
 ISE’01 International Conference 348

ComPARE: A Generic Quality Assessment Environment

for Component-Based Software Systems

Xia Cai1, Michael R. Lyu1, Kam-Fai Wong2, Mabel Wong2

Dept. of Computer Science and Engineering1 Center of Innovation and Technology2

The Chinese University of Hong Kong
{xcai, lyu}@cse.cuhk.edu.hk, kfwong@se.cuhk.edu.hk, mabel@cintec.cuhk.edu.hk

Abstract
 Component-based technology is gaining popularity
in modern software development. This approach
helps reduce development cost and time-to-market,
as well as improve maintainability and reliability.
One of the key problems in component-based
software development is finding a way to certify the
quality of individual components and that of the
integrated component-based software systems. There
are several different techniques which have been
developed to describe the predictive relationship
between software metrics and the reliability of the
software components.

 In this paper, we propose a generic quality
assessment environment for software components:
ComPARE. ComPARE collects various metrics from
candidate components including process metrics,
static code metrics and dynamic metrics. Also it
integrates different models to predict software
quality and reliability, and compares the result of
different models. With ComPARE, user can select
and define their own prediction models and validate
these models against the failure data collected in
real life. The benchmark models can be established
after validation for future use. Finally, prediction
results can be visualized and hidden problems can be
identified in the source code in the ComPARE
environment.

Keyword: Quality assessment tool, component-
based software, classification tree model, case-based
reasoning, Bayesian Belief Network.

1. Introduction
Component-based software development

(CBSD) has become a popular methodology in
developing modern software systems. It is
generally considered that this approach can
reduce development cost and time-to-market,
and at the same time are built to improve

maintainability and reliability. As CBSD is to
build software systems using a combination of
components including off-the-shelf components,
components developed in-house and
components developed contractually, the over
quality of the final system greatly depends on
the quality of the selected components.

We need to first measure the quality of a
component before we can certify it. Software
metrics are designed to measure different
attributes of a software system and development
process, indicating different levels of quality in
the final product [1]. Many metrics such as
process metrics, static code metrics and dynamic
metrics can be used to predict the quality rating
of software components at different
development phases [1][3]. For example, code
complexity metrics, reliability estimates, or
metrics for the degree of code coverage
achieved have been suggested. Test
thoroughness metric is also introduced to predict
a component’s ability to hide faults during tests
[2].

In order to make use of the results of
software metrics, several different techniques
have been developed to describe the predictive
relationship between software metrics and the
classification of the software components into
fault-prone and non fault-prone categories [4].
These techniques include discriminant analysis
[7], classification trees [8], pattern recognition
[9], Bayesian network [10], case-based
reasoning (CBR) [11], and regression tree
models [4]. There are also some prototype or
tools [13, 14] that use such techniques to
automate the procedure of software quality
prediction. However, these tools address only
one kind of metrics, e.g., process metrics or
static code metrics. Besides, they rely on only
one prediction technique for the overall software
quality assessment.

mailto:kfwong@se.cuhk.edu.hk

ISE’01 International Conference

349

In this paper, we propose a Component-
based Program Analysis and Reliability
Evaluation (ComPARE) to evaluate the quality
of software systems in component-based
programming technology. ComPARE automates
the collection of different metrics, the selection
of different prediction models, the formulation
of user-defined models, and the validation of the
established models according to fault data
collected in the development process. Different
from other existing tools, ComPARE takes
dynamic metrics into account (such as code
coverage and performance metrics), integrates
them with process metrics and more static code
metrics for object-oriented programs (such as
complexity metrics, coupling and cohesion
metrics, inheritance metrics), and provides
different models for integrating these metrics to
an overall estimation with higher accuracy.

2. Objective
A number of commercial tools are available

for the measurement of software metrics for
object-oriented programs. Also there are off-the-
shelf tools for testing or debugging software
components. However, few tools can measure
the static and dynamic metrics of software
systems, perform various quality modeling, and
validate such models against actual quality data.

