
Textout: Detecting Text-layout Bugs in Mobile
Apps via Visualization-oriented Learning

Yaohui Wang∗§, Hui Xu†‡, Yangfan Zhou∗§, Michael R. Lyu†‡, Xin Wang∗§
∗ School of Computer Science, Fudan University, Shanghai, China

† Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
‡ Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

§ Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Abstract—Layout bugs commonly exist in mobile apps. Due to
the fragmentation issues of smartphones, a layout bug may occur
only on particular versions of smartphones. It is quite challenging
to detect such bugs for state-of-the-art commercial automated
testing platforms, although they can test an app with thousands
of different smartphones in parallel. The main reason is that
typical layout bugs neither crash an app nor generate any error
messages. In this paper, we present our work for detecting text-
layout bugs, which account for a large portion of layout bugs. We
model text-layout bug detection as a classification problem. This
then allows us to address it with sophisticated image processing
and machine learning techniques. To this end, we propose an
approach which we call Textout. Textout takes screenshots as
its input and adopts a specifically-tailored text detection method
and a convolutional neural network (CNN) classifier to perform
automatic text-layout bug detection. We collect 33,102 text-region
images as our training dataset and verify the effectiveness of our
tool with 1,481 text-region images collected from real-world apps.
Textout achieves an AUC (area under the curve) of 0.956 on the
test dataset and shows an acceptable overhead. The dataset is
open-source released for follow-up research.

Index Terms—mobile application testing, GUI testing, GUI bug
detection, text-layout bug detection, deep learning

I. INTRODUCTION

Bug detection poses a continuing challenge for software

development. Developers have to cope with a variety of bugs,

such as crash bugs [1], performance bugs [2], [3], and layout

bugs [4]. Traditional software testing concentrates on detecting

crash and performance bugs, and the detection of layout bugs

is a secondary concern. However, with the rapid growth in

the number of smartphone users in recent years [5], it is

highly desirable for mobile apps to provide more convenient

and easy-to-use graphical user interfaces (GUI). Hence, layout

bugs have become far more critical for mobile apps than they

were previously.

Nevertheless, layout bugs are very common in real-world

apps. There are many complaints in app stores [6] and

internet media reporting the display issues of apps on par-

ticular devices. For example, Figure 1 demonstrates a recent

layout bug of YouTube app when running on iOS (i.e., the
home bar is overlapped with the texts of several buttons).

On the one hand, the translation from source code to GUI,

although normally conducted automatically, is complex. When

developing apps, developers generally define static layouts

and some basic components in standalone files (e.g., *.xml)

(a) The buggy layout where the home
bar is overlapped with the texts of
several buttons.

(b) The fixed layout where the home
bar no longer overlaps the texts of
the buttons.

Fig. 1. A real-world layout bug of the Youtube app. The
original report can be found on the following website:
https://www.macrumors.com/2019/01/14/youtube-app-2018-ipad-pro-
support/.

while implementing their dynamic transitions and program

logic in other files (e.g., *.java). It is very difficult for
developers to gauge the actual visual effect of a GUI with

precision until it is shown on the screen. On the other hand,

the host smartphones running apps suffer heavy fragmentation

issues, i.e., there are many hardware and system versions [7].
Consequently, the layout may be normal on one device but

malformed on another, which increases the difficulty of finding

such bugs among various devices during testing. State-of-the-

art commercial mobile testing platforms (e.g., Testin1) can
handle the fragmentation issue by automated and parallel

testing with thousands of different smartphones, but find it

hard to detect malformed layouts. The main reason is that a

malformed layout neither crashes a program nor generates any

error messages. Therefore, there is a pressing need to improve

current testing practices in detecting layout bugs.

Automatic detection of layout bugs is challenging. Existing

approaches mainly rely on image differing or layout property

1https://www.testin.net/

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

validation [8]. A major drawback of these approaches is

that they always require human input as the ground truth

and cannot be automatically extended to support new app

versions and devices. Thanks to the recent advancement of

deep learning techniques in image processing [9], we now

have the opportunity to tackle the problem more efficiently,

by training a classifier which can detect malformed layouts in

much the same way as humans do.

Intuitively, we can train a binary classifier to discriminate

normal and abnormal layout images. However, there are sev-

eral major challenges to overcome. Training a deep learning

classifier generally requires thousands or even millions of

images. While collecting normal-layout images is easy, col-

lecting a large number of abnormal-layout images is difficult.

Furthermore, the cases of layout bugs vary a lot among each

other and they may occupy only a small region of the image.

It is challenging to train a classifier that can effectively capture

the buggy regions and achieve promising accuracy.

In this work, we focus on a popular type of layout bugs

related to texts. Because text often gives important instructions

to users, such bugs are more noticeable and irritating (e.g.,
Figure 1a). To detect text-layout bugs, we propose a deep

learning-based approach which we call Textout. Given an app

screenshot, Textout firstly detects the textual regions of the

image, and segments the image into several rectangular areas.

