
Static Inference Meets Deep Learning: A Hybrid Type Inference
Approach for Python

Yun Peng
The Chinese University of Hong Kong

Hong Kong, China

ypeng@cse.cuhk.edu.hk

Cuiyun Gao∗

Harbin Institute of Technology

Shenzhen, China

gaocuiyun@hit.edu.cn

Zongjie Li
Harbin Institute of Technology

Shenzhen, China

lizongjie@stu.hit.edu.cn

Bowei Gao
Harbin Institute of Technology

Shenzhen, China

1160300103@hit.edu.cn

David Lo
Singapore Management University

Singapore

davidlo@smu.edu.sg

Qirun Zhang
Georgia Institute of Technology

United States

qrzhang@gatech.edu

Michael Lyu
The Chinese University of Hong Kong

Hong Kong, China

lyu@cse.cuhk.edu.hk

ABSTRACT

Type inference for dynamic programming languages such as Python

is an important yet challenging task. Static type inference tech-

niques can precisely infer variables with enough static constraints

but are unable to handle variables with dynamic features. Deep

learning (DL) based approaches are feature-agnostic, but they can-

not guarantee the correctness of the predicted types. Their per-

formance significantly depends on the quality of the training data

(i.e., DL models perform poorly on some common types that rarely

appear in the training dataset). It is interesting to note that the

static and DL-based approaches offer complementary benefits. Un-

fortunately, to our knowledge, precise type inference based on both

static inference and neural predictions has not been exploited and

remains an open challenge. In particular, it is hard to integrate DL

models into the framework of rule-based static approaches.

This paper fills the gap and proposes a hybrid type inference

approach named HiTyper based on both static inference and deep

learning. Specifically, our key insight is to record type dependen-

cies among variables in each function and encode the dependency

information in type dependency graphs (TDGs). Based on TDGs, we

can easily integrate type inference rules in the nodes to conduct

static inference and type rejection rules to inspect the correctness

of neural predictions. HiTyper iteratively conducts static inference

and DL-based prediction until the TDG is fully inferred. Experi-

ments on two benchmark datasets show that HiTyper outperforms

state-of-the-art DL models by exactly matching 10% more human

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510038

annotations. HiTyper also achieves an increase of more than 30%

on inferring rare types. Considering only the static part of HiTyper,

it infers 2× ∼ 3×more types than existing static type inference tools.

Moreover, HiTyper successfully corrected seven wrong human an-

notations in six GitHub projects, and two of them have already

been approved by the repository owners.

1 INTRODUCTION

Dynamically typed programming languages such as Python are be-

coming increasingly prevalent in recent years. According to GitHub

Octoverse 2019 and 2020 [15], Python outranks Java and C/C++ and

becomes one of the most popular programming languages. The dy-

namic features provide more flexible coding styles and enable fast

prototyping. However, without concretely defined variable types,

dynamically typed programming languages face challenges in en-

suring security and compilation performance. According to a recent

survey by Jetbrains [23], static typing or at least some strict type

hints becomes the top 1 desired feature among Python developers.

To address such problems, some research adopts design principles

of statically typed programming languages [16, 25, 47]. For example,

reusing compiler backend of the statically typed languages [26] and

predicting types for most variables [2, 4, 11, 17, 18, 21, 39]. More-

over, Python officially supports type annotations in the Python

Enhancement Proposals (PEP) [28, 29, 56, 61].

Type prediction is a popular task performed by existing work.

Traditional static type inference approaches [4, 11, 17, 21, 48] and

type inference tools such as Pytype [45], Pysonar2 [42], and Pyre

Infer [40] can correctly infer types for the variables with enough

static constraints, e.g., for a = 1 we can know the type of a is

int, but are unable to handle the variables with few static con-

straints, e.g. most function arguments or dynamic evaluations such

as eval() [51].

With the recent development of deep learning (DL) methods, we

can leverage more type hints such as identifiers and existing type

annotations to predict types. Many DL-based methods [2, 18, 31, 35,

39, 59] have been proposed, and they show significant improvement

2019

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

compared with static techniques [27]. While DL-based methods are

effective, they face the following two major limitations:

(i) No guarantee of the type correctness. Pradel et al. [39] find that

the predictions given by DLmodels are inherently imprecise as they

return a list of type candidates for each variable, among which only

one type is correct under a certain context. Besides, the predictions

made by DL models may contradict the typing rules, leading to type

errors. Even the state-of-the-art DL model Typilus [2] generates

about 10% of predictions that cannot pass the test of a type checker.

The type correctness issue makes the DL-based methods hard to be

directly deployed into large codebases without validation. Recent

work [2, 39] leverages a search-based validation in which a type

checker is used to validate all combinations of types returned by DL

models and remove those combinations containing wrong types.

However, these approaches cannot correct the wrong types but

only filter them out.

(ii) Inaccurate prediction of rare types. Rare types refer to the

typeswith low occurrence frequencies in datasets [2]. Low-frequency

problem has become one of the bottlenecks of DL-based meth-

ods [24, 30, 46, 50, 60]. For example, Typilus’s accuracy drops by

more than 50% for the types with occurrence frequencies fewer

than 100, compared to the accuracy of the types with occurrence

frequencies more than 10,000. More importantly, rare types totally

account for a significant amount of annotations even though each

of them rarely appears. We analyze the type frequencies of two

benchmark datasets from Typilus [2] and Type4Py [34], and find

a long tail phenomenon, i.e., the top 10 types in the two datasets

already account for 54.8% and 67.8% of the total annotations, and

more than 10,000 and 40,000 types in two datasets are rare types

with frequency proportions less than 0.1%. They still occupy 35.5%

and 25.5% of total annotations for the two respective datasets and

become the long “tail” of type distributions.

To remedy the limitations of the previous studies, this paper pro-

poses a hybrid type inference framework named HiTyper, which

conducts static type inference and accepts recommendations from

DL models (Static+DL). We propose a novel representation, named

type dependency graph (TDG), for each function, where TDG

records the type dependencies among variables. Based on TDG,

we reformulate the type inference task into a blank filling problem

where the “blanks” (variables) are connected with dependencies so

that both static approaches and DL models can fill the types into

“blanks”.

HiTyper infers the “blanks” in TDG mainly based on static type

inference, which automatically addresses DL models’ rare type pre-

diction problem since static type inference rules are insensitive to

type occurrence frequencies. HiTyper extends the inference ability

of static type inference by accepting recommendations from DL

models when it encounters some “blanks” that cannot be statically

inferred. Different from the search-based validation by Pradel et

al. [39], HiTyper builds a series of type rejection rules to filter out

all wrong predictions on TDG, and then continues to conduct static

type inference based on the reserved correct predictions.

We evaluate HiTyper on two public datasets. One dataset is

released by Allamanis et al. in the paper of Typilus [2], and the

other is ManyTypes4Py [35], one large dataset recently released

for this task. Experiment results show that HiTyper outperforms

both SOTA DL models and static type inference tools. Compared

Figure 1: Type dependency graph of the parse() fromCode.1.

with two SOTA DL models Typilus and Type4Py, HiTyper presents

a 10%∼12% boost on the performance of overall type inference,

and a 6% ∼ 71% boost on the performance of certain kinds of type

inference such as return value type inference and user-defined type

inference. Without the recommendations from neural networks and

only looking at the static type inference part, HiTyper generally

outputs 2× ∼ 3× more annotations with higher precision than cur-

rent static type inference tools Pyre [40] and Pytype [45]. HiTyper

can also identify wrong human annotations in real-world projects.

We identify seven wrong annotations in six projects of Typilus’s

dataset and submit pull requests to correct these annotations. Two

project owners have approved our corrections.

Contributions. Our contributions can be concluded as follows:

• To the best of our knowledge, we are the first to propose

a hybrid type inference framework that integrates static

inference with DL for more accurate type prediction.

• We design an innovative type dependency graph to strictly

maintain type dependencies of different variables.

• We tackle some challenges faced by previous studies and

design a series of type rejection rules and a type correction

algorithm to validate neural predictions.

• Extensive experiments demonstrate the superior performance

of the proposed HiTyper than SOTA baseline models and

static type inference tools in the task.

2 MOTIVATING EXAMPLE

Listing 1 illustrates an example of code snippet from the WebDNN

project.1 Results of several baselines, including static type inference

1https://github.com/mil-tokyo/webdnn

2020

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

techniques - Pytype and Pysonar2, and state-of-the-art DL models -

Typilus, are depicted in Table 1.

