
Entropy-based Service Selection with Uncertain QoS
for Mobile Cloud Computing

Yue Wang
School of Data and Computer Science

Sun Yat-sen University
Guangzhou, China

wangyue2714@gmail.com

Zibin Zheng
School of Data and Computer Science

Sun Yat-sen University
Guangzhou, China

zibinzheng2@yeah.net

Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Hong Kong

lyu@cse.cuhk.edu.hk

Abstract—With the prevalence of mobile computing and its
convergence with cloud computing, there is an increasing trend of
composing existing cloud services for rapid development of cloud-
based mobile applications. It is vital for developers to find services
not only satisfying their functionality requirements, but also
meeting the requirements on non-functional quality of services
(QoS). These QoS requirements, such as throughput, delay,
reliability and security, are critical for the success of cloud-based
mobile applications. In this paper, a QoS-based service ranking
and selection approach is proposed to help developers select the
service that best satisfies developers’ QoS requirements from a set
of services having already satisfied developers’ functionality
requirements in mobile cloud computing. Compared with state-of-
the-art service ranking and selection techniques, our approach has
the following advantages: 1) it uses intervals instead of fixed
values to represent QoS of services, which are more flexible and
practical in mobile cloud computing; 2) it enables developers to
specify their QoS requirements in a more simple way; and 3) it
employs the hybrid weights that incorporate the Entropy-based
weighting technique to overcome the weakness caused by
subjective weights, which ignore the knowledge of different
services’ performance in different QoS aspects. Experiments
validate the effectiveness of the proposed method.

Keywords-mobile cloud computing; service ranking; service
selection; QoS requirements; entropy weighting

I. INTRODUCTION
Cloud computing has recently emerged as a new

paradigm for hosting and delivering services over the
Internet. The core idea of cloud computing is to provide
computing resources, services, and applications as an
integrated utility, which can be employed by users on
demand. The provisioning of cloud services occurs at the
Infrastructural level (IaaS), the Platform level (PaaS), or the
Software level (SaaS). The vast number of services provided
in the cloud has become a commodity in people’s day-to-day
life. For instance, Google Docs are extensively used by

millions of people around the world for document sharing,
while services such as Google Maps and Bingo Maps enable
the provisioning of location-based services. However, a
cloud service usually does not provide a rich functionality by
its own. It becomes increasingly popular to combine multiple
services for developing more complex and richer
applications (usually referred to as mashup applications). For
example, by integrating Google Maps and SoundCloud (a
media file sharing service), it is possible to visualize the
songs and tracks uploaded by a user in the geographical
location where the media files were recorded or uploaded
[1].

In the meanwhile, the mobile computing domain also has
advanced rapidly, which enabled the new generation of
cloud-based and context-aware mobile applications.
Consequently, clouds are looking forward to the mobile
domain, having their expectations focused on the idea of
fostering the access and consumption of cloud services at the
different levels of mobile devices. Nowadays, mobile
devices are equipped with embedded sensors and input
devices such as cameras, GPS signal receivers,
accelerometers, and magnetic sensors, among others.
Moreover, these new capabilities can be combined with other
services and mashup applications, giving place to mobile
mashup applications. A mobile mashup application not only
blends into a single application several services, but also uses
the data gathered by embedded sensors and devices in order
to enrich the mobile application. For example, foursquare
uses the GPS sensors embedded in the device to determine
the user’s location and to provide information about the
nearby services. The combination of mobile computing and
cloud computing has led to the Mobile Cloud Computing
(MCC) domain [2].

Applications from such Mobile Cloud Computing
domain usually combine cloud-based services with basic
functionalities. However, with the massive amount of
services present in the cloud, and with the increasing number