It then applies a binary classifier to each sub-image and detects

if it contains layout issues. We adopt convolutional neural

networks (CNN) as the classifier and train it with segmented

images. Because segmented images provide more accurate

information about a bug, we are more likely to train an elegant

model with high accuracy. Furthermore, as a screenshot can

be segmented into tens of clips, the number of raw screenshot

images required for training can be reduced. To evaluate the

performance of our approach, we manually collected 1,481

text-region images segmented from 21 buggy screenshots and

38 normal screenshots of real-world apps. Experimental results

show that Textout can detect most of the buggy images with

a low false positive rate. It achieves an AUC (area under the

curve) of 0.956.

To summarize, this paper makes the following main contri-

butions.

• We present the first attempt to study text-layout bugs.
• We try to detect text-layout bugs using screenshots and
model text-layout bug detection as an image classification

problem.

• We build a large dataset that contains a wide range of
normal and abnormal text-region images.

• We propose a deep learning-based approach, which we
call Textout, and empirically show that it is an effective

way of detecting text-layout bugs.

• We release our dataset as open-source to facilitate follow-
up research2.

The remainder of this paper is organized as follows: Sec-

tion II presents the related work of GUI layout testing.

2https://github.com/DillionApple/Textout-dataset

Section III explains the different causes and types of text-

layout bugs. Section IV describes our approach to detecting

text-layout bugs. Section V provides a detailed account of how

Textout operates. Section VI describes our experiments and

evaluations. Section VII discusses the practicability and also

the limitations of Textout. Section VIII concludes.

II. RELATED WORK

Our work focuses on detecting layout bugs. Those bugs may

break the application’s visual effect and make the displayed

content hard to distinguish. Below, we discuss previous studies

related to layout testing in order to set our work in context

and bring out its significance.

Some layout bug detection approaches focus on web pages,

taking advantage of specific HTML features. For example,

Mahajan et al. [10] employed image comparison to find
presentation failures in HTML. This can map GUI components

back to the corresponding HTML elements and identify the

faulty HTML code, but a target design image with a fixed

resolution is required for every screen page. Fighting Layout

Bugs [11] is a library developed by Google for detecting

layout bugs automatically in web pages. It uses CSS injection

to detect text and component borders on a web page. This

information can help to determine whether a text line crosses

the borders of other components, but can only be used to detect

this specific kind of bug.

Some investigations focus on detecting GUI layout bugs on

mobile applications. Hasselknippe et al. [8] proposed a tool
which they called LBH (Layout Bug Hunter). It monitors the

layout hierarchy, position, and size of the GUI components

and uses several rules to judge whether a layout bug is

present. Their work tried to classify GUI layout bugs, but the

classification cannot cover all GUI layout bugs. And LBH only

works for applications written by Fuse, which is an application

developing framework, because it depends on this framework

to gain the real-time GUI layout information. It may also

misjudge some aesthetic design features as GUI layout bugs.

Some investigations have used a deep learning approach.

Lu et al. [12] proposed a software GUI testing tool based
on DNN (Deep Neural Network). Their tool accepts software

screenshots as input and evaluates its layout as either “good”

or “bad”. But it only cares about the aesthetics of the layout

design and cannot detect layout bugs. Wang et al. [13] also
proposed a DNN-based method for layout testing. But they

need to train one DNN model for each of the GUI components,

and rely on the source code to generate abnormal layout

samples.

Industrial tools have also been developed for GUI layout

testing. Applitools [14] captures the visual difference be-

tween the real GUI image and the target design image in

the testing process and generates a graphic report for users.

Users can then either accept or reject the result. Android

Studio, the official IDE for Android development, provides a

layout debugging tool called Android Inspector [15]. It allows

developers to debug their GUI layout at runtime and provides

a user interface by which developers can check the detail of

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

the layout tree. There is also a similar tool [16] in the iOS

platform.

Our work is different from previous work. We aim to detect

text-layout bugs, which occur very commonly in application

development. We analyze screenshots and do not require

other information. We model text-layout bug detection as an

image classification problem and use text detection and CNN

classifier to achieve the goal.

III. PRELIMINARIES OF TEXT-LAYOUT BUGS

In this section, we first discuss the role of text in mobile

applications and some main causes of text-layout bugs. Then

we try to categorize different types of text-layout bug.

A. Text Layouts for GUI Construction

Text is the most important way for users to gain information.

In mobile applications, many GUI components have text

displayed on them. These texts function in different ways.

For example, they can supply the main content, navigate

users around the application and prompt them to take desired

actions. However, bad text layout may cause the GUI to

be messy and the text information hard to distinguish. This

significantly compromises the user’s experience.