ComPARE aims to provide an environment
for quality prediction of software components
and assess their reliability in the overall system
developed using CBSD. The overall architecture
of ComPARE is showed in Figure 1. First of all,

various metrics are computed for the candidate
components, then the users can select and
weighing the metrics deemed important to
quality assessment. After the models have been
constructed and executed (Case Base is used in
BBN model), the users can validate the selected
models with failure data in real life. If users are
not satisfied with the prediction, they can go
back to the previous step, re-define the criteria
and construct a revised model. Finally, the
overall quality prediction can be displayed
under the architecture of the candidate system.
Results for individual components can also be
displayed after all the procedures.

The objective of ComPARE can be
summarized as follows:

1. To predict the overall quality by using
process metrics, static code metrics as well
as dynamic metrics. In addition to complexity
metrics, we use process metrics, cohesion
metrics, inheritance metrics as well as
dynamic metrics (such as code coverage and
call graph metrics) as the input to the quality
prediction models. Thus the prediction is
more accurate as it is based on data from
every aspect of the candidate software
components.

2. To integrate several quality prediction
models into one environment and compare
the prediction result of different models.
ComPARE integrates several existing quality
models into one environment. In addition to
selecting or defining these different models,
user can also compare the prediction results
of the models on the candidate component

Case Base

Model
Definition

Metrics
Computation

Criteria
Selection

Model
Validation

Result
Display

Failure
Data

Candidate
Components

System
Architecture

Figure 1. Architecture of ComPARE

 ISE’01 International Conference 350

and see how good the predictions are if the
failure data of the particular component is
available.

3. To define the quality prediction models
interactively. In ComPARE, there are several
quality prediction models that users can
select to perform their own predictions.
Moreover, the users can also define their own
model. and validate their own models by the
evaluation procedure.

4. To display quality of components by different
categories. Once the metrics are computed
and the models are selected, the overall
quality of the component can be displayed
according to the category it belongs to.
Program modules with problems can also be
identified.

5. To validate reliability models defined by user
against real failure data (change report).
Using the validation criteria, the result of the
selected quality prediction model can be
compared with failure data in real life. The
user can redefine their models according to
the comparison.

6. To show the source code with potential
problems at line-level granularity.
ComPARE can identify the source code with
high risk (i.e., the code that is not covered by
test cases) at line-level granularity. This can
help the users to locate high risk program
modules or portions promptly and
conveniently.

7. To adopt commercial tools in accessing
software data related to quality attributes.
We adopt Metamata [5] and Jprobe [6] suites
to measure the different metrics for the
candidate components. These two tools,
including metrics, audits, debugging, as well
as code coverage, memory and deadlock
detected, are commercially available in the
component-based program testing market.

3. Metrics Used in ComPARE
 Three different categories of metrics, namely
process, static, and dynamic, are computed and
collected in CompARE to give an overall
quality prediction. We have chosen the most
useful metrics, which are widely adopted by
previous software quality prediction tools from
the software engineering research community.

The process metrics we select are listed in
Table1 [14].

 As we perceive Object-Oriented (OO)
techniques are essential in the CBSD approach,
we select static code metrics according to the
most important features in OO programs:
complexity, coupling, inheritance and cohesion.
They are listed in Table 2 [5,16]. The dynamic
metrics encapsulate measurement of the features
of components when they are executed. Table 3
shows the details description of the dynamic
metrics.

 This set of process, static, and dynamic
metrics can be collected from some commercial
tools, e.g., Metamata Suite [5] and Jprobe
Testing Suite [6]. We will measure and apply
these metrics in ComPARE.

4. Models Definition
In order to predict the quality of different

software components, several techniques have
been developed to classify software components
according to their reliability [4]. These
techniques include discriminant analysis [7],
classification trees [8], pattern recognition [9],
Bayesian network [10], case-based reasoning
(CBR) [11] and regression tree model [4]. In
ComPARE, we integrate five types of models to
evaluate the quality of the software components
for an overall CBSD system evaluation. User
can customize these models and compare the
prediction results from different tailor-made
models.