2015 IEEE Conference on Collaboration and Internet Computing

978-1-5090-0089-0/15 $31.00 © 2015 IEEE

DOI 10.1109/CIC.2015.28

252

2015 IEEE Conference on Collaboration and Internet Computing

978-1-5090-0089-0/15 $31.00 © 2015 IEEE

DOI 10.1109/CIC.2015.28

252

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

of functionally equivalent services, to select high
performance services for building dependable cloud-based
mobile applications becomes an urgently-required research
problem. The performance of cloud services is usually
described by Quality-of-Service (QoS), which refers to a set
of non-functional properties including throughput, delay,
reliability, security, price, and so on. QoS is an important
research topic in cloud computing. When making optimal
cloud service selection from a set of functionally equivalent
services, QoS values of cloud services provide valuable
information to assist decision making. There are some
existing investigations on QoS-based service selection for
cloud computing [3][4]. However, how to accurately match
cloud services’ QoS with service users’ QoS requirements in
mobile cloud computing is still not well addressed. While
users have requirements in multiple concerned QoS aspects,
it is difficult to find the best service by comparing multiple
concerned QoS aspects simultaneously. For example, it is
not clear how to compare a service with high throughput and
high price to another service with low throughput and low
price. Besides, a service’s QoS values in various QoS aspects
cannot be simply combined because different users’
preferences in the concerned QoS aspects may be different,
and various QoS aspects have different scales and value
ranges. Furthermore, it is hard for an inexperienced user to
assign accurate subjective weights to various QoS aspects,
and thus some problems will occur if we apply these weights
strictly without any adjustment.

In this paper, we will present a service ranking and
selection approach to meet the above challenge. This
approach firstly normalizes a service’s QoS in various
aspects to a unique range, then measures how well the
service’s QoS satisfies users’ QoS requirements in each
concerned QoS aspect with a satisfaction score, and finally
combines the service’s satisfaction scores in all concerned
aspects together as an overall satisfaction score. Our
approach has the following advantages: 1) it uses intervals
instead of fixed values to represent QoS of services, which
are more flexible and practical in mobile cloud computing;
2) it enables developers to specify their QoS requirements in
a more simple way; and 3) it employs the hybrid weights that
incorporate the Entropy-based weighting technique to
overcome the weakness caused by subjective weights, which
ignore the knowledge of different services’ performance in
different QoS aspects. Experiments validate the effectiveness
of the proposed method.

II. RELATED WORK
Service discovery and selection with QoS have recently

attracted extensive interests from the researchers in the field
of services computing and cloud computing. Service
selection is heavily based on ranking of services according to
their QoS values. Since there are multiple QoS factors and
users’ requirements on QoS are quite different, it is not easy
to find the right services with an optimal QoS value for the
users.

Many previous tasks employ weighted aggregate of QoS
factors to rank services. One of such work was proposed by
Masri and Mahmoud [5], which first normalized the values

of different QoS factors into a range, and then computed the
overall quality of services by adding the normalized QoS
together with their weights. It should be noted that each
weight represented the user’s preference on one concerned
QoS factor. Based on the overall quality, services were
ranked and the top-ranked services were recommended for
selection. Similarly, Comuzziand Pernici [6] used a price
model to combine multiple QoS factors. The price model
converted each QoS factor of a service to a price, and added
all prices together. The services were then ranked based on
their total prices. To allow the specification of elastic QoS
requirements using linguistic terms or fuzzy propositions,
several service selection methods based on fuzzy sets were
proposed [7][8][9]. Different from previous approaches, Liu,
Fletcher, and Tang [9] allowed users to specify personalized
tradeoffs among QoS factors in QoS requirements and used
several fuzzy operators to aggregate users’ satisfaction
degrees in individual QoS aspects. Yau and Yin [10]
proposed a service ranking and selection method which
could support more flexible QoS requirement specifications.
The method selected the service that best satisfied users QoS
requirements instead of the service with the best QoS which
may be overqualified for the users’ QoS requirements.

However, most existing service ranking and selection
methods assume that the QoS value of a service in every
QoS aspect is unique and fixed in the time of selection. In
practice, depending on the network conditions and other
influencing factors, QoS values of a service, such as
response time, throughput, and reliability, are likely to have
different values at different times and for different users [11].
Therefore, it is not appropriate to use a fixed and unique
value to represent the QoS of a service in every aspect. Only
a few investigations have taken the uncertainty of QoS into
consideration in service selection [12][13]. However, they
mostly focused on evaluating the uncertainty of service QoS
and aimed at selecting the most reliable service. How to
measure users’ satisfaction degrees in various QoS aspects of
a service with uncertain QoS, unfortunately, is not
considered.