1 #src/graph_transpiler/webdnn/graph/shape.py

2 def parse(text):

3 normalized_text = _normalize_text(text)

4 tmp = ast.literal_eval(normalized_text)

5 shape = []

6 placeholders = {}

7 for i, t in enumerate(tmp):

8 if isinstance(t, str):

9 pt = Placeholder(label=t)

10 placeholders[t] = pt

11 elif isinstance(t, int):

12 pt = t

13 shape.append(pt)

14 return shape , placeholders

Listing 1: A Function fromWebDNN.

Static Inference. According to Table 1, we can find that the

static type inference techniques fail to infer the type of the argu-

ment text since the argument is at the beginning of data flow

without any assignments or definitions. One common solution to

infer the type is to use inter-procedural analysis and capture the

functions that call parse() [52]. However, tracing the functions in

programs, especially in some libraries, is not always feasible. As

for the return value, by analyzing the data flow and dependencies

between variables, static inference can easily identify that shape

(line 5, 13) and placeholders (line 6, 10) consist of the return value.

It can recursively analyze the types of the two variables, and fi-

nally output the accurate type of the return value. Indeed, both

Pysonar2 and Pytype can correctly infer that the return value is a

tuple containing a list and dict.

DL Approach. The DL model Typilus [2] accurately predicts

the type as str according to the semantics delivered by the argu-

ment text and contextual information. The case illustrates that DL

models can predict more types than static inference. However, Typ-

ilus fails to infer the type of the return value of parse(). Current

DL models cannot maintain strict type dependencies between vari-

ables. Therefore, Typilus only infers the type as a tuple but cannot

accurately predict the types inside the tuple. When adding a type

checker to validate Typilus’s predictions, its argument prediction is

reserved since it does not violate any existing type inference rules.

However, for the return value, its 2nd and 3rd type predictions in

Table 1 by Typilus are rejected since the return value of parse()

explicitly contains two elements with different types. The 1st predic-

tion is also rejected because it contains the type Optional[text]

that does not appear in the return value. In this case, the model

does not produce any candidate type for the return value.

Static+DL Approach. For the code example, we find that static

inference is superior than DL models when sufficient static con-

straints or dependencies are satisfied, while DL models are more

applicable for the types lacking sufficient static constraints. Given

the code, HiTyper first generates the TDG of it, as shown in Fig. 1,

and tries to fill all nodes in TDG with corresponding types ("blank

filling"). For the argument text, HiTyper identifies that the type

cannot be inferred by static inference (it does not have any input

edges) and asks DL for recommendations. HiTyper does not directly

output the predictions from DL as final type assignments. Instead,

Table 1: Prediction results of different baselines for Listing 1.

Approach Baseline Argument Return Value

Ground

Truth
str

Tuple[List[int, Placeholder],

Dict[str, Placeholder]]

Static
Pysonar2 ? Tuple[List[int],Dict]

Pytype ? Tuple[List, Dict]

DL Typilus 1. str

1. Tuple[collections.OrderedDict[

Text, List[DFAState]],

Optional[Text]],Tuple[Any,

List[Tuple[Any]], Any]

2. Tuple[Text]

3. Tuple[torch.Tensor]

Static

+ DL

HiTyper

(Typilus)
str

Tuple[List[int, Placeholder],

Dict[str, Placeholder]]

HiTyper validates the prediction’s correctness and accepts the re-

sult only if no type inference rules are violated. When predicting

the return value, HiTyper captures its type dependencies based on

the TDG (it connects with two input nodes) and directly leverages

static inference to infer the type. For this case, DL predictions are

not required, largely avoiding the imports of wrong types.

3 HITYPER

In this section, we first introduce the definitions used in HiTyper

and then elaborate the details of HiTyper.

3.1 Definition of Types

Fig. 3 shows the definitions of different types according to the

official documentation of Python [9] and its type checker mypy [8].

Note that we remove the object type and Any type since they are

not strict static types. In general, all types can be classified into

built-in types and user-defined types. Built-in types are predefined

in the language specification of Python while user-defined types

are created by developers. Developers can define the operations or

methods supported by a user-defined type and overwrite some built-

in operations for their user-defined types. For example, developers

can define an __add__()method in a class so that two types derived

from this class can be directly added together using the built-in

operator +. The operation is called operator overloading. We create

a subcategory for user-defined types with operator overloading

behaviors since they have different type inference rules.

The type categories showed in Fig. 3 are widely used in most

static type inference techniques [37, 40, 45]. Differently, DL-based

studies [2, 35] generally categorize the types into common types

and rare types based on a pre-defined threshold of occurrence fre-

quencies (e.g., 100 in [2]). For a fair comparison, we also follow

this definition for evaluation. By analyzing the rare types in two

public datasets Typilus and ManyTypes4Py, we find that 79.02% and

99.7% of rare types actually are user-defined types. Because static

inference technique is frequency-insensitive and cannot recognize

rare types, we mainly add supports for user-defined types on static

inference side of HiTyper.

3.2 Overview

HiTyper accepts Python source files as input and outputs JSON

files recording the type assignment results. Fig. 2 illustrates its

2021

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

 Type Dependency
 Graph Generator

Blank Type Dependency Graph
(TDG)

 Forward Type
 Inference

Patially-Inferred
TDG TDG with

Hot Type Slots

 Deep
 Neural Network

Recommended
TDG

Type Dependency Graph Generation Static Type Inference

Final Output

Fully-Inferred
TDG

Similarity-based
Type Correction

 Backward Type
 Rejection

 Source
 Files

 Hot Type Slots
 Finder

Neural Type Prediction

Figure 2: Overall architecture of HiTyper. Black solid nodes, hollownodes, red nodes and yellownodes in the type dependency

graphs represent inferred type slots, blank type slots, hot type slots, and the type slots recommended byDLmodel, respectively.

𝜃 ∈ Type (Θ) ::= 𝛾 | 𝛼 [𝜃, ..., 𝜃] | 𝑢 | None | type

𝛾 ∈ Elementary Type (Γ) ::= int | float | str | bool | bytes

𝛼 ∈ Generic Type (𝐴) ::= List | Tuple | Dict | Set |

Callable | Generator | Union

𝑏 ∈ Builtin Type (𝐵) ::= 𝛾 | 𝛼 [𝜃]

𝑢 ∈ User Defined Type (𝑈) ::= all classes and named

tuples in code

𝑜 ∈ Overloading User ::= 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤𝑖𝑡ℎ

Defined Type (𝑂) operator overloading in code

Figure 3: Types in Python.

overall architecture. HiTyper includes three major components:

type dependency graph generation, static type inference, and neural

type prediction. The static type inference component comprises

two main steps, i.e., forward type inference and backward type

rejection.
TypeDependencyGraph (TDG)Generation. Specifically, given

a Python source file, HiTyper first generates TDGs for each function

and identifies all the imported user-defined types (Sec. 3.3). TDG

transforms every variable occurrence and expression into nodes and

maintains type dependencies between them so that static inference

and DL models can work together to fill types into it.

Static Type Inference - Forward Type Inference. To main-

tain the correctness of prediction results, HiTyper focuses on infer-

ring types using static inference. Given a TDG, HiTyper conducts

forward type inference by walking through the graph and imple-

menting the type inference rules saved in each expression node

(Sec. 3.4). However, due to the limitation of static inference, in most

cases HiTyper can only infer partial type slots, i.e., variables, in-

dicated as black solid nodes in the partially-inferred TDG in Fig. 2;

while the blank nodes denote the type slots without sufficient static

constraints and remaining unsolved. To strengthen the inference

ability of HiTyper, we ask DL models for recommendations.

Neural Type Recommendation. Through the hot type slot

finder, HiTyper identifies a key subset of the blank nodes as hot

type slots, marked as red nodes in Fig. 2, for obtaining recommen-

dations from DL models. HiTyper also employs a similarity-based

type correction algorithm to supplement the prediction of user-

defined types, which are the primary source of rare types (Sec. 3.5).

The types recommended by the neural type prediction component

are filled into the graph, resulting in the recommended TDG.

Static Type Inference - Backward Type Rejection.HiTyper

utilizes type rejection rules to validate the neural predictions in hot

type slots (Sec. 3.4). Then it traverses the whole TDG to transmit

the rejected predictions from output nodes to input nodes so that all

nodes in TDG can be validated. Finally HiTyper invokes forward

type inference again to infer new types based on the validated

recommendations.

The interactions between forward type inference and backward

type rejection could iterate until the TDG reaches a fixed point,

i.e., the types of all nodes do not change any more. Meanwhile,

the iterations between static inference and neural prediction can

repeat several times until all type slots are inferred, or a maximum

iteration limit is reached.

3.3 Type Dependency Graph Generation

This section introduces the creation of type dependency graph

(TDG), which describes the type dependencies between different

variables in programs. Fig. 4 presents the syntax of all the expres-

sions that generate types in Python, where each expression corre-

sponds to a node in the AST (Abstract Syntax Tree). Given the AST

of a program, HiTyper can quickly identify these expressions. The

expression nodes constitute a major part of TDG. We define TDG

as below.