Text is usually displayed in a rectangular GUI component,

named text view, which can be integrated with several other

components. Below, we list some commonly used components

that may contain text view. These concepts apply both to

Android and iOS applications.

1) Button: Button is a common GUI component in mobile
applications. It usually contains short text which indicates

the related action bound with the button, such as submit,
accept, download and cancel.

2) Navigation Bar: The navigation bar is used to indicate
the user’s current position in the application. It is usually

displayed at the top of the screen. The name of the current

screen is usually displayed in the center of the navigation bar.

There may also be some buttons on its left side or right side

which can guide the user to other screens.

3) Tab Bar: The tab bar is also called the bottom navigation
bar. It usually contains several buttons aligned horizontally and

positions at the bottom of the screen. It is used to separate

different functions of an application into different screens. The

icons and texts in the tab bar indicate the functions of the

corresponding screens.

4) Table View: The table view is suitable for displaying list
data, such as a contact list or music list. Each item in the list

is displayed in a table cell. A table cell usually contains a title

and sometimes a subtitle to indicate the data associated with

it. Users can take further action by clicking the table cell.

B. Causes of Text-layout Bugs

There are many factors that may cause text-layout bugs.

Below, we discuss several main causes of text-layout bugs.

1) Fragmentation: The host smartphones running apps suf-
fer heavy fragmentation issues, i.e., there are many hardware
and system versions [7]. Text-layout bugs can be easily caused

due to fragmentation. For example, different devices have

different screen resolutions. When the screen width narrows,

the width of the text view may narrow accordingly. As the

content in the text view is not changed, the text view could

be stretched vertically. If this is not handled appropriately,

unexpected text overlapping issues may occur.

2) Unexpected Long Texts: Occasionally, the text content
can be very long and cause display issues. Such cases typically

occur when the text content is dynamically fetched from the

Internet or obtained from user inputs. If developers have not

considered the corner cases properly, the text rendered in a

GUI component could be very long, often overflowing the

expected region and overlapping with adjacent text.

3) Different System Settings: To increase the accessibility
of smartphones, many manufacturers provide an interface that

allows users to change the system font size. Older people or

visually impaired people tend to increase the system font size

on their smartphones. At the same time, the font size of some

applications is not fixed, but changes dynamically according

to the system font size settings. This may cause the text

view on the GUI component to expand both horizontally and

vertically. If developers have failed to anticipate this situation,

the rendered GUI can be very messy.

4) Other Issues: Several other issues may also cause text-
layout bugs. In particular, a layout problem of a text view

could also be incurred by other adjacent GUI components. For

example, a text view may be shaded by an adjacent button or

an image.

C. Categorization of Text-layout Bugs

We now discuss several popular types of text-layout bug

according to their display issues. These types of bug all result

in readability issues of textual information, leading to a messy

GUI. We illustrate each type of bug as follows.

• Overlapping texts: Texts of two GUI components (e.g.,
texts in two text views) may overlap with one another.

Figure 2a shows a typical example of such overlapping.

• Crossing-border texts: Texts may exceed the correspond-
ing containers’ borders. For example, if the text of a

button is too long, it will flow across the border of the

button. A typical example is shown in Figure 2b.

• Occluded texts: Text may be occluded by other compo-
nents, with the result that part of the text cannot be shown.

Figure 2c shows a typical example.

• Hybrid of the above: Two or more types of bug may
simultaneously affect some text in the GUI. Figure 2d

shows an example of text compromised by more than

one type of bug.

IV. APPROACH

This section describes our deep learning-based approach of

detecting text-layout bugs.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

(a) Overlapping texts. (b) Crossing-border texts.

(c) Occluded texts. (d) Hybrid.

Fig. 2. Real examples of different types of text-layout bug collected from the Internet.

The consequences of text-layout bugs are disagreeable vi-

sual issues. An obvious approach, therefore, would be to detect

text-layout bugs based on the screenshots of an app during

runtime. Intuitively, we can model this problem as an image

classification problem. For each image, our classifier tries to

discriminate it as “normal” or “abnormal” (i.e., an image with
layout bugs).

We mainly employ CNN for the image classification tasks.

CNN is a type of Deep Neural Network(DNN), and has won

a good reputation for its performance in image classification.

In recent years, with the rising popularity of deep learning,

a number of CNN models for image classification have been

proposed. Some of them have already performed well on Im-

ageNet [17], the well-known image classification competition.

We therefore use CNN to do the classification for us.

But there are still many challenges to overcome. First,

training a CNN generally requires thousands or even millions

of images. It is easy to collect normal layout images but

hard to collect a large volume of abnormal ones. This could

lead to the problem of unbalanced data. Second, since a

screenshot usually contains rich information and diversified

data, distractions may compromise the performance of the

CNN. It is also a complicated task to locate the bug areas

on the screenshot precisely.