Recently, interests in service provision, discovery and
selection in mobile environments have been increased
[14][15][16]. In [17], the authors introduced MCC to
integrate the cloud computing into the mobile environment,
which overcame the obstacles related to performance,
environment, and security. In [18][19], the QoS assurance
problem, that is, how a service provider can ensure QoS of
its cloud services, especially for mobile users in MCC, is
addressed. Elgazzar et al. [20] proposed a novel discovery
framework that addressed various aspects of mobile Web
service discovery in resource-constrained environments. Shi
and Gu [21] proposed a framework for mobile cloud
computing service selection, and they engaged a Markov
chain model to evaluate the service selection process.
However, these tasks seldom addressed the mobile service
selection problem with uncertain QoS, which is urgent in
mobile environments.

253253

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

III. OVERVIEW OF OUR METHOD
Fig. 1 depicts our service ranking and selection method.

To monitor a service’s QoS and to facilitate the service
ranking and selection, we assume that all users’ concerned
services’ QoS aspects are monitored and reported to a
service selection engine, which saves the services’ QoS
information along with their functionality information. This
QoS information will be used by the service selection engine
to rank services and to help users select services when there
are more than one registered services satisfying the users’
functionality requirements. Our service ranking and selection
method can be described in the following four steps:

A. Filtering
A user submits a service request in which the user’s

requirements on both service functionalities and QoS are
specified. At first, the functional requirements will be
processed by the service selection engine. The service
selection engine matches the user’s functional requirements
with all services’ functionalities and a list of acceptable
services will be identified, whose QoS will be further
evaluated based on the user’ QoS requirements in the
following steps.

B. Normalizing
After a list of services meeting the user’s functional

requirements are identified, our method will measure the
user’s satisfaction degrees on these services based on their
QoS values and the user’s QoS requirements. This is done by
firstly normalizing the services’ QoS values in various QoS
aspects into a unique range in order to facilitate aggregating
different QoS aspects. We normalize the services’ QoS
values in a QoS aspect according to the user’s QoS
requirements in the concerned QoS aspect, instead of the
best-case and worst-case QoS values of the QoS aspect.

C. Computing
The user’s satisfaction degrees in every individual QoS

aspect for each service will then be computed. Since QoS
values of the services are likely to be intervals, computing
the user’s satisfaction degree in an individual QoS aspect is
more complex than using fixed QoS values. Since wider QoS
intervals have high uncertainty and vice versa, the user will
likely prefer service with narrow QoS intervals. Base on this
consideration, we incorporate the width of QoS intervals of
the services into a satisfaction degree function designed for
computing the user’s satisfaction degrees in individual QoS
aspects for the services.

D. Aggregating
The satisfaction degrees of individual QoS requirements

for each service will be aggregated to produce the overall
satisfaction degree. To do this, a hybrid weighting technique
which combines subjective weights and objective weights is
employed. The subjective weights in every concerned QoS
aspect are specified by the user. If the user does not specify a
subjective weight, the medium value (0.5) will be applied as
the default subjective weight. However, simply employing
the subjective weight ignores the knowledge of all the QoS
aspects of different services. Therefore, we introduce an
entropy-based objective weighting method, combined with
the subjective weights, to achieve a more effective and
reasonable ranking outcome. The overall satisfaction degree
function is implemented by using an additive weighting
operator on the hybrid weights.

Finally, the candidate services are ranked in order of
decreasing overall satisfaction degrees, which are returned to
the user for selection. In the following sections, we will
describe our method in detail. We focus on how to match the
services’ QoS with the user’s QoS requirements, assuming
that a list of service with acceptable functionalities have
already been identified by using existing service
functionality matching techniques.

Figure 1. Overview of our QoS-based service ranking and selection method

254254

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

IV. MODELING QOS AND QOS REQUIREMENTS
Suppose there are n QoS aspects of services, which can

be represented by a vector),,,(21 nAAAA �= . The set of
QoS aspects can be divided into two subsets: positive and
negative QoS aspects. The values of positive aspects need to
be maximized (e.g. throughput and security), whereas the
values of negative aspects need to be minimized (e.g. price
and delay).

Let),,,(21 mSSSS �= represent a set of m services
with similar functionalities such that they all meet the active
user’s functional requirements. Let),...,,(21 iniii qqqq =
denote the vector of QoS values of a service Si, where qij
represents the service’s QoS value on Aj. QoS values of
services are usually different when invoked by different
users or at different times. This uncertainty of service QoS is
even severe in mobile cloud environments because mobile
applications invoke services via wireless communications.
Thereby, it is not practical to use certain values to represent
QoS of services. Instead, we define qij as an interval, i.e.