4.1 Summation Model
This model gives a prediction by simply

adding all the metrics selected and weighted by
a user. The user can validate the result by real
failure data, and then benchmark the result.
Later when new components are included, the
user can predict their quality according to their
differences from the benchmarks. The concept
of summation model can be summarized as the
following:

 (1)
1

n
i i

i
Q α

=
=∑ m

where mi is the value of one particular metric,
iα is its corresponding weighting factor, n is the

number of metrics, and Q is the overall quality
mark.

ISE’01 International Conference 351

 Metric Description
Time Time spent from the design to the delivery (months)
Effort The total human resources used (man*month)

Change Report Number of faults found in the development

Table 1. Process Metrics

Abbreviation Description

Lines of Code (LOC) Number of lines in the components including the
statements, the blank lines of code, the lines of
commentary, and the lines consisting only of syntax
such as block delimiters.

Cyclomatic Complexity
(CC)

A measure of the control flow complexity of a method or constructor. It
counts the number of branches in the body of the method, defined by
the number of WHILE statements, IF statements, FOR statements, and
CASE statements.

Number of Attributes
(NA)

 Number of fields declared in the class or interface.

Number Of Classes
(NOC)

Number of classes or interfaces that are declared. This is usually 1, but
nested class declarations will increase this number.

Depth of Inheritance Tree
(DIT)

 Length of inheritance path between the current class and the base class.

Depth of Interface
Extension Tree (DIET)

The path between the current interface and the base interface.

Data Abstraction
Coupling (DAC)

Number of reference types that are used in the field
declarations of the class or interface.

Fan Out (FANOUT) Number of reference types that are used in field declarations, formal
parameters, return types, throws declarations, and local variables.

Coupling between Objects
(CO)

Number of reference types that are used in field declarations, formal
parameters, return types, throws declarations, local variables and also
types from which field and method selections are made.

Method Calls
Input/Output (MCI/MCO)

Number of calls to/from a method. It helps to analyze the coupling
between methods.

Lack of Cohesion Of
Methods (LCOM)

For each pair of methods in the class, the set of fields each of them
accesses is determined. If they have disjoint sets of field accesses then
increase the count P by one. If they share at least one field access then
increase Q by one. After considering each pair of methods,
 LCOM = (P > Q) ? (P - Q) : 0

Table 2. Static Code Metrics

 Metric Description

 Test Case Coverage The coverage of the source code when executing the given test cases. It
may help to design effective test cases.

Call Graph metrics The relationships between the methods, including method time (the
amount of time the method spent in execution), method object count (the
number of objects created during the method execution) and number of
calls (how many times each method is called in you application).

Heap metrics Number of live instances of a particular class/package, and the memory
used by each live instance.

Table 3. Dynamic Metrics

 4.2 Product Model
 Similar to the summation model, the

product model multiplies all the metrics selected
and weighted by the user and the resulting value

indicates the level of quality of a given
component. Similarly, the user can validate the
result by real failure data, and then determine
the benchmark for later usage. The concept of
product model is shown as the following:

 ISE’01 International Conference 352

 (2)
1

n

i

miQ
=

=∏

where mi is the value of one particular
metric, n is the number of metrics, and Q is the
overall quality mark. Note that mis are
normalized as a value which is close to 1, so that
none of them will dominate the result.

4.3 Classification Tree Model

Classification tree model [8] is to classify
the candidate components into different quality
categories by constructing a tree structure. All
the candidate components are leaves in the tree.
Each node of the tree represents a metric (or a
composed metric calculated by other metrics) of
a certain value. All the children of the left sub
tree of the node represent those components
whose value of the same metric is smaller than
the value of the node, while all the children of
the right sub tree of the node are those
components whose value of the same metric is
equal to or larger than the value of the node.

In ComPARE, a user can define the metrics
and their value at each node from the root to the
leaves. Once the tree is constructed, a candidate
component can be directly classified by
following the threshold of each node in the tree
until it reaches a leaf node. Again, the user can
validate and evaluate the final tree model after
its definition. Below is an example of the
outcome of a tree model. At each node of the
tree there are metrics and values, and the leaves
represent the components with certain number
of predicted faults in the classification result.