Definition.We define a graph𝐺 = (𝑁, 𝐸) as a type dependency
graph (TDG), where 𝑁 = {𝑛𝑖 } is a set of nodes representing all
variables and expressions in source code, and 𝐸 is a set of directed
edges of 𝑛𝑖 → 𝑛 𝑗 indicating the type of 𝑛 𝑗 can be solved based on
the type of 𝑛𝑖 by type inference rules. We also denote 𝑛𝑖 is the input
node of 𝑛 𝑗 and 𝑛 𝑗 is the output node of 𝑛𝑖 here.
The TDG contains four kinds of nodes:

• symbol nodes represent all the variables for which the types

need to be inferred. We also use type slots to indicate symbol

nodes in the following sections.

• expression nodes represent all the expressions that generate

types as shown in Fig. 4.

• branch nodes represent the branch of data flows.

2022

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

𝑒 ∈ Expr ::= 𝑣 | 𝑐 | 𝑒 blop 𝑒 | 𝑒 numop 𝑒 |

𝑒 cmpop 𝑒 | 𝑒 bitop 𝑒 |

(𝑒, ..., 𝑒) | [𝑒, ..., 𝑒] |

{𝑒 : 𝑒, ..., 𝑒 : 𝑒} | {𝑒, ..., 𝑒} |

[𝑒 for 𝑒 in 𝑒] | {𝑒 for 𝑒 in 𝑒} |

{𝑒 : 𝑒 for 𝑒, 𝑒 in 𝑒} | (𝑒 for 𝑒 in 𝑒) |

𝑒 (𝑒, ..., 𝑒) | 𝑒 [𝑒 : 𝑒 : 𝑒] | 𝑒.𝑣

𝑣 ∈ Variables ::= all identifiers in code

𝑐 ∈ Constants ::= all literals in code

𝑏𝑙𝑜𝑝 ∈ Boolean Operations ::= 𝐴𝑛𝑑 | 𝑂𝑟 | 𝑁𝑜𝑡

𝑛𝑢𝑚𝑜𝑝 ∈ Numeric Operations ::= 𝐴𝑑𝑑 | 𝑆𝑢𝑏 | 𝑀𝑢𝑙𝑡 | 𝐷𝑖𝑣 | 𝑀𝑜𝑑 |

𝑈𝐴𝑑𝑑 | 𝑈𝑆𝑢𝑏

𝑏𝑖𝑡𝑜𝑝 ∈ Bitwise Operations ::= 𝐿𝑆ℎ𝑖 𝑓 𝑡 | 𝑅𝑆ℎ𝑖 𝑓 𝑡 | 𝐵𝑖𝑡𝑂𝑟 | 𝐵𝑖𝑡𝐴𝑛𝑑 |
𝐵𝑖𝑡𝑋𝑜𝑟 | 𝐹𝑙𝑜𝑜𝑟𝐷𝑖𝑣 | 𝐼𝑛𝑣𝑒𝑟𝑡

𝑐𝑚𝑝𝑜𝑝 ∈ Compare Operations ::= 𝐸𝑞 | 𝑁𝑜𝑡𝐸𝑞 | 𝐿𝑡 | 𝐿𝑡𝐸 | 𝐺𝑡 | 𝐺𝑡𝐸 |

𝐼𝑠 | 𝐼𝑠𝑁𝑜𝑡 | 𝐼𝑛 | 𝑁𝑜𝑡𝐼𝑛

Figure 4: The syntax of expressions for typing in Python

• merge nodes represent the merge of data flows.

HiTyper creates a node for every variable occurrence instead

of every variable in TDG because Python’s type system allows

variables to change their types at run-time. Similar to static single

assignment (SSA), HiTyper labels each occurrence of a variable

with the order of occurrences, so that each symbol node in the

TDG has a format of $name$order($lineno) to uniquely indicate

a variable occurrence. For example, in Fig. 1, we create three symbol

nodes (pt0(9), pt1(10), pt2(12)) for variable pt as it appears

three times in Listing 1 (Line 9, 10, and 12).

Import Analysis. Before establishing TDG for every input func-

tion, HiTyper first conducts import analysis to extract all user-

defined types so that it can distinguish the initialization of user-

defined types from regular function calls. HiTyper first collects

all classes in source files, which constitute the initial set of user-

defined types. Then it analyzes all local import statements such

as “from package import class", and adds the imported classes into

the user-defined type set. For all global import statements such

as “import package", HiTyper locates the source of this package

and adds all the classes and named tuples in the source into the

user-defined type set. For each imported class, HiTyper solves

the location of external source files and checks whether operator

overloading methods exist in this class.

Type Dependency Graph Generation. Given the AST of in-

put code and all the user-defined types extracted by import analysis,

HiTyper creates TDG for each function based on the main logic

shown in Alg. 1. HiTyper first locates all the variables and ex-

pressions in the code by traversing the whole AST. Specifically, to

visit each AST node, HiTyper employs the ASTVisitor provided by

Python’s module ast [43]. HiTyper identifies expressions according

to the definitions of expression nodes in Python (as depicted in

Fig. 4) and records every visited expression node using an expres-

sion stack. Whenever HiTyper identifies an expression node (Line

Algorithm 1 Type Dependency Graph Generation

Input: The AST of given function, func_ast;

Output: Type dependency graph of the given function, 𝑡𝑔
Initialize an expression stack ex_stack

Initialize a variable stack var_stack

1: for all 𝑛𝑜𝑑𝑒 ∈ func_ast && node is not visited do

2: // handle expression nodes

3: if node.type ∈ Expressions then

4: ex_stack.push(node); ex_node← new ex(node)

5: visit(node.operands); ex_stack.pop(node)

6: if not ex_stack.empty() then

7: 𝑡𝑔.addEdge(ex_node→ ex_stack.top())

8: end if

9: 𝑡𝑔.addNode(ex_node)
10: end if

11: // handle symbol nodes

12: if node.type == ast.Name then

13: sym_node← new symbol(node)

14: if node.ctx == write then

15: 𝑡𝑔.addEdge(ex_stack.top()→ sym_node)

16: else

17: 𝑡𝑔.addEdge(𝑣𝑎𝑟_𝑠𝑡𝑎𝑐𝑘 .top()→ sym_node)

18: 𝑡𝑔.addEdge(sym_node→ ex_stack.top())

19: end if

20: 𝑣𝑎𝑟_𝑠𝑡𝑎𝑐𝑘 .push(sym_node); 𝑡𝑔.addNode(sym_node)
21: end if

22: // handle branch and merge nodes

23: if checkTypeBranch(node) then

24: branch_node← new branch(node)

25: 𝑡𝑔.addNode(branch_node)
26: 𝑐𝑡𝑥1, 𝑐𝑡𝑥2← Branch(𝑐𝑡𝑥)
27: visit(node.left, 𝑐𝑡𝑥1); visit(node.right, 𝑐𝑡𝑥2)
28: end if

29: if checkTypeMerge(node) then

30: merge_node← new merge(node)

31: 𝑡𝑔.addNode(merge_node)
32: 𝑐𝑡𝑥 ←Merge(𝑐𝑡𝑥1, 𝑐𝑡𝑥2)
33: end if

34: end for

3), it builds a same node in the current TDG and pushes it into the

expression stack. HiTyper will then recursively visits the expres-

sion’s operands to capture new expression nodes until it encounters

a variable node (Line 12), which is the leaf node of the AST.

HiTyper builds a symbol node in TDG for each visited identifier

node of AST, and maintains a variable map to record all the occur-

rences of each variable. The AST already indicates the context of

each variable occurrence, i.e., whether read or write.

(i) If the variable context is read, HiTyper will obtain the last

occurrence of the variable according to the maintained variable

map under the current context. It then creates an edge from the

symbol node of the last occurrence to the symbol node of the current

variable (Line 16 - 18).

(ii) If the variable context is write, HiTyper will fetch the value

from the last expression in the expression stack and build an edge

2023

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

connecting from the expression node to the symbol node of the

current variable (Line 14 - 15).

Analogous to regular data flow analysis, HiTyper also checks

whether the data flow branches (Line 23 - 27) or merges at certain

locations (Line 29 - 32).

In TDG, each symbol node keeps a list of candidate types while

each expression node includes type inference rules and type rejec-

tion rules. When HiTyper walks through TDG, the rules will be

activated to produce new types. Thus, types can flow from argu-

ments to return values. By traversal, HiTyper obtains the types of

each symbol node and outputs the type assignment. The leveraged

type inference rules and type rejection rules are detailed in the next

subsections.