],[r
ij

l
ijij qqq = , where l

ijq and r
ijq are two endpoints of qij

and satisfy l
ijq < r

ijq .
The user can specify his/her QoS requirements in a QoS

aspect Aj as a tuple),,(jjjj wulreq = , where lj and uj are
the lower bound and upper bound of the user's acceptable
QoS on Aj,]1,0[∈jw is the weighting factor of the
requirement, representing the user’s preference on Aj in the
service selection.

The values of lj and uj of a different QoS aspect Aj may
have different meanings and be represented with different
units. For example, the QoS aspects of delay and availability
are represented as seconds and percentage respectively. The
services are perfect if their delays are smaller than lj, and
unacceptable if their delays are larger than uj. However, the
services are unacceptable if their availabilities are smaller
than lj, and perfect if their availabilities are larger than uj. If
the user has specified no lower bound or upper bound for the
acceptable QoS or does not know how to specify it, the user
can leave lj and uj blank in reqj and we can set the values of lj
and/or uj as follows:

First, if the metric for Aj has a lower bound and an upper
bound, then lj and uj can be set as the metric’s lower bound
and upper bound for Aj respectively. For example, the metric
of a service’s availability is measured as the percentage of
time that the service is available, which has a lower bound
0% and an upper bound 100%. Hence, for the QoS aspect of
availability, we can set lj = 0% and uj = 100% by default if
they are blank in reqj. Second, if the Aj’s metric has no lower
bound and/or upper bound, such as the service’s price which
has a lower bound 0, but no upper bound, then the values of
lj and uj are defined as the smallest and largest QoS of all
available services in S, respectively.

When the user does not know how to specify his/her
preferences in QoS aspects with weight values, the user can
specify his/her preferences through linguistic terms, such as
very unimportant, unimportant, medium, important, and very

important. These linguistic terms can be easily mapped to
weight values, as shown in Tabel 1. If the user does not
specify their importance weights in reqj, 0.5 as default
weights will be employed.

TABLE I. MAP LINGUISTIC VALUES TO WEIGHT VALUES

Linguistic Values Table Column Head

Very importance 1

Importance 0.75

Medium 0.50

unimportance 0.25

Very unimportance 0

Compared with the method proposed by Yau and Yin

[10], who introduced a confidence rate rj in the tuple
),,,(jjjjj rwulreq = to specify the user’s confidence on the

assignments of his/her requirements. A larger rj indicates that
the user has higher confidence in the specification of all the
specified values of lj, uj and wj, and a smaller rj means lower
confidence. However, this strategy will cause some potential
problems. First, one inexperienced user may find it hard to
specify the confidence rate since he/she may be unfamiliar
with the QoS aspect. Besides, Yau and Yin used rj to extend
the interval [lj, uj] to [lj,rj, uj/rj], and this technique is likely to
violate the user’s subjective opinion subtly, which leads to
meaningless results in some cases. For example, if a user is
pretty sure about the lower bound but has no confidence in
the upper bound, an rj will change the lower bound that
he/she initially has full confidence to set.

V. INDIVIDUAL QOS EVALUATION
This section discusses how to evaluate a service’s

individual QoS based on the user’s requirements in a
concerned QoS aspect. This evaluation process returns a
satisfaction degree which represents how much the user is
satisfied with the service’s QoS in a concerned QoS aspect.
The first step is to normalize QoS values into a unique range.
The range is set as [0,1] in this paper.

Depending on whether the concerned QoS aspect Aj is a
positive one or not, the normalization function would differ.
For instance, when Aj is a positive QoS aspect that the user
wants to maximize, such as reliability, then the QoS value on
Aj (e.g. x) will be normalized using (1):

() ()
�
�

�
�

�

>

≤≤−−

<

=

j

jjjjj

j

ux
uxllulx

lx
xNorm

 if ,1
 if ,
 if ,0

)(1
 (1)

Otherwise, when Aj is a negative QoS aspect that the user
wants to minimize, such as price, x will be normalized using
(2). It is obvious that the normalized QoS produced by both
(1) and (2) will be in the range [0,1], where larger values
indicate better QoS. In particular, 0 represents the lowest
QoS, and 1 represents the best QoS. This normalization

255255

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

function is distinguished as it normalizes a QoS value based
on how well it satisfies the user’s QoS requirement, instead
of how good it is. In other words, the normalized QoS
actually can reflect the satisfaction degree of the user on qij.