A. Overview of Our Approach

We address the challenges of text-layout bug detection as

follows. To overcome the lack of abnormal data, we find a

way to generate artificial abnormal data manually. We also

use text detection to minimize the possibility of distraction on

screenshots. This prompts the CNN to focus on text regions

and reduces the risk of overfitting. It also helps us to locate

the text-layout bug areas. Figure 3 shows the overview of our

approach. It contains two phases: the training phase and the

bug-detection phase.

Figure 3a shows the training phase. We first collect normal

layout screenshots from applications on different smartphones.

The text detection tool then detects text regions on them and

segments them into pieces accordingly. These pieces are la-

beled as normal samples and then fed into the abnormal sample

generator. The generator draws fake texts or components on

them to produce abnormal samples. Finally, these normal and

abnormal samples make up the training dataset which we use

to train the binary CNN classifier.

Figure 3b shows the bug-detection phase. We use text detec-

tion to segment each input screenshot into pieces accordingly.

The binary CNN classifier then gives each piece a predicted

label: “normal” or “abnormal”. Finally, we map samples

labeled with “abnormal” back to their original screenshots and

mark up the corresponding areas with red rectangles.

In the following paragraphs, we introduce the text detection

technology and the binary CNN classifier, and then describe

both the training phase and the bug-detection phase in detail.

B. Text Detection

Text detection is used to detect and mark text regions on im-

ages. Several previous studies (e.g., [18], [19]) have addressed
the subject of text detection, and a range of sophisticated

text detection tools are now available. The text detection tool

scans the whole image with different-size windows. For each

image clip segmented by the window, it gives a corresponding

confidence score to indicate the likelihood that this area is

filled with text.

We use text detection to detect text regions on screenshots.

In general, the texts displayed on mobile device screens are

well printed, which enables text regions to be distinguished

from screenshots with a high degree of precision.

C. Binary CNN Classifier

Building on the expertise developed in previous studies

by others, we also customize a binary CNN classifier. This

takes text-region images as input and gives a predicted label,

“normal” or “abnormal”, for each image. We train the CNN

model using collected normal samples and generated abnormal

samples.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

(a) The training phase of Textout.

(b) The bug-detection phase of Textout.

Fig. 3. The Textout framework, consisting of a training phase and a bug-detection phase

D. Training Phase

Figure 3a shows the overall training phase, including normal

sample collection, abnormal sample generation, and CNN

classifier training.

1) Normal Sample Collection: We collect screenshots from
off-the-shelf applications on several different smartphones. We

check each of them manually to ensure that no screenshot

contains text-layout bugs. Then we use text detection to

detect text regions on them and segment them into pieces

accordingly. We consider these pieces as normal samples. They

are further used to generate abnormal samples.

2) Abnormal sample generation: We generate abnormal

samples from normal ones, referring to the categorization of

text-layout bugs mentioned in section III. We produce buggy

images of the four text-layout bugs by drawing fake texts or

components on normal samples. We introduce considerable

randomness in this process, to increase the diversity of the

generated data and to reduce the risk of overfitting.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

3) CNN Classifier Training: Before training, because color
information is redundant for detecting text-layout bugs, we

convert all samples to grayscale. We also adjust their sizes to

fit the input size requirement of the CNN. They are then fed

into the CNN model for training.

E. Bug-detection Phase

Figure 3b shows the sequence of the bug-detection phase.

The input consists of the screenshots to be tested. After the

execution, it highlights abnormal text-layout areas, if any, on

the corresponding screenshots. We explain the process in detail

below.

First, we use the text detection tool to detect text regions

on the input screenshots and segment them into pieces accord-

ingly. The tool also outputs the position and size of each text

region. We use this information to map the text-region images

back to their original screenshots.

The text-region images are then converted to grayscale and

resized to meet the input shape requirement of the CNN.

The CNN classifier we have trained takes these text-region

images as input, and gives each of them a predicted value.

We set a threshold to the predicted value to control the

sensitivity of the CNN classifier. If the predicted value is

higher than the threshold, then the corresponding sample is

labeled “abnormal”, or it is labeled “normal”.

Finally, we map the samples labeled “abnormal” back to

their original screenshots and highlight the corresponding bug

areas on them.

V. IMPLEMENTATION

This section describes the implementation details of Textout.

We first introduce the details of the two basic techniques we

use in Textout, i.e., the text detection tool and the customized
binary CNN classifier. Then we introduce the details of the

training data collection, the training phase, and the bug-

detection phase.

A. Text Detection Tool

We use a popular open-source text detection tool3 for this

task, which is based on deep learning and provides a pre-

trained model. It performs well on both normal text-layout

screenshots and abnormal ones. Figure 4 shows several text

detection results on screenshots with different text-layout bugs.