3.4 Static Type Inference

This section describes the type inference and rejection rules inte-

grated in expression nodes, which are the key component of our

static type inference. Fig. 5 denotes all the type inference and rejec-

tion rules used in static type inference. Each rule consists of some

premises (contents above the line) and conclusions (contents below

the line). They obey the following form:

𝜋 � 𝑒 : 𝜃 .
In this form, 𝜋 is called the context, which includes lists that assign

types to expression patterns. 𝑒 is the expression showed in Fig. 4,
and we use 𝑒1, ..., 𝑒𝑛 to represent different expressions. 𝜃 is the type
showed in Fig. 3. We use 𝜃1, ..., 𝜃𝑛 to represent different types. A

rule under this form is called a type judgement or type assignment.

Our goal is to get the context 𝜋 that assigns types to all the variables
in code.

The premises of each rule in Fig. 5 are the types of input nodes

𝜃1, 𝜃2, ... that constructs an expression, and the valid type set ˜𝜃 for
the current operation. Usually type inference rules only have one

conclusion, which is the result type of current expression. However,

as we also involve neural predictions in TDG and use type rejection

rules to validate them, the conclusions of each rule in Fig. 5 have

two parts: 1) the result type of current expression node and 2) the

validated types of input nodes. (Some rules may not have the second

part because they accept any input types.)

The result type of the current expression node is what traditional

static type inference techniques usually infer. We denote it as for-

ward type inference. However, there exist types that are not allowed

to conduct certain operations, which are guided by type constraints.

When a type constraint is violated, e.g., adding an integer to a string,

traditional static inference techniques [37, 40, 45] throw type errors.

For the wrongly predicted cases, HiTyper does not directly throw

a type error since it accepts recommendations from DL models. To

“sanitize” the recommendations from DL models, we create type

rejection rules to validate and remove the wrong predictions in

input nodes. We call this as backward type rejection.

Forward Type Inference. HiTyper starts forward type infer-

ence with the nodes that do not have input nodes in TDG. It gradu-

ally visits all nodes in the graph and activates corresponding type

inference rules if their premises are satisfied, i.e., all input nodes are

fully inferred. This is the forward traversal of TDGs. As forward

type inference in HiTyper is similar to traditional static type infer-

ence techniques, we only discuss the [Call] rule for which HiTyper

has a special strategy. The premise of the [Call] rule requires the

type of callees, which is beyond the scope of current functions. This

premise is one major barrier for most static inference techniques

to fully infer a program due to a large number of external APIs

in Python programs [19, 52]. HiTyper only focuses on inferring

the types of functions with explicit implementation in the current

source code, in which the TDGs of the functions are connected.

HiTyper does not infer external calls for two reasons: 1) DL models

perform well on predicting the types of commonly-used APIs that

frequently occur in the training set; 2) Python maintains a type-

shed [44] project to collect the type annotations of frequently-used

modules, so HiTyper can directly access the types.

Backward Type Rejection. An input type in an expression

must fulfill two constraints before it can conduct the expression:

1) it must be the valid type to conduct a certain expression, 2) it

must have a valid relationship with other input types. HiTyper

rejects the input types that violate these two constraints. It first

checks whether the type is valid for an expression. We indicates

valid types for each expression as ˜𝜃 in Fig. 5. For example, in [In,
NotIn] rule, the types of 𝑒2 must be iterable so int is not allowed

and should not be in the valid type set ˜𝜃 . Then HiTyper checks
whether the relationships between all inputs are valid. Apart from

valid types for a certain operation, some operations also require

the inputs to satisfy a certain relationship. For example, in [Add]

rule, the two operands must have the same type. For types of two

inputs int and str, even though they are in the valid type set of

this operation, they are still rejected because they are not the same

type. Therefore, in the [Add] rule, the final valid input types are

the intersection of all input type sets 𝜃1, 𝜃2 and valid type set ˜𝜃 .
Type Rejection rules can validate and reject the input types of

an operation. However, the input types are the results of previous

operations, so the type rejection process will also affect the input

types of previous operations. To thoroughly remove the influence

of wrong types, HiTyper also rejects the input types that result

in the rejected types according to forward type inference rules.

HiTyper gradually validates all type slots by starting from the type

slots without output edges and producing the rejected input types.

Then it traverses other slots until the whole TDG is visited. This is

the backward traversal of TDGs.

Correctness. Different from the DL-based approaches [18, 35],

HiTyper can always guarantee the correctness of its type assign-

ments based on static inference. According to the architecture of

HiTyper in Fig. 2, the type assignments generated by HiTyper

have two cases: 1) If the static inference can successfully handle a

program, HiTyper does not need to invoke DL models to give type

recommendations. Consequently, the type assignments fully based

on the inference rules (Fig. 5) are sound because they are collected

from the Python official implementation CPython [10]; and 2) If

the static inference cannot fully infer a program and the DL models

are invoked to provide type recommendations (Sec. 3.5), HiTyper

utilizes type rejection rules to validate the recommendations and

then calls the type inference rules again to infer the remaining

types. In this case, our rejection rules thoroughly eliminate the

influence of wrong recommendations, and the final results are also

produced by static inference. Therefore, HiTyper always maintains

the type correctness.

2024

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

𝑣 ∈ Dom(𝜋)

𝜋 � 𝑣 : 𝜃
(Variable)

𝜋 � 𝑐 : 𝜃
(Constant)

𝜋 � 𝑒 : 𝜃

𝜋 � 𝑒.𝑣 : 𝜃 .𝑣
(Attribute)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2 ˜𝜃 = {bool, int, 𝑂}

𝜋 � 𝑒1 bitop 𝑒2 : 𝜃 ∧ ˜𝜃 𝜋 � 𝑒1 : 𝜃1 ∧ ˜𝜃 𝜋 � 𝑒2 : 𝜃2 ∧ ˜𝜃
(LShift, RShift)

𝜋 � 𝑒1 : 𝜃1 ˜𝜃 = {bool, int, float, 𝑂}

𝜋 � 𝑒2 : 𝜃2 𝜃 ′ = 𝑔𝑒𝑡𝑀𝑜𝑟𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑒𝑇𝑦𝑝𝑒 (𝜃1 ∧ ˜𝜃, 𝜃2 ∧ ˜𝜃)

𝜋 � 𝑒1 numop 𝑒2 : 𝜃 ′ 𝜋 � 𝜃1 ∧ ˜𝜃 𝜋 � 𝜃2 ∧ ˜𝜃
(Numeric Operations)

𝜋 � 𝑒1 : 𝜃1 ˜𝜃1 = {int, bool}

𝜋 � 𝑒2 : 𝜃2 ˜𝜃2 = {Γ, List, Tuple, 𝑂}

𝜋 � 𝑒1 numop 𝑒2 : 𝜃2 ∧ ˜𝜃2 𝜋 � 𝑒1 : 𝜃1 ∧ ˜𝜃1 𝜋 � 𝑒2 : 𝜃2 ∧ ˜𝜃2
(Mult)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2 ˜𝜃 = {Γ, List, Tuple, 𝑂}

𝜋 � 𝑒1 cmpop 𝑒2 : bool 𝜋 � 𝑒1 : 𝜃1 ∧ 𝜃2 ∧ ˜𝜃 𝜋 � 𝑒2 : 𝜃1 ∧ 𝜃2 ∧ ˜𝜃
(Lt,LtE,Gt,GtE)

𝜋 � 𝑢 (𝑒1, ..., 𝑒𝑛) : 𝑢
(Class Instantiation)

𝜋 � 𝑒1 : 𝜃1 ... 𝜋 � 𝑒𝑛 : 𝜃𝑛
𝜋 � (𝑒1, ..., 𝑒𝑛) : Tuple[𝜃1, ..., 𝜃𝑛] 𝜋 � [𝑒1, ..., 𝑒𝑛] : List[𝜃1, ..., 𝜃𝑛]

𝜋 � {𝑒1, ..., 𝑒𝑛} : Set[𝜃1, ..., 𝜃𝑛] (Tuple, List, Set)

𝜋 � 𝑒 : 𝜃 ˜𝜃 = {𝐴, str, bytes} 𝜃 ′ = 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 (𝜃 ∧ ˜𝜃)

𝜋 � for 𝑣 in 𝑒 : 𝜃 ′ 𝜋 � 𝑒 : 𝜃 ∧ ˜𝜃
(Comprehension)

𝜋 � for 𝑣 in 𝑒1 : 𝜃1 𝜋 � 𝑒2 [𝑣] : 𝜃2
𝜋 � (𝑒2 [𝑣] for 𝑣 in 𝑒1) : Generator[𝜃2]

(Generator)