() ()
�
�

�
�

�

<

≤≤−

>

=

j

jjjjj

j

lx
uxlluxu

ux
xNorm

 if ,1
 if ,-

 if ,0

)(2

(2)

In this paper, we use a real interval instead of a fixed
value, to represent the QoS of a concerned QoS aspect. The
normalization and satisfaction degree computation of the
QoS will be a little more complex. Suppose that the
concerned QoS aspect Aj of service i has QoS

],[r
ij

l
ijij qqq = , by applying (1) and (2) to its endpoints, we

get its normalized form],[' r
ij

l
ijij nnq = . However, it is

unsuitable for using],[' r
ij

l
ijij nnq = to represent the

satisfaction degree of the user on qij. A single value is more
preferred in doing this. There are two straightforward
methods in addressing this issue:

• Take the average value of],[r
ij

l
ijij qqq = and

normalize it using (1) and (2), then use the result to
represent the user’s satisfaction degree.

• Take the average value of],[' r
ij

l
ijij nnq = to

represent the user’s satisfaction degree.
However, the above methods will both introduce another

confusing issue. For example, suppose the user’s QoS
requirements on delay is)1,100,50(msmsreq = , and there
are two services, one of which has delay

]100,50[1 msmsq = and the other has delay
]140,10[2 msmsq = . Both of the above methods will

produce the same result, i.e. 0.5, for the user on the two
services’ delay performance. However, based on our
intuition, the first service obviously have better delay
performance than the second service, since its QoS on delay
is perfectly matched with the user’s QoS requirements on
delay. This example indicates that the QoS interval width of
a service, i.e. the certainty of QoS, will impose significant
influence on the user’s satisfaction degree. Therefore, we
incorporate the service’s QoS interval width in predicting the
user’s satisfaction degree. This is done based on adjusting
the average value of],[' r

ij
l
ijij nnq = via introducing an

adjustment factor ijϕ , which depends on how much
proportion of the service’s QoS interval satisfies the user’s
QoS requirements. The adjustment factor ijϕ is designed as
follows.

When],[r
ij

l
ijij qqq = is completely worse than the

user’s QoS requirements, ijϕ will be set as 0. Otherwise,

when],[r
ij

l
ijij qqq = is completely better than the user’s

QoS requirements, ijϕ will be set as 1. In the other cases,

ijϕ will be the proportion of the service’s QoS interval on Aj
that satisfies the user’s QoS requirements on Aj. Depending
on whether Aj is a positive QoS aspect or not, the formula for
calculating ijϕ will be different. When Aj is a positive QoS

aspect, ijϕ is calculated with (3); otherwise, ijϕ is
calculated with (4).

() ()
�
�
�

��
�

�

>

≤≤−−−

<

=

 1

 1

 0

j
l
ij

r
ijj

l
ij

l
ij

r
ij

l
ijj

j
r
ij

ij

lq

qlqqqql

lq

ϕ (3)

() ()
�
�
�

��
�

�

<

≤≤−−−

>

=

 1

 1

 0

j
r
ij

r
ijj

l
ij

l
ij

r
ijj

r
ij

j
l
ij

ij

uq

quqqquq

uq

ϕ (4)

Finally, the user’s satisfaction degree in the individual
QoS aspect Aj of service i is computed with (5). We can see,
a smaller ijϕ will lead to a smaller satisfaction degree, and
vice versa.

ij
l
ij

r
ijij nnqSD ϕ⋅+=)(

2
1)((5)

VI. OVERALL QOS EVALUATION
To evaluate the overall QoS of a service, we need to

aggregate its normalized QoS values in every individual QoS
aspect. Like many existing works such as [10], we use a
weighted aggregate function to combining the user’s
satisfaction degrees of various QoS aspects with weights.
The critical issue is how to determine the weight of every
QoS aspect. Let req(A1,A2,…,An) = (req1,req2…,reqn) be the
user’s QoS requirements in all the concerned QoS aspects.