The tool marks text lines with green rectangles. In Figure 4a,

the text lines on the screen overlap. In Figure 4b, the texts in

the bubble are too long and cross the border of the bubble.

In Figure 4c, the copyright information on the bottom of the

screen is occluded by the submit button. In Figure 4d, the

titles of some table cells are too long and overlap the icons

and texts below. As the results demonstrate, the text detection

tool can help mark up all the concerned regions.

3https://github.com/eragonruan/text-detection-ctpn

B. Customized Binary CNN Classifier

ResNet [20], a kind of CNN, was proposed in 2016.

It has won a good reputation for its high performance on

ImageNet [17]. It uses shortcut links between convolutional

layers to prevent vanishing/exploding gradients in deep neural

networks.

We use a customized ResNet as the CNN classifier. Fig-

ure 5 shows its structure. This structure is based on that of

ResNet50, a typical ResNet, but we modify its input layer

and the last two layers to fit our needs.

Most text-region images are long in width and short in

height. All input images are grayscale, i.e., they only have
one color channel. We therefore change the input size of the

CNN to 200× 40× 1, which means the input images should
be 200 pixels in width, 40 pixels in height, and have a single

color channel.

For the last two layers, we first change the 1000-dimensional

fully connected layer in ResNet50 to a 1-dimensional fully

connected layer (see “fc, 1” in Figure 5). The output of

this layer is a single value. A sigmoid activation layer is

then applied to normalize this value within the range 0 to 1.

The sigmoid layer is used in the training phase, as the input

samples are labeled with 0 or 1. In the bug-detection phase,

we extract the output value of the “fc, 1” layer for prediction.

We set a threshold to this value and can adjust the sensitivity

of the CNN model by adjusting this threshold.

Keras is one of the most popular open-source deep learning

libraries. It is capable of building complicated neural network

structures, and can also extract the output of the neural

network’s intermediate layers. We use Keras to build this

customized ResNet.

C. Training Data Collection

We collect 580 screenshots from 30 popular mobile appli-

cations on three different smartphones. The applications are

selected from a variety of categories, such as social media,

music, reading, multimedia, and shopping. The smartphones

come from different platforms and have different resolutions.

After collection, we check every screenshot manually to ensure

that there are no layout bugs on them. We then use the text

detection tool to detect text regions on them and segment them

into text-region images accordingly. The segmentation results

in 16,551 text-region images. We consider them as normal

samples.

The normal samples are then used to generate abnormal

samples. We draw fake texts or components on the normal

samples to create different text-layout bugs. To prevent the

CNN model from overfitting to the generated data, we need

to increase the diversity of the data. We introduce a con-

siderable degree of randomness in the generation process.

We use a Python library called lorem4 to generate random

Latin sentences. We use random fonts, font sizes and font

colors to create diversified texts. We use random icon images,

photos and random colored blocks to simulate various GUI

4https://github.com/sfischer13/python-lorem

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

(a) Overlapping texts. Some text lines
on the screen overlap each other.

(b) Crossing-border texts. The texts in
the bubble are too long and cross the
border of the bubble.

(c) Occluded texts. The copyright in-
formation on the bottom of the screen
is occluded by the submit button.

(d) Hybrid. The titles of some table
cells are too long and overlap the icons
and texts below.

Fig. 4. Examples of text detection results on screenshots with different text-layout bugs. The detected text regions are marked with green rectangles. As the
results demonstrate, the text detection tool can help mark up all the concerned regions.

Fig. 5. The structure of the customized ResNet. This is based on the structure of ResNet50 and we modify its input layer and last two layers to fit our needs.

components. The positions of the texts and components are

random within a reasonable range, to ensure that the generated

samples have abnormal visual effects. Figure 6 shows some

of the generated abnormal samples using this method. One

normal sample produces one abnormal sample. The final

training dataset contains a total of 33,102 samples, of which

16,551 are normal and the other 16,551 are abnormal.

D. Training Phase

After generating all the training data, we start the training

phase. A Python script first reads the training images from a

folder, converts them to grayscale and resizes them to fit the

input size of the customized CNN. We label all normal samples

as 0 and all abnormal samples as 1. In each training epoch, we

randomly remove 10% of the samples from the training dataset

for cross-validation purposes. We use binary cross-entropy as

the loss function, and RMSprop as the optimizer. We train

the model continuously until the loss function converges to a

particular range.

E. Bug-detection Phase

We create a sequence so that the entire three-part bug-

detection phase (text detection, abnormal sample detection,

and marking) proceeds automatically. First, in the text detec-

tion part, screenshots are segmented into text-region images.

The text-region images are then converted to grayscale and

resized to fit the input shape requirement of the CNN. In

the abnormal sample detection part, the CNN gives each of

the text-region images a predicted label, either “normal” or

“abnormal”. Finally, in the marking part, we map the samples

labeled with “abnormal” back to their original screenshots and

highlight the corresponding areas on the screenshots.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

(a) Overlapping texts. (b) Crossing-border texts. (c) Occluded texts. (d) Hybrid.