𝜋 � for 𝑣 in 𝑒1 : 𝜃1 𝜋 � 𝑒2 [𝑣] : 𝜃2
𝜋 � [𝑒2 [𝑣] for 𝑣 in 𝑒1] : List[𝜃2]

𝜋 � {𝑒2 [𝑣] for 𝑣 in 𝑒1} : Set[𝜃2]
(List, Set Comprehension)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2
𝜋 � 𝑒1 blop 𝑒2 : Union[𝜃1, 𝜃2]

(Boolean Operations)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2 ˜𝜃 = {bool, int, Set, 𝑂}

𝜋 � 𝑒1 bitop 𝑒2 : 𝜃 ∧ ˜𝜃 𝜋 � 𝑒1 : 𝜃1 ∧ ˜𝜃 𝜋 � 𝑒2 : 𝜃2 ∧ ˜𝜃
(BitOr, BitAnd, BitXor)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2 ˜𝜃 = {Γ, List, Tuple, 𝑂}

𝜋 � 𝑒1 numop 𝑒2 : 𝜃 ∧ ˜𝜃 𝜋 � 𝑒1 : 𝜃1 ∧ 𝜃2 ∧ ˜𝜃 𝜋 � 𝑒2 : 𝜃1 ∧ 𝜃2 ∧ ˜𝜃
(Add)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2 ˜𝜃 = {Γ, Set, 𝑂}

𝜋 � 𝑒1 numop 𝑒2 : 𝜃 ∧ ˜𝜃 𝜋 � 𝑒1 : 𝜃1 ∧ 𝜃2 ∧ ˜𝜃 𝜋 � 𝑒2 : 𝜃1 ∧ 𝜃2 ∧ ˜𝜃
(Sub)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2
𝜋 � 𝑒1 cmpop 𝑒2 : bool

(Eq,NotEq,Is,IsNot)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2

˜𝜃 = {str, bytes, List, Tuple, Set, Dict, Generator}

𝜋 � 𝑒1 cmpop 𝑒2 : bool 𝜋 � 𝑒2 : 𝜃2 ∧ ˜𝜃
(In,NotIn)

𝜋 � 𝑒 : 𝜃 𝜋 � 𝑒1 : 𝜃1 ... 𝜋 � 𝑒𝑛 : 𝜃𝑛

˜𝜃 = {Callable[[𝜃1, ..., 𝜃𝑛], 𝜃]} 𝜃 ′ = 𝑔𝑒𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑇𝑦𝑝𝑒 (𝜃 ∧ ˜𝜃)

𝜋 � 𝑒 (𝑒1, ..., 𝑒𝑛) : 𝜃
(Call)

𝜋 � 𝑒1 : 𝜃1 ... 𝜋 � 𝑒𝑛 : 𝜃𝑛
𝜋 � {𝑒1 : 𝑒2, ..., 𝑒𝑛−1 : 𝑒𝑛} : Dict[𝜃1 : 𝜃2, ..., 𝜃𝑛−1 : 𝜃𝑛]

(Dict)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2 ˜𝜃1 = {Dict} 𝜃 ′ = 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑇𝑦𝑝𝑒 (𝜃1 ∧ ˜𝜃1)

𝜋 � 𝑒1 [𝑒2] : 𝜃 ′ 𝜋 � 𝑒1 : 𝜃1 ∧ ˜𝜃1
(SubScript)

𝜋 � for 𝑣 in 𝑒1 : 𝜃1 𝜋 � 𝑒2 [𝑣] : 𝜃2 𝜋 � 𝑒3 [𝑣] : 𝜃3
𝜋 � {𝑒2 [𝑣] : 𝑒3 [𝑣] for 𝑣 in 𝑒1} : Dict[𝜃2 : 𝜃3]

(Dict Comprehension)

𝜋 � 𝑒1 : 𝜃1 𝜋 � 𝑒2 : 𝜃2 ˜𝜃1 = {𝐴, str, bytes}

˜𝜃2 = {int, bool} 𝜃 ′ = 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 (𝜃1 ∧ 𝜃2)

𝜋 � 𝑒1 [𝑒2] : 𝜃 ′ 𝜋 � 𝑒1 : 𝜃1 ∧ ˜𝜃1 𝜋 � 𝑒2 : 𝜃2 ∧ ˜𝜃2
(Slice)

Figure 5: Type inference and rejection rules of expressions in Python

3.5 Neural Type Recommendation

HiTyper conducts static type inference based on type inference

rules When static type inference can fully infer all the variables

in TDG. However, some variables are hard to be statically typed

so that HiTyper only gets a partially-inferred TDG. In this case,

HiTyper asks DL models for recommendations. The neural type

recommendation part of HiTyper includes two procedures: hot

type slot identification and similarity-based type correction.

Hot Type Slot Identification. Some variables can impact the

types of many other variables because they locate at the beginning

of the data flow or possess type dependencies with many variables.

We call these variables as hot type slots. Given the types of hot type

slots, static type inference techniques can infer the remaining type

slots. Therefore, to optimize the type correctness of HiTyper, DL

models are only invoked on the hot type slots instead of all the

blank type slots.

To identify the hot type slots, HiTyper first removes slots already

filled by static type inference and obtains a sub-graph with all

the blank type slots. Then HiTyper employs a commonly-used

dominator identification algorithm semi-NCA [14] to capture all

dominators in the sub-graph. A node 𝑋 dominiating another node

𝑌 in a graph means that each entry node to𝑌 must pass𝑋 . Thus, if a
type slot 𝑋 dominates another type slot 𝑌 , 𝑌 ’s type can be inferred
from 𝑋 ’s type. HiTyper gradually removes the type slots 𝑌 from

2025

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

Table 2: Comparison with the baseline approaches. Top-1,3,5 of HiTyper means it accepts 1,3,5 candidates from deep neural

networks in type recommendation phase. The neural network in HiTyper is the corresponding comparison DL model.

Dataset Type Category Approach

Top-1 Top-3 Top-5

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

ManyTypes4Py

Argument

Naive Baseline 0.14 0.16 0.33 0.38 0.43 0.51

Type4Py 0.61 0.62 0.64 0.66 0.65 0.68

HiTyper 0.65 0.67 0.70 0.74 0.72 0.76

Return Value

Naive Baseline 0.07 0.10 0.19 0.28 0.28 0.42

Type4Py 0.49 0.52 0.53 0.59 0.54 0.63

HiTyper 0.60 0.72 0.63 0.76 0.65 0.77

Local Variable

Naive Baseline 0.13 0.17 0.33 0.45 0.47 0.65

Type4Py 0.67 0.73 0.71 0.78 0.72 0.79

HiTyper 0.73 0.85 0.74 0.86 0.75 0.86

All

Naive Baseline 0.13 0.16 0.31 0.40 0.43 0.57

Type4Py 0.62 0.66 0.66 0.72 0.67 0.73

HiTyper 0.69 0.77 0.72 0.81 0.72 0.82

Typilus’s

Dataset

Argument

Naive Baseline 0.19 0.20 0.38 0.42 0.46 0.50

Typilus 0.60 0.65 0.69 0.74 0.71 0.76

HiTyper 0.63 0.68 0.72 0.76 0.76 0.79

Return Value

Naive Baseline 0.11 0.11 0.28 0.31 0.36 0.43

Typilus 0.41 0.57 0.48 0.62 0.50 0.64

HiTyper 0.57 0.70 0.63 0.75 0.64 0.77

All

Naive Baseline 0.17 0.18 0.35 0.39 0.44 0.48

Typilus 0.54 0.62 0.63 0.70 0.65 0.72

HiTyper 0.61 0.69 0.69 0.76 0.72 0.78

Algorithm 2 Type correction of user-defined types

Input: Variable name, 𝑛𝑎𝑚𝑒 ;
Valid user defined type set, 𝑆 ;
Type String recommended by deep neural networks, 𝑡 ;
Penalty added for name-type similarity to align with type-type

similarity, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦;
Output: Corrected type of current variable, 𝑐𝑡 ;
1: if 𝑡 ∈ 𝑆 or isBuiltin(𝑡) then
2: 𝑐𝑡 ← 𝑡 ;
3: else

4: largest_sim← 0; largest_type← 𝑁𝑜𝑛𝑒 ;
5: 𝑡𝑤 ← BPE(𝑡); 𝑛𝑎𝑚𝑒𝑤 ← BPE(𝑛𝑎𝑚𝑒);
6: for each 𝑝𝑡 ∈ 𝑆 do
7: 𝑝𝑡𝑤 ← BPE(𝑝𝑡);
8: if 𝑠𝑖𝑚(𝑝𝑡𝑤, 𝑡𝑤) > largest_sim then

9: largest_sim← sim(𝑝𝑡𝑤, 𝑡𝑤); largest_type← 𝑝𝑡 ;
10: end if

11: if 𝑠𝑖𝑚(𝑝𝑡𝑤, 𝑛𝑎𝑚𝑒𝑤) + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 > largest_sim then

12: largest_sim← sim(𝑝𝑡𝑤, 𝑛𝑎𝑚𝑒𝑤); largest_type← 𝑝𝑡 ;
13: end if

14: end for

15: 𝑐𝑡 ← largest_type;

16: end if

the sub-graph until no type slots can be removed. In the smallest

sub-graph, each type slot is not dominated by other type slots, and

all the slots are hot type slots. For these type slots, HiTyper accepts

type recommendations from DL models.