Since simply using the subjective weight neglect the
important knowledge of different services’ performance in
different QoS aspects, we need to seek for objective weights
to utilize this knowledge to achieve a more effective and
reasonable ranking outcome.

The objective weighting technique used is based on
Entropy. Entropy is a very popular objective weighting
technique. However, traditional Entropy-based weighting
techniques assume that each QoS apsect has a fixed value,
whereas we allow each QoS aspect to use uncertain QoS
values (QoS intervals). We compute the entropy for each
QoS aspect and its relative weight as follows.

The entropy for the jth QoS aspect Aj is defined as:

() �
=

⋅−=
m

i
ijijj ppme

1
)ln(ln1 (6)

where

�
=

++=
m

i

r
ij

l
ij

r
ij

l
ijij qqqqp

1

2222)()()()(

Basically, the smaller the entropy of the jth QoS aspect
Aj, the larger the weight should be assigned to Aj. In this

256256

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

regard, the entropy weight for the jth QoS aspect is defined
as

�
=

−−=
n

j
jjj eew

1

')1()1((7)

Then we should normalize the subjective weights as
follows:

�
=

=
n

j
jjj www

1

 (8)

After we obtain the objective weights and subjective
weights of each QoS aspect according to (7) and (8)
respectively, the hybrid weights, combining the subjective
weights and objective weights, is computed as follows:

() ()�
=

=
n

j
jjjjj wwwww

1

''* ** (9)

Finally, the overall satisfaction degree of the user on
every service in S is calculated as follows:

�
=

⋅=
n

j
jiji wqSDSOSD

1

*)()((10)

Where)(ijqSD is the user’s satisfaction degree in the
QoS aspect Aj of the service Si, which is computed with (5).

VII. EVALUATION
In this section, we use an example to evaluate our

approach. In this example, a developer plan to develop a
mobile voice communication system for voice
communication between vehicles. The developer would like
to select an existing encryption service to be used in the
system. The encryption service accepts a data stream and
output an encrypted data stream. Furthermore, the developer
has QoS requirements in the following four QoS aspects:

• Throughput: The encryption service can support at
least 1,000 packages per second. Each package has
1,000 bits. That is, the throughput of the service
should be at least 1Mbps.

• Delay: The additional delay caused by encryption of
each package should be less than 10 ms.

• Security strength: The encryption service should
provide appropriate security protection for voice
communication of sensitive, but not classified,
information. According to the security metric
developed in [22], the developer requires the
encryption service to prevent attackers from cracking
messages with probability at least 60%. Since the
information in the voice communication is not
classified, the developer does not require an
encryption service providing perfect security. Any
encryption service with the probability 80% is
already sufficient for this application.

• Price: The price of the encryption service should be
less than 1 dollar per day.

TABLE II. USER-SPECIFIED QOS REQUIREMENTS OF ACCEPTABLE
ENCRYPTION SERVICES

QoS aspect l u w

Throughput 1 Mbps 0.7

Delay 0 10 ms Important

Security 60% 80% Very important

Price 0 1 dollar/day

TABLE III. THE QOS OF CANDIDATE ENCRYPTION SERVICES

 Throughput Delay Security Price
S1 9-12 Mbps 5-9 ms 0.5-0.7 0.8 dollar/day

S2 3-4 Mbps 3-5 ms 0.9-1.0 1 dollar/day

S3 4-6 Mbps 1-2 ms 0.6-0.7 0.5 dollar/day

S4 1-8 Mbps 1-12ms 0.2-0.6 0.4dollar/day

TABLE IV. ADJUSTED QOS REQUIREMENTS OF ACCEPTABLE
ENCRYPTION SERVICES

QoS aspect l u w w*

Throughput 1 Mbps 12 Mbps 0.24 0.22

Delay 0 10 ms 0.25 0.53

Security 60% 80% 0.34 0.14

Price 0 1 dollar/day 0.17 0.12

TABLE V. THE USER’S SATISFACTION DEGREES ON CANDIDATE
ENCRYPTION SERVICES

Satisfaction Degree S1 S2 S3 S4

Throughput 0.86 0.23 0.36 0.32

Delay 0.30 0.60 0.85 0.13
Security 0.13 1.00 0.25 0.00

Price 0.20 0.00 0.50 0.60
Overall Satisfaction
Degree (using only
subjective weights)