Fig. 6. Examples of generated abnormal samples of different types of text-layout bug. We generate these samples by drawing fake texts or components on
the normal text-region images.

We implement the three parts mentioned above as three

separate programs. They communicate through files in the file

system, and the output of the previous program becomes the

input of the next. We program a shell script to connect the three

parts and automate the entire bug-detection process. Before

execution, the user only needs to connect the input interface

with the testing data.

VI. EXPERIMENTS

In this section, we first describe the experiment settings.

Then we describe the details of testing data collection and

evaluate the performance of Textout on both text-region im-

ages and screenshots. We also evaluate the overhead of Textout

at the end of the section.

A. Experiment Settings
Table I shows the main specifications of the smartphones

we use. To increase the diversity of the collected screenshots,

we choose three smartphones with different models, different

operating systems, and different screen resolutions. We also

choose 30 popular applications in different categories for the

collection.

TABLE I
DETAILS OF SMARTPHONES

Model System Version Resolution
iPhone 8 iOS 12.2 1334 x 750
Nexus 6P Android 6.0.1 2560 x 1440
Vivo X27 Android 9 2460 x 1080

Table II shows the hardware and software settings we use

in the training phase and bug-detection phase. Note that the

machine used in the bug-detection phase is an ordinary laptop

without a GPU. We want to demonstrate that, although we

need a powerful machine to train the model, an ordinary laptop

can easily be used for bug detection.

TABLE II
HARDWARE AND SOFTWARE SETTINGS IN THE EXPERIMENTS

Model / Version
Training Phase Bug-detection Phase

CPU Intel® Core™ i9-7960X Intel® Core™ i5-8259U
GPU GeForce® GTX 1080 Ti -
OS Ubuntu 16.04.1 macOS 10.14.4

Python 3.7.3
Keras 2.2.4

TensorFlow 1.13.1
CUDA 10.0 -

B. Performance

We evaluate the performance of Textout on screenshots of

real-world applications. Since ours is the first study (to our

knowledge) to detect text-layout bugs by analyzing only raw

screenshot images, it is unlikely that a baseline for comparison

has been developed in previous work.

1) Testing data collection: For normal samples, we take
screenshots from several applications on the three experi-

mental smartphones. We check the screenshots manually to

ensure that they have no layout bugs. We collect 38 normal

screenshots, and after text detection, we obtain 991 normal

text-region images.

For abnormal samples, we find 4 screenshots with text-

layout bugs from applications installed on the three experi-

mental smartphones. We also collect another 17 screenshots

searched from the Internet using keywords such as “text

overlaps” and “GUI bugs”. These 17 screenshots are from

many different smartphones with different resolutions. The text

detection tool then segments all the 21 screenshots into 490

text-region images, which are mixed with both normal and

abnormal images. We manually check them one by one to

separate them, and obtain 414 normal text-region images and

76 abnormal ones.

Finally, we combine these two parts of data. We obtain

59 screenshots, which contain 38 normal screenshots and 21

abnormal ones. And accordingly, we obtain 1,481 text-region

images, which contain 1,405 normal text-region images and

76 abnormal ones.

2) Performance on text-region images: In the bug-detection
phase, we extract the value before the sigmoid layer in the

CNN model for classification. This is a single value, and we

set a threshold to this value to change the sensitivity of the

model. Table IIIa illustrates the different performance metrics

of Textout on text-region images when different thresholds

are set. When the threshold decreases, we obtain a higher true

positive rate, i.e., a higher recall value. As the data shows,
Textout can detect most of the buggy text-region images with

a low false positive rate. The orange line in Figure 7 shows

the ROC curve on the text-region images. The corresponding

AUC is 0.956, indicating that Textout has a high separability

on text-region images.

3) Performance on screenshots: We map the bug detection
results on the text-region images back to the screenshots to

test the performance of Textout on screenshots. If the text-

region images of a screenshot are all predicted as normal, then

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE PERFORMANCE OF TEXTOUT

(a) The performance of Textout on text-region images when setting different thresholds. In this experimental setting, there are 76 abnormal
text-region images and 1,405 normal ones.

No. Threshold True Positive True Negative False Positive False Negative True Positive Rate False Positive Rate
1 -112.984161 76 837 568 0 1.000000 0.404270
5 -59.562878 72 1130 275 4 0.947368 0.195730
9 -46.110771 68 1215 190 8 0.894737 0.135231
13 -38.659454 64 1259 146 12 0.842105 0.103915
17 -31.464548 60 1299 106 16 0.789474 0.075445
22 -22.044941 55 1337 68 21 0.723684 0.048399
26 -7.162227 51 1374 31 25 0.671053 0.022064
30 -0.142310 47 1383 22 29 0.618421 0.015658
34 15.635172 43 1394 11 33 0.565789 0.007829
39 34.562897 38 1398 7 38 0.500000 0.004982

(b) The performance of Textout on screenshots when setting different thresholds. In this experimental setting, there are 21 buggy screenshots
and 38 normal ones.