Similarity-based Type Correction for User-defined Types.

DL models provide one or more type recommendations for each

hot type slot, depending on the strategy (Top-1, -3, or -5) HiTyper

uses. Some DL models [18, 39] treat user-defined types as OOV

tokens and do not predict the types, while other models [2, 45]

directly copy user-defined types from the training set but fail to

predict those never appearing in the training set. We propose to

complement the recommendation of user-defined types using the

similarity-based type correction algorithm shown in Alg. 2. Note

that HiTyper only focuses on replacing the explicitly incorrect

user-defined types, i.e., those never imported or defined in current

source file, with the most similar user-defined types collected by

import analysis.

Specifically, if the recommended type does not belong to built-

in types, HiTyper checks whether the type appears in the user-

defined type set collected from import analysis (Line 1). If the check

result is False, the type will be regarded as explicitly incorrect

and should be corrected. For these incorrect user-defined types,

HiTyper replaces them with the most similar candidate in the user-

defined type set. HiTyper employs Word2Vec [32] to embed two

types and the variable name into word embeddings, and calculates

the cosine distance as the similarity of the two types (Line 6-12).

For the OOV tokens, HiTyper splits them into subtokens using the

BPE algorithm [12, 53] (Line 5). Finally, HiTyper chooses the type

candidate with the largest similarity to fill the user-defined type

(Line 15).

4 EVALUATION

In the section, we answer the following research questions:

RQ1: How effective is HiTyper compared to baseline approaches?

RQ2: Can HiTyper well predict the rare types?

2026

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Type distribution in the test set. “Rare” indicates

rare types and “User” indicates user-defined types.

Category Total Rare User Arg Return Local

Typilus
Count 15,772 7,103 5,572 11,261 4,511 -

Prop. 100% 45% 35% 71% 29% -

Type4Py
Count 37,408 14,035 10,023 11,807 5,491 20,110

Prop. 100% 37% 27% 32% 15% 53%

RQ3:What is the performance of the static type inference compo-

nent in HiTyper?

4.1 Experimental Setup

Dataset. We used the two Python datasets mentioned in Sec. 2

for evaluation. One is the Typilus’s Dataset released by Allamanis

et al. [2]; and the other one is ManyTypes4Py released by Mir et

al. [34], with the number of different types in the test set and more

detailed statistics shown in Table 3 and Sec. 2, respectively.

Evaluation Metrics. Following the previous work [2, 35], we

choose two metrics Exact Match and Match to Parametric for evalu-

ation. The two metrics compute the ratio of results that: 1) Exact

Match: completely matches human annotations. 2) Match to Para-

metric: satisfy exact match when ignoring all the type parameters.

For example, List[int] and List[str] are considered as matched

under this metric.

Baseline Approaches. To verify the effectiveness of the pro-

posed HiTyper, we choose five baseline approaches for comparison:

1) A naive baseline. It represents a basic data-driven method. We

build this baseline following thework [39], whichmakes predictions

by sampling form the distribution of the most frequent ten types.

2) Pytype [45] and Pyre Infer [40]. They are two popular Python

static type inference tools from Google and Facebook, respectively.

3) Typilus [2] and Type4Py [35]. Typilus is a graphmodel that uti-

lizes code structural information. Type4Py is a hierarchical neural

network that uses type clusters to predict types.

Implementation of HiTyper The entire framework of Hi-

Typer is implemented using Python, which contains more than

9,000 lines of code. We obtain all typing rules and rejection rules

from Python’s official documentation [9] and its implementation

CPython2. We use Word2Vec model from the gensim library [62]

as the embedding when calculating the similarity between two

types. We train the Word2Vec model by utilizing all the class names

and variable names in the training set of Typilus. The dimension

of the word embeddings and size of the context window are set

as 256 and 10, respectively. Due to the small training corpus for

Word2Vec, we choose Skip-Gram algorithm for model training [33].

We choose Typilus and Type4Py as the neural network model from

which HiTyper accepts type recommendations. We choose the ex-

act hyper-parameters for Typilus and Type4Py used in the original

papers. We run all experiments on Ubuntu 18.04. The system has a

Intel(R) Xeon(R) CPU (@2.4GHz) with 32GB RAM and 2 NVIDIA

TiTAN V GPUs with 12GB RAM.

4.2 RQ 1: Effectiveness of HiTyper

We evaluate the effectiveness of HiTyper considering different type

categories, including arguments, local variables, and return values.

The results are depicted in Table 2.

2https://github.com/python/cpython

Overall performance. The naive baseline achieves high scores

regarding the top-5 exact match metric for different type categories,

some of which are even close to the performance of DL models.

Since the naive baseline only predicts types with high occurrence

frequencies in the dataset, the results indicate the challenge of

accurately predicting rare types. Typilus and Type4Py mitigate

the challenge by using similarity learning and type clusters and

achieve ∼0.6 regarding the top-1 exact match metric. HiTyper fur-

ther improves the metric by 11% and 15% compared with Typilus

and Type4Py, respectively. HiTyper also enhances the top-1 match

to parametric metric by 17% and 11% compared with Typilus and

Type4Py, respectively. The improvement indicates the effectiveness

of HiTyper in accurate type prediction. Besides, HiTyper presents

better performance than the respective DL models regarding the

top-3,5 metrics, demonstrating that HiTyper infers new results

based on the static type inference rules, instead of just filtering out

or reordering the predictions of DL models.

Type categories. Both Type4Py and Typilus perform better on

the argument category than the return value category, which may

reflect the difficulty of predicting the types of return values. By

building upon type inference rules and TDGs, HiTyper can handle

the complicated type dependencies of return values and thereby

improve Type4Py and Typilus by 22% and 39%, respectively, w.r.t.

the Top-1 exact match metric. HiTyper also slightly meliorates

the prediction of the argument category by 7% and 5% compared

with Type4Py and Typilus, respectively. The improvement may be

attributed to the type correction for user-defined types. Moreover,

HiTyper outperforms Type4Py by 9% for predicting local variables.

Answer to RQ1:HiTyper shows great improvement (11% ∼ 15%)

on overall type inference performance, and the most significant

improvement is on return value inference (22% ∼ 39%).

4.3 RQ 2: Prediction of Rare Types

Rare types are defined as the types with proportions less than 0.1%

among the annotations in the datasets, and we observe that 99.7%

and 79.0% of rare types are user-defined types in ManyTypes4Py

and Typilus’s dataset, respectively. Table 4 illustrates the predic-

tion results of rare types and user-defined types. We can observe

that the naive baseline barely infers rare types and user-defined

types. Besides, the performance of Type4Py and Typilus drops sig-

nificantly for the two type categories, which indicates that type

occurrence frequencies can impact the performance of DL mod-

els. HiTyper shows the best performance on predicting the two

type categories. Specifically, for inferring the rare types, HiTyper

outperforms Type4Py and Typilus by 31% and 34%, respectively,

w.r.t. the top-1 exact match metric. Regarding the prediction of

user-defined types, HiTyper increases the performance of Type4Py

and Typilus by 69% and 47%, respectively.

Answer to RQ2: HiTyper greatly alleviates the prediction issue

of rare types faced by DL models by achieving a > 30% boost,

taking the advantage of the static type inference component.

2027

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

Table 4: Comparison with the baseline DL approaches.

Dataset Type Category Approach

Top-1 Top-3 Top-5

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

ManyTypes4Py

User-defined Types

Naive Baseline 0.00 0.00 0.00 0.00 0.00 0.00

Type4Py 0.29 0.29 0.34 0.34 0.36 0.36

HiTyper 0.49 0.49 0.56 0.56 0.58 0.58

Rare Types

Naive Baseline 0.03 0.07 0.08 0.21 0.13 0.35

Type4Py 0.39 0.46 0.45 0.54 0.47 0.57

HiTyper 0.51 0.66 0.56 0.72 0.58 0.73

Typilus’s

Dataset

User-defined Types

Naive Baseline 0.00 0.00 0.00 0.00 0.00 0.00

Typilus 0.32 0.32 0.40 0.40 0.42 0.42

HiTyper 0.47 0.47 0.56 0.56 0.60 0.60

Rare Types

Naive Baseline 0.00 0.01 0.01 0.03 0.03 0.09

Typilus 0.32 0.43 0.41 0.53 0.43 0.55

HiTyper 0.43 0.55 0.52 0.63 0.56 0.67

Table 5: Comparison with static type inference tools.

