion
	References