No. Threshold True Positive True Negative False Positive False Negative True Positive Rate False Positive Rate
1 -112.984131 21 0 38 0 1.000000 1.000000
2 -79.204926 20 4 34 1 0.952381 0.894737
3 -30.022625 19 18 20 2 0.904762 0.526316
4 -17.113678 18 27 11 3 0.857143 0.289474
5 -5.688166 17 31 7 4 0.809524 0.184211
6 -0.142313 16 32 6 5 0.761905 0.157895
7 5.921871 14 35 3 7 0.666667 0.078947
8 14.656797 13 35 3 8 0.619048 0.078947
9 17.760717 12 36 2 9 0.571429 0.052632
10 29.882370 10 36 2 11 0.476190 0.052632

Fig. 7. The ROC curves for the testing data. The orange line is the ROC
curve for text-region images, and its AUC is 0.956. The blue line is the ROC
curve for screenshots, and its AUC is 0.848

we consider the screenshot as normal. If not, we consider it

as abnormal. Table IIIb illustrates the different performance

metrics of Textout on screenshots when different thresholds

are set. As the data shows, Textout can detect most of the

buggy screenshots with a low false positive rate. The blue

line in Figure7 shows the ROC curve on screenshots. The

corresponding AUC is 0.848, indicating that Textout also has

a high separability on screenshots.

Because the CNN classifier is based on text-region images

of various sizes, not the whole screenshot, our approach is in

principle scalable to different screen resolutions of different

smartphones. This claim is consistent with the experimental

results above, where the screenshot images collected for

testing are from many different smartphones with different

resolutions.

C. Overhead

We measure the overhead of Textout on a regular laptop

with no GPU to illustrate its practicability. We run the tool

on 100 screenshots, which result in 2602 text-region images

after text detection. The whole process takes 417 seconds. The

average execution time is 4.17 seconds for each screenshot.

The text detection part takes 3.37s on average, which accounts

for about 81% of the total time. In average, the prediction part

takes about 0.8 seconds per screenshot, i.e., 0.03 seconds per
text-region image.

VII. DISCUSSION

A. Usability

The screenshots are the only data Textout requires to detect

text-layout bugs. The simplicity of our approach spares devel-

opers the need to write complex, hard-to-maintain GUI layout

testing scripts. Also, Textout does not need prepared target

design images, which are necessary for the methods based on

image comparison.

Textout is easy to use. Users only need to connect the

testing data with the input interface of Textout. The auto-

matic execution can be triggered by one command line. The

predicted abnormal text-layout regions are highlighted in the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

screenshots, so that it is very easy for users to check where

the bugs occur.

The tool has a reasonable overhead. Its execution time is

acceptable on an ordinary laptop without a GPU. The overhead

can be much lower on a GPU-equipped computer.

In our approach, the screenshot images are collected manu-

ally. But since it is easy to take screenshots for smartphones in

many automated testing tools (e.g., Appium5), we can easily
automate the collection process. Further, we can integrate

Textout into the automated testing processes that developers

currently use. For each screen in the testing process, they can

take a screenshot and use Textout to detect whether there are

text-layout bugs. The integration requires little programming

effort and the overhead it brings to the testing process is

reasonable.

B. Universality

Textout is cross-platform, cross-device and cross-

application, because the CNN model we applied in Textout

is based on text-region images of various sizes segmented

from screenshots, not the whole screenshot. It works on both

Android and iOS platforms and on devices with different

resolutions.

Currently, the effectiveness of our approach has been ex-

amined only with the screenshot images of smartphones. In

theory, this approach can also be easily applied to devices with

wider screen sizes (e.g., desktops and tablets) by collecting
data from these devices and training a new CNN model. We

intend to pursue the task of extending Textout to fit devices

with wider screen sizes in our future research.

C. The Dataset

The size of our training dataset is relatively small for a CNN

classification task, but the CNN model we have trained shows

a good performance. We can further enhance the performance

by extending the training dataset. The extension should be

very easy, since the abnormal text-region images are generated

from normal ones, and normal screenshots are easy to find in

off-the-shelf apps.

The size of the test dataset in the experiment is relatively

small. This is because collecting many real-world buggy

screenshots from public resources is not easy. We made

extensive efforts to search for them on the Internet and in

app stores, and only 21 were found. Nevertheless, these 21

screenshots are representative, since they cover all the types

of text-layout bug we define in Section III.

We intend to continuously extend the training dataset and

test dataset in our future research.