0.36 0.55 0.47 0.21

Overall Satisfaction
Degree (using hybrid
weights)

0.39 0.50 0.62 0.21

Suppose there are four candidate encryption services

which have the same functionalities. Their QoS values are
listed in Table III. According to our proposed service
selection method, some of the user-specified QoS
requirements in Table II need to be adjusted. The adjustment
is described as follows. All linguistic terms will be mapped
to values according to Table I. The parameter u will be set to
the largest throughput of all encryption services since there is
no natural upper bound for the throughput. The importance
weight for price will be set to 0.5 at first since the user does
not specify it. Furthermore, all w will be adjusted according
to (8) and the hybrid weights will be computed according to
(9). The adjusted QoS requirements are shown in Table IV.

257257

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

Table V shows the user’s satisfaction degrees in individual
QoS aspects for all encryption services, as well as his/her
overall satisfaction degrees on individual encryption services
computed by using only subjective weights or using the
hybrid weights. We can see, as for the hybrid weighting
method, S1, S2, S3, and S4 should be ranked as S3> S2>
S1> S4 according to their satisfactory degrees. As for the
traditional subjective weighting method, we can rank them as
S2> S3> S1> S4.

It can be seen that two results are similar except the
ranking order of S2 and S3. According to our observation, it
is unreasonable for S2 to outperform S3. Although S2 has
perfect performance in the security aspect, S3 has better
average QoS than S2 and is able to meet the security
requirement as well. Through careful analysis we can find
that S2 is wrongly ranked because the weight assigned to
security aspect make too much contribution to the final
ranking result when just employing the subjective weights,
which ignore the important knowledge of all the QoS value
of all the services. By employing the hybrid weights, the
user’s subjective opinion can be tuned by the objective
knowledge of all the services and thus lead to more
reasonable results.

VIII. CONCLUSION
This paper presents a QoS-based service ranking and

selection method in developing high-quality applications for
mobile cloud computing. Considering that services in mobile
cloud computing environments are likely to have uncertain
QoS values in various QoS aspects, the proposed method
engages flexible intervals rather than crisp values to
represent the services’ QoS in every QoS aspect. Based on
the services’ QoS and the users’ QoS requirements, the
method employs a set of functions to compute a user’s
satisfaction degree in the QoS aspect of individual services.
The method also incorporates a weighting technique for
more accurate weight assignments in different QoS aspects.
This is done by combining subjective weights given by the
user and objective weights produced by an entropy-based
technique. Finally, the user’s satisfaction degrees in
individual QoS aspects were aggregated with hybrid weights
to infer the user’s overall satisfaction degrees on individual
candidate services. The current work did not consider the
distribution properties of services’ QoS values in various
QoS aspects. To improve this work, we will take this into
consideration in our future work. Furthermore, more
experiments will be conducted for evaluating our proposed
service selection method and its improved version.

ACKNOWLEDGMENT
This work was supported by the National Natural Science

Foundation of China (Project No. 61332010, 61472338),
Guangdong Natural Science Foundation (Project No.
2014A030313151), the Research Grants Council of Hong
Kong (Project No. CUHK 415113), and Microsoft Research
Asia Grant in Big Data Research (Project No. FY13-RES-
SPONSOR-036).

REFERENCES
[1] Satish Narayana Srirama,Carlos Paniagua, Huber Flores, “Social

Group Formation with Mobile Cloud Services,” Service Oriented
Computing and Applications, vol. 6, no. 4, pp.351–362, 2012.

[2] Han Qi, Abdullah Gani, “Research on Mobile Cloud Computing:
Review, Trend and Perspectives,” in Proc. 2nd International
Conference on Digital Information and Communication Technology
and it's Applications (DICTAP), pp. 195-202, Bangkok, 16-18 May
2012.

[3] Z. Rehman, FK Hussain, OK Hussain, “Towards Multi-Criteria Cloud
Service Selection,” in Proc. 5th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), pp.44-48, Seoul, June 30 2011-July 2 2011.

[4] Zibin Zheng, Xinmiao Wu, Yilei Zhang, Michael R. Lyu, and
Jianmin Wang, “QoS Ranking Prediction for Cloud Services”, IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6, ,pp.
1213-1222, June 2013.