4.4 Case-Based Reasoning Model
Case-based reasoning (CBR) has been

proposed for predicting the quality of software
components [11]. A CBR classifier uses
previous “similar” cases as the basis for the
prediction. Previous cases are stored in a case
base. Similarity is defined in terms of a set of
metrics. The major conjecture behind this model
is that the candidate component that has a
similar structure to the components in the case
base will inherit a similar quality level.

Figure 2. An example of classification

tree model
A CBR classifier can be instantiated in

different ways by varying its parameters. But
according to the previous research, there is no
significant difference in prediction validity
when using any combination of parameters in
CBR. So we adopt the simplest CBR classifier
modeling with Euclidean distance, z-score
standardization [11], but no weighting scheme.
Finally, we select the single, nearest neighbor
for the prediction purpose.

4.5 Bayesian Network Model
Bayesian networks (also known as Bayesian

Belief Networks, BBN) is a graphical network
that represents probabilistic relationships among
variables [10]. BBNs enable reasoning under
uncertainty. Besides, the framework of Bayesian
networks offers a compact, intuitive, and
efficient graphical representation of dependence
relations between entities of a problem domain.
The graphical structure reflects properties of the
problem domain directly, which provides a
tangible visual representation as well as a sound
mathematical basis in Bayesian probability [12].
The foundation of Bayesian networks is the
following theorem known as Bayes’ Theorem:

 P(H|c)P(E|H,c)P(H|E,c) =

P(E|c) (3)

where H, E, c are independent events, P is
the probability of such event under certain
circumstances.

With BBNs, it is possible to integrate expert
beliefs about the dependencies between different
variables and to propagate consistently the
impact of evidence on the probabilities of
uncertain outcomes, such as “unknown

ISE’01 International Conference 353

component quality”. Details of the BBN model
for quality prediction can be found in [10].
Users can also define their own BBN models in
ComPARE and compare the results with other
models.

5. Operations in ComPARE
As a generic quality assessment

environment for component-based software
system, ComPARE suggests eight major
functional areas: File Operations, Selecting
Metrics, Selecting Criteria, Model Selection and
Definition, Model Validation, Display Result,
Windows Switch, and Help System. The details
of some key functions are described in the
following sections.

5.1 Selecting Metrics
User can select the metrics they want to

collect for the opened component-based system.
There are three categories of metrics available:
process metrics, static metrics and dynamic
metrics. The details of these metrics have shown
in previous section.

5.2 Selecting and Weighing Criteria
After computing the different metrics, users

need to select and weigh the criteria on these
metrics before using them in the reliability
modeling. Each metric can be selected or
omitted, and if selected, be marked with the
weight between 0 and 100%. Such information
will be used as input parameter later in the
quality prediction models.

5.3 Models Selection and Definition
The Models operations allow users to select

or define the model they would like to perform
in the evaluation. The users should give the
probability of each item related to the overall
quality of the candidate component.

5.4 Model Validation
Model validation allows comparisons

between different models and with respect to
actual software failure data. It facilitates the
users to compare the different results based on
chosen subset of the software failure data under
certain validation criteria. The comparisons
between different models in their predictive
capability are summarized in a summary table.

Model Validation operations are activated only
when the software failure data are available.

6. Prototype
Under the framework that we have

described, we prototyped a specific version of
ComPARE which targets software components
developed by the Java language. Java is one of
the most popular languages used in off-the-shelf
components development today, and it is a
common language binding in the three standard
architecture of component-based software
development: CORBA, DCOM and Java/RMI.

Figure 4. GUI of ComPARE for prediction
display, risky source code and result statistics

Figure 3 and Figure 4 show screen dumps
for the described ComPARE prototype tool. It
can be seen that the computation of various
metrics for software components and application
of quality prediction models is a straightforward
process. Users also have flexible choices in

Figure 3. GUI of ComPARE for metrics,
criteria and tree model

Metrics Tree Model Criteria

Display Source code Statistics

 ISE’01 International Conference 354

selecting and defining different models. The
combination of simple operations and a variety
of quality models makes it easy for users to
identify an appropriate prediction model for a
given CBSD system with its included
components.