Dataset
Type

Category
Approach

Exact #Correct

Match Annotations

ManyTypes4Py

Argument

Pytype - 0

Pyre Infer 0.96 613

HiTyper 0.94 1060

Return

Value

Pytype 0.81 777

Pyre Infer 0.84 662

HiTyper 0.86 2603

All

Pytype 0.81 777

Pyre Infer 0.89 1275

HiTyper 0.88 3663 (16918*)

Typilus’s

Dataset

Argument

Pytype - 0

Pyre Infer 0.96 543

HiTyper 0.88 983

Return

Value

Pytype 0.79 552

Pyre Infer 0.71 484

HiTyper 0.91 2461

All

Pytype 0.79 552

Pyre Infer 0.82 1027

HiTyper 0.90 3444

* The number of correct annotations when including local variables.

4.4 RQ 3: Performance of the Static Type
Inference Component

In this RQ, we evaluate the performance of the static type inference

component in HiTyper compared with popular static type inference

tools Pytype [45] and Pyre [40]. The results are shown in Table 5.

We only consider the type categories of argument and return value

for comparison since Pyre and Pytype do not infer types for local

variables. We use the metric number of correct annotations to replace

the metric match to parametric that is usually used to evaluate DL

models, considering that the results of static inference are exact

and not recommendations.

As shown in Table 5, the exact match scores of all the static

tools are greatly high, and HiTyper achieves the best performance.

The results indicate the effectiveness of the static type inference

component in HiTyper. We also find that there remains ∼10% of

the results inconsistent with human annotations in the datasets.

By using Python’s official type checker mypy to check these re-

sults, we observe that all the types annotated by HiTyper do not

produce type errors, which reflects the correctness of the proposed

HiTyper. After manual checking of these inconsistent types, we

find this inconsistency is caused by subtypes, we further discuss

them in Sec. 5. Besides, mypy’s results indicate very few incon-

sistent cases are caused by incorrect human annotations. To test

whether HiTyper can rectify the incorrect annotations, we replace

the original annotations with the results inferred by HiTyper, and

inspect whether the original type errors are fixed. We finally cor-

rect 7 annotations on 6 GitHub repositories, including memsource-

wrap [13], MatasanoCrypto [1], metadata-check [58], coach [20],

cauldron [54], growser [55], and submit pull requests to these repos-

itory owners. The owners of MatasanoCrypto and cauldron have

approved our corrections.

While Pytype and Pyre present high exact match scores, the num-

bers of variables they can accurately infer are small. Table 5 shows

that HiTyper generally outputs 2x argument types and 3x return

value types compared with them in both datasets, which suggests

HiTyper’s stronger inference ability than Pyre and Pytype. Such

improvements attribute to HiTyper’s import analysis and [Class In-

stantiation] rule on supporting the inference of user-defined types,

and inter-procedural analysis on supporting the inference of class

attributes and functions.

Answer to RQ3: Only considering the static inference part, Hi-

Typer still outperforms current static type inference tools by

inferring 2× ∼ 3× more variables with higher accuracy.

5 DISCUSSION

Inference of subtypes. Although HiTyper achieves promising

results for type prediction and passes the check of mypy, it is still

unable to infer some variable types (around 10%). The failure mainly

occurs in the inference of subtypes.

1 #File: miyakogi.wdom/wdom/node.py

2 #Human annotation: AbstractNode

3 #Typilus: ForeachClauseNode HiTyper: Node

4 def _append_element(self , node: AbstractNode) ->

AbstractNode:

5 if node.parentNode:

6 node.parentNode.removeChild(node)

7 self.__children.append(node)

8 node.__parent = self

2028

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

9 return node

10 def _append_child(self , node):

11 if not isinstance(node , Node):

12 raise TypeError

13 ...

14 return self._append_element(node)

Listing 2: An example HiTyper fails to infer.

Listing 2 shows an example for which HiTyper’s result is in-

consistent with the original annotations but still passes the check

of mypy. The return statement at Line 9 indicates that the type

of return value is the same as the type of argument node. Typilus

predicts the type as ForeachClauseNode, which is invalid since it

is not imported in the code and is from other projects in the training

set. HiTyper infers the type as xml.dom.Node, because the function

is called by another function named _𝑎𝑝𝑝𝑒𝑛𝑑_𝑐ℎ𝑖𝑙𝑑 in the same

file and the caller transmits a variable with type Node. However,

developers annotate the variable as AbstractNode, the parent type.

Such behavior is common in practice and poses a challenge for

accurate type prediction.

6 RELATEDWORK

Static and dynamic type inference. Existing static type infer-

ence techniques towards different programming languages, such as

Java [4], JavaScript [21], Ruby [11], Python [17] or using different

static analysis techniques [5, 7, 38], and inference tools used in

industry such as Pytype [45], Pysonar2 [42] and Pyre [40] are cor-

rect by design with relatively high accuracy on some simple builtin

types and generic types, but due to the dynamic feature [51] of

programming languages, they can hardly handle user-defined types

and some complicated generic types. HiTyper extends the inference

ability of static inference techniques by conducting import analy-

sis and inter-procedural analysis to handle the user-defined types,

class attributes and functions in code. Dynamic type inference tech-

niques [3, 36, 49] and type checkers such as Mypy [37], Pytype [45],

Pyre Check [40], Pyright [41] calculate the data flow between func-

tions and infer types according to several input cases. They can

more accurately predict types than static type inference techniques

but have limited code coverage and large time consumption. Thus,

they encounter difficulties when deployed on large scales of code.

Machine learning in type inference. Traditional static and

dynamic type inference techniques employ rule-based methods

and give the exact predicted type for each type slot. Xu et al. [59]

introduce probabilistic type inference, which returns several can-

didate types for one variable. Hellendoorn et al. [18] regard types

as word labels and build a sequence model DeepTyper to infer

types. However, their model treats each variable occurrence as a

new variable without strict constraints. Dash et al. [6] introduce

conceptual types which divide a single type such as str to more

detailed types such as url,phone, etc. Pradel et al. [39] design 4

separate sequence models to infer function types in Python. They

also add a validation phase to filter out most wrong predictions

using type checkers. Allamanis et al. [2] propose a graph model

to represent code and use KNN to predict the types. The method

enlarges type set but still fails when the predicted types are not

occurring in the training set. Although DL models have shown

great improvement in this task, it still faces the type correctness

and rare type prediction problem, HiTyper addresses these two

problems by integrating DL models into the framework of static

inference since static inference is data-insensitive and implemented

on type inference rules that are sound by design. Despite efforts

on Python type inference, there are also a bunch of work on type

inference of other dynamically typed programming languages. Wei

et al. [57] propose a neural graph network named LambdaNet to

conduct probabilistic type inference on JavaScript programs. Jesse

et al. [22] propose a BERT-style model named TypeBert that ob-

tains better performance on type inference of JavaScript than most

sophisticated models.

7 CONCLUSION

In the work, we propose HiTyper, a hybrid type inference frame-

work which iteratively integrates DL models and static analysis for

type inference. HiTyper creates TDG for each function and vali-

dates predictions from DL models based on typing rules and type

rejection rules. Experiments demonstrate the effectiveness of Hi-

Typer in type inference, enhancement for predicting rare types, and

advantage of the static type inference component in HiTyper. Hi-

Typer is open-sourced at https://github.com/JohnnyPeng18/HiTyper.

8 ACKNOWLEDGMENTS

The authors would like to thank the efforts made by anonymous

reviewers. The work described in this paper was supported by

the Research Grants Council of the Hong Kong Special Admin-

istrative Region, China (No. CUHK 14210920 of the General Re-

search Fund), National Natural Science Foundation of China under

project No. 62002084, Stable support plan for colleges and univer-

sities in Shenzhen under project No. GXWD20201230155427003-

20200730101839009, and supported, in part, by Amazon under an

Amazon Research Award in automated reasoning; by the United

States National Science Foundation (NSF) under grants No. 1917924

and No. 2114627; and by the Defense Advanced Research Projects

Agency (DARPA) under grant N66001-21-C-4024. Any opinions,

findings, and conclusions or recommendations expressed in this

publication are those of the authors, and do not necessarily reflect

the views of the above sponsoring entities.

REFERENCES
[1] aldur. The return value at line 295., 2021.

https://github.com/aldur/MatasanoCrypto/blob/master/matasano/blocks.py.
[2] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. Typilus:

Neural type hints. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2020, page 91–105, New
York, NY, USA, 2020. Association for Computing Machinery.