[5] E. A. Masri and Q. H. Mahmoud, “QoS-based Discovery and
Ranking of Web Services”, in Proc. Int’ l conf. on Computer
Communications and Networks (ICCCN), pp. 529-534, 2007.

[6] M. Comuzzi and B. Pernici, “A Framework for QoS-based Web
Service Contracting”, ACM Transactions on The Web, vol. 3, no. 3,
article 10, 2009.

[7] P. Wang, “QoS-aware Web Services Selection with Intuitionistic
Fuzzy Set Under Consumer's Vague Perception”, J. Expert Systems
with Applications, vol. 369, no. 3, pp. 4460-4466, April 2009.

[8] Mohamed Almulla, Kawthar Almatori, Hamdi Yahyaoui, “A
QoSbased Fuzzy Model for Ranking Real World Web Services”, in
Proc. International conference on Web Services (ICWS), pp. 203-210,
2011.

[9] Xiaoqing (Frank) Liu, Kenneth Kofi Fletcher, Mingdong Tang.
“Service Selection based on Personalized Preference and Trade-Offs
among QoS Factors and Price”, in Proc. 1st IEEE International
Conference on Services Economics, pp. 32-39, Hawaii, USA, June,
2012.

[10] Stephen S. Yau and Yin Yin, “QoS-based Service Ranking and
Selection for Servic-based Systems,” in Proc. International
Conference on Services Computing (SCC), pp. 156-863, 2011.

[11] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King “QoS-Aware
Web Service Recommendation by Collaborative Filtering”, IEEE
Transactions on Services Computing, vol.4, no.2, pp.140-152, 2011.

[12] Qibo Sun, Shangguang Wang, Hua Zou, Fangchun Yang, “QSSA: A
QoS-aware Service Selection Approach”, International Journal of
Web and Grid Services, vol.7, no.2, pp.147-169, 2011.

[13] Shangguang Wang, Zibin Zheng, Qibo Sun, Hua Zou and Fangchun
Yang, “Reliable Web Service Selection via QoS Uncertainty
Computing”, International Journal of Web and Grid Services, vol. 7,
no. 4, pp.410-426, 2011.

[14] S. N. Srirama, M. Jarke, and W. Prinz and H. Zhu, "Scalable Mobile
Web Service Discovery in Peer to Peer Networks", In Proc. 3nd
International Conference on Internet and Web Applications and
Services (ICIW), pp.668-674, 2008.

[15] Y. Kim and K. Lee, "A Lightweight Framework for Mobile Web
Services", Journal on Computer Science Research and Development,
vol. 24, no. 4, pp.199-209, 2009.

[16] rirama SN, Shor V, Vainikko E, Jarke M, “Supporting Mobile Web
Service Provisioning with Cloud Computing”, International Journal
on Advances in Internet Technology, vol.3, no.34, pp.261–273, 2010.

[17] Hoan K T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang, “A
Survey of Mobile Cloud Computing: Architecture, Applications, and
Approaches,” Wireless Communication and Mobile Computing, vol.
13, pp. 1587-1611, 2013.

[18] Peng Zhang, Zheng Yan, “A OoS Aware System for Mobile Cloud
Computing”, in Proc. IEEE Int’ l Conf. on Cloud Computing and
Intelligence Systems (CCIS), pp.518 – 522, Sept. 2011.

258258

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

[19] Alazawi, Z, Altowaijri S.; Mehmood, R.;AbdlJabar, M.B.,
“Intelligent Disaster Management System based on Cloud-enabled
Vehicular Networks”, in Proc. 11th International Conference on ITS
Telecommunications (lTST), pp.361- 568, Aug. 20l1.

[20] Khalid Elgazzar, Hossam S. Hassanein, Patrick Martin, “DaaS:
Cloud-based Mobile Web Service Discovery”, Pervasive and Mobile
Computing, vol. 13, pp. 67-84, 2014

[21] Zhefu Shi and Ruirui Gu, “A framework for mobile cloud computing
selective service system”, in Proc. Wireless Telecommunications
Symposium (WTS), pp.1-5, 2013

[22] S. S. Yau, Y. Yin and H. G. An, “An Adaptive Model for Tradeoff
between Service Performance and Security in Service-based
Environments”, in Proc. Int’l Conf. on Web Services, pp. 287-294,
2009.

259259

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.