7. Conclusions
In this paper, we propose a generic quality

assessment environment for software
components: ComPARE. ComPARE is new in
that it collects metrics of more aspects,
including process metrics, static code metrics,
and dynamic metrics for software components,
integrates reliability assessment models from
different techniques used in current quality
prediction area, and validates these models
against the failure data collected in real life.
ComPARE can be used to assess real-life off-
the-shelf components and to evaluate and
validate the models selected for their evaluation.
The overall CBSD system can then be
composed and analyzed seamlessly.

In summary, ComPARE can be an effective
environment to promote component-based
program construction with higher reliability
evaluation and proper quality assurance.

Acknowledgement
The work described in this paper was fully

supported by a grant from the Research Grants
Council of the Hong Kong Special
Administrative Region (Project No.
CUHK4193/00E).

References
[1] M.R.Lyu (ed.), Handbook of Software Reliability

Engineering, McGraw-Hill, New York, 1996.

[2] J.Voas and J.Payne, “Dependability Certification
of Software Components,” The Journal of
Systems and Software, 52, pp.165-172, 2000,

 [3] N. E. Fenton and N. Ohlsson, ”Quantitative
Analysis of Faults and Failures in a Complex
Software System,” IEEE Transactions on
Software Engineering, SE-26(8), pp.797–814,
Aug. 2000.

[4] S.S.Gokhale and M.R.Lyu, “Regression Tree
Modeling for the Prediction of Software
Quality,” Proceedings of the Third ISSAT
International Conference on Reliability and
Quality in Design, Anaheim, California, March
1997.

[5] http://www.metamata.com, Jan. 2001.

[6] http://www.klgroup.com, Jan. 2001.

[7] J.Munson and T.Khoshgoftaar, “The Detection
of Fault-Prone Programs,” IEEE Transactions
on Software Engineering, SE-18(5), May 1992.

[8] A. A. Porter and R. W. Selby, “Empirically
Guided Software Development Using Metric-
Based Classification Trees,” IEEE Software, pp.
46-53, Mar.1990.

[9] L.C.Briand, V.R.Basili and C.Hetmanski,
“Developing Interpretable Models for Optimized
Set Reduction for Identifying High-Risk
Software Components,” IEEE Transactions on
Software Engineering, SE-19(11), pp.1028-1034,
Nov.1993.

[10] N.E.Fenton and M.Neil, “A Critique of Software
Defect Prediction Models,” IEEE Transactions
on Software Engineering, SE-25(5), pp.675-689,
Oct. 1999.

[11] K.E.Emam, S.Benlarbi, N.Goel and S.N.Rai,
“Comparing Case-Based Reasoning Classifiers
for Predicting High Risk Software
Components,” The Journal of systems and
Software, 55, pp.301-320, 2001.

[12] http://www.hugin.com, Jan. 2001.

[13] M.R.Lyu, J.S.Yu, E.Keramidas and S.R.Dalal,
“ARMOR: Analyzer for Reducing Module
Operational Risk,” Proceedings of Twenty-Fifth
International Symposium on Fault-Tolerant
Computing (FTCS-25), pp.137-142, 1995.

[14] A.A.Keshlaf and K.Hashim, “A Model and
Prototype Tool to Manage Software Risks,”
Proceedings of the First Asia-Pacific
Conference on Quality Software, pp.297-305,
2000.

[15] J.F.Patenaude, E.Merlo, M.Dagenais and
B.Lague, “Extending Software Quality
Assessment Techniques to Java Systems,”
Proceedings of the Seventh International
Workshop on Program Comprehension, pp.49-
56, 1999.

[16] T.Systa, Y.Ping and H.Muller, “Analyzing Java
Software by Combining Metrics and Program
Visualization,” Proceedings of the Fourth
European Software Maintenance and
Reengineering, pp.199 –208, 2000.

View publication statsView publication stats

http://www.metamata.com/
http://www.klgroup.com/
http://www.hugin.com/
https://www.researchgate.net/publication/2843418