[3] Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks.
Dynamic inference of static types for ruby. SIGPLAN Not., 46(1):459–472, January
2011.

[4] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards
type inference for javascript. In Proceedings of the 19th European Conference on
Object-Oriented Programming, ECOOP’05, page 428–452, Berlin, Heidelberg, 2005.
Springer-Verlag.

[5] Sheng Chen and Martin Erwig. Principal type inference for gadts. In Rastislav
Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 416–428. ACM, 2016.

[6] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. Refinym: Using
names to refine types. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, page 107–117, New York, NY, USA, 2018.
Association for Computing Machinery.

[7] Michael Emmi and Constantin Enea. Symbolic abstract data type inference. In
Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual

2029

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 513–525. ACM,
2016.

[8] Python Software Foundation. Official documentation of Mypy, 2020.
https://mypy.readthedocs.io/en/stable/builtin_types.html.

[9] Python Software Foundation. Official documentation of Python3, 2020.
https://docs.python.org/3.

[10] Python Software Foundation. Cpython. python’s official implementation, 2021.
https://github.com/python/cpython.

[11] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static
type inference for ruby. In Proceedings of the 2009 ACM Symposium on Applied
Computing, SAC ’09, page 1859–1866, New York, NY, USA, 2009. Association for
Computing Machinery.

[12] Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38,
February 1994.

[13] gengo. The return value at line 853., 2021. https://github.com/gengo/memsource-
wrap/blob/master/memsource/api.py.

[14] Loukas Georgiadis, Robert Tarjan, and Renato Werneck. Finding dominators in
practice. volume 10, pages 69–94, 01 2006.

[15] Github. The 2020 state of the octoverse, 2020. https://octoverse.github.com/.
[16] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and

Andreas Stefik. An empirical study on the impact of static typing on software
maintainability. Empirical Software Engineering, 19, 10 2013.

[17] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. Maxsmt-based
type inference for python 3. In Hana Chockler and Georg Weissenbacher, editors,
Computer Aided Verification, pages 12–19, Cham, 2018. Springer International
Publishing.

[18] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.
Deep learning type inference. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018, page 152–162, New York, NY, USA, 2018.
Association for Computing Machinery.

[19] Mingzhe Hu, Yu Zhang, Wenchao Huang, and Yan Xiong. Static type inference
for foreign functions of python. In 32nd International Symposium on Software
Reliability Engineering, October 2021.

[20] IntelLabs. The return value at line 95. https://github.com/IntelLabs/coach/blob/
master/rl_coach/memories/non_episodic/experience_replay.py, 2021.

[21] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
javascript. In Proceedings of the 16th International Symposium on Static Analysis,
SAS ’09, page 238–255, Berlin, Heidelberg, 2009. Springer-Verlag.

[22] Kevin Jesse, Premkumar T. Devanbu, and Toufique Ahmed. Learning type an-
notation: Is big data enough? In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, page 1483–1486, New York, NY, USA, 2021.
Association for Computing Machinery.

[23] Jetbrains. Python developer survey conducted by jetbrains and python soft-
ware foundation, 2020. https://www.jetbrains.com/lp/python-developers-survey-
2020/.

[24] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi
Feng, and Yannis Kalantidis. Decoupling representation and classifier for long-
tailed recognition, 2020.

[25] C. M. Khaled Saifullah, M. Asaduzzaman, and C. K. Roy. Exploring type inference
techniques of dynamically typed languages. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
70–80, 2020.

[26] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-based
Python JIT compiler. In 2nd LLVMWorkshop on the LLVM Compiler Infrastructure
in HPC.

[27] Triet H. M. Le, Hao Chen, and Muhammad Ali Babar. Deep learning for source
code modeling and generation: Models, applications, and challenges. ACM
Comput. Surv., 53(3), June 2020.

[28] Jukka Lehtosalo. PEP 589 – TypedDict: Type hints for dictionaries with a fixed
set of keys, March 2019. https://www.python.org/dev/peps/pep-0589/.

[29] Ivan Levkivskyi, Jukka Lehtosalo, and Łukasz Langa. PEP 544 –
protocols: Structural subtyping (static duck typing), March 2017.
https://www.python.org/dev/peps/pep-0544/.

[30] Jialun Liu, Yifan Sun, Chuchu Han, Zhaopeng Dou, and Wenhui Li. Deep rep-
resentation learning on long-tailed data: A learnable embedding augmentation
perspective, 2020.

[31] Rabee Sohail Malik, Jibesh Patra, andMichael Pradel. Nl2type: Inferring javascript
function types from natural language information. In Proceedings of the 41st
International Conference on Software Engineering, ICSE ’19, page 304–315. IEEE
Press, 2019.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed representations ofwords and phrases and their compositionality. NIPS’13,
page 3111–3119, Red Hook, NY, USA, 2013. Curran Associates Inc.

[33] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.

In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages
3111–3119, 2013.

[34] Amir M. Mir, Evaldas Latoskinas, and Georgios Gousios. Manytypes4py: A
benchmark python dataset for machine learning-based type inference. CoRR,
abs/2104.04706, 2021.

[35] Amir M Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios.
Type4py: Deep similarity learning-based type inference for python. arXiv preprint
arXiv:2101.04470, 2021.

[36] Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. Dynamic type inference
for gradual hindley-milner typing. Proc. ACM Program. Lang., 3(POPL):18:1–18:29,
2019.

[37] Mypy. https://github.com/python/mypy/.
[38] Zvonimir Pavlinovic, Yusen Su, and Thomas Wies. Data flow refinement type

inference. Proc. ACM Program. Lang., 5(POPL):1–31, 2021.
[39] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. TypeWriter:

Neural Type Prediction with Search-Based Validation, page 209–220. Association
for Computing Machinery, New York, NY, USA, 2020.

[40] Pyre check. https://pyre-check.org/.
[41] Pyright. https://github.com/microsoft/pyright.
[42] Pysonar2. https://github.com/yinwang0/pysonar2.
[43] Python. The python ast module, 2021. https://github.com/python/cpython/blob/

3.9/Lib/ast.py.
[44] Python. The typeshed project, 2021. https://github.com/python/typeshed.
[45] Pytype. https://github.com/google/pytype.
[46] Vikas Raunak, Siddharth Dalmia, Vivek Gupta, and Florian Metze. On long-tailed

phenomena in neural machine translation. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 3088–3095, Online, November
2020. Association for Computational Linguistics.

[47] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. A large-
scale study of programming languages and code quality in github. Commun.
ACM, 60(10):91–100, September 2017.

[48] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program prop-
erties from "big code". SIGPLAN Not., 50(1):111–124, January 2015.

[49] Brianna M. Ren, John Toman, T. Stephen Strickland, and Jeffrey S. Foster. The
ruby type checker. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, page 1565–1572, New York, NY, USA, 2013. Association for
Computing Machinery.

[50] Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, and
Hongsheng Li. Balanced meta-softmax for long-tailed visual recognition, 2020.

[51] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the
dynamic behavior of javascript programs. PLDI ’10, page 1–12, New York, NY,
USA, 2010. Association for Computing Machinery.

[52] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and
Dimitris Mitropoulos. Pycg: Practical call graph generation in python. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021, pages 1646–1657. IEEE, 2021.

[53] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany, August 2016. Association for Computational Linguistics.

[54] sernst. The return value at line 35., 2021.
https://github.com/sernst/cauldron/blob/master/cauldron/steptest/functional.py.

[55] tomdean. The return value at line 56., 2021.
https://github.com/tomdean/growser/blob/master/growser/handlers/rankings.py.

[56] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. PEP 484 – Type Hints,
2014. https://www.python.org/dev/peps/pep-0484/.

[57] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. Lambdanet: Probabilistic
type inference using graph neural networks. CoRR, abs/2005.02161, 2020.

[58] wtsi hgi. The return value at line 151., 2021. https://github.com/wtsi-hgi/metadata-
check/blob/master/mcheck/metadata/seqscape_metadata/seqscape_metadata.py.

[59] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python
probabilistic type inference with natural language support. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, page 607–618, New York, NY, USA, 2016. Association for
Computing Machinery.

[60] Ningyu Zhang, Shumin Deng, Zhanlin Sun, GuanyingWang, Xi Chen,Wei Zhang,
and Huajun Chen. Long-tail relation extraction via knowledge graph embeddings
and graph convolution networks. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 3016–3025,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[61] Łukasz Langa. PEP 589 – type hinting generics in standard collections, March
2019. https://www.python.org/dev/peps/pep-0585/.

[62] Radim Řehůřek and Petr Sojka. Software framework for topic modelling with
large corpora. pages 45–50, 05 2010.

2030