D. Threats to Validity

In our experimental study, we have shown that Textout can

detect all types of text-layout bug. However, its effectiveness

will largely depend on the training data, i.e., the samples of

5https://appium.io/

Fig. 8. The text in the red rectangle is occluded by the popup window.

text-layout bugs. Therefore, it may not be effective for detect-

ing other unknown text-layout bugs unless the corresponding

training samples are provided.

Textout may also misclassify some normal screenshots as

buggy images, especially when the application contains popup

windows. Figure 8 shows two examples where the popup

windows occlude part of the texts on the screens. These

cases should not be considered as abnormal, but Textout may

misidentify them as text-layout bugs. However, such images

account for only a very small part of all images, and they

can be easily filtered by developers in the testing process. We

intend to pursue the detection (e.g., via another classifier based
on the whole screenshot) of such false positive images in our

future work.

VIII. CONCLUSION

In this work, we focus on a popular type of layout bug

related to texts. We propose a novel approach, Textout, which

takes raw screenshot images as input and detects text-layout

bugs on them. Textout uses text detection technology to detect

text-regions on screenshots and uses CNN to detect buggy text

regions. We collect 33,102 text-region images as our training

dataset and verify the effectiveness of our approach with 1,481

text-region images collected from real-world apps. Textout

achieves an AUC (area under the curve) of 0.956 and can

detect most of the buggy clips with a low false positive rate.

The overhead of Textout is acceptable on an ordinary laptop

without a GPU. We release our dataset as open-source for

further research.

In our future work, we will continuously extend our open-

source dataset with more training and testing data. We will

extend Textout to fit devices with wider screen sizes, such as

desktops and tablets. We will also prepare to integrate Textout

with other automated GUI testing tools.

IX. ACKNOWLEDGEMENT

The authors are grateful to their shepherd Dr. S. Baner-

jee and anonymous reviewers for the detailed and valuable

comments. This work is supported by the National Natural

Science Foundation of China (Project Nos. 61672164 and

61571136). Lyu and Xu’s work was supported by the Research

Grants Council of the Hong Kong Special Administrative

Region, China (No. CUHK 14210717 of the General Research

Fund), and Microsoft Research Asia (2018 Microsoft Research

Asia Collaborative Research Award). Yangfan Zhou is the

corresponding author.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Zhang, Y. He, and Y. Jiang, “Crashfuzzer: Detecting input processing
related crash bugs in android applications,” in Proc. of the 2016
IEEE 35th International Performance Computing and Communications
Conference (IPCCC). IEEE, 2016, pp. 1–8.

[2] Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “Diagdroid: Android
performance diagnosis via anatomizing asynchronous executions,” in
Proc. of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 410–421.

[3] Y. Kang, Y. Zhou, M. Gao, Y. Sun, and M. R. Lyu, “Experience
report: Detecting poor-responsive ui in android applications,” in Proc.
of the 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2016, pp. 490–501.

[4] S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond, “Automated
repair of layout cross browser issues using search-based techniques,” in
Proc. of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 2017, pp. 249–260.

[5] StatCounter, http://gs.statcounter.com/platform-market-share/desktop-
mobile-tablet/worldwide.

[6] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?” IEEE Software, vol. 32, no. 3, pp. 70–77,
2014.

[7] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps,”
in Proc. of the 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2016, pp. 226–237.

[8] K. F. Hasselknippe and J. Li, “A novel tool for automatic gui layout test-
ing,” in Proc. of the 24th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2017, pp. 695–700.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[10] S. Mahajan and W. G. Halfond, “Finding html presentation failures
using image comparison techniques,” in Proc. of the 29th ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2014, pp. 91–96.

[11] Google, https://code.google.com/archive/p/fighting-layout-bugs.

[12] H. Lu, L. Wang, M. Ye, K. Yan, and Q. Jin, “DNN-based image
classification for software gui testing,” in Proc. of the 2018 IEEE
SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation. IEEE, 2018,
pp. 1818–1823.

[13] H. Wang, S. Rath, and Y. Sharan, https://www.ebayinc.com/stories/
blogs/tech/gui-testing-powered-by-deep-learning/.

[14] Applitools, https://applitools.com.

[15] Android Inspector, https://developer.android.com/studio/debug/layout-
inspector.

[16] View Hierarchy Debugger, https://developer.apple.com/library/archive/
documentation/DeveloperTools/Conceptual/debugging with xcode/
chapters/special debugging workflows.html.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

[18] T. He, W. Huang, Y. Qiao, and J. Yao, “Text-attentional convolutional
neural network for scene text detection,” IEEE Transactions on Image
Processing, vol. 25, no. 6, pp. 2529–2541, 2016.

[19] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai, “Multi-
oriented text detection with fully convolutional networks,” in Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 4159–4167.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770–778.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

