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Abstract

Keyphrase generation (KG) aims to generate a set of
keyphrases given a document, which is a fundamental task in
natural language processing (NLP). Most previous methods
solve this problem in an extractive manner, while recently,
several attempts are made under the generative setting using
deep neural networks. However, the state-of-the-art genera-
tive methods simply treat the document title and the docu-
ment main body equally, ignoring the leading role of the ti-
tle to the overall document. To solve this problem, we intro-
duce a new model called Title-Guided Network (TG-Net) for
automatic keyphrase generation task based on the encoder-
decoder architecture with two new features: (i) the title is
additionally employed as a query-like input, and (ii) a title-
guided encoder gathers the relevant information from the title
to each word in the document. Experiments on a range of KG
datasets demonstrate that our model outperforms the state-of-
the-art models with a large margin, especially for documents
with either very low or very high title length ratios.

Introduction
Keyphrases are short phrases that can quickly provide the
main information of a given document (the terms “docu-
ment”, “source text” and “context” are interchangeable in
this study, and all of them represent the concatenation of
the title and the main body.). Because of the succinct and
accurate expression, keyphrases are widely used in informa-
tion retrieval (Jones and Staveley 1999), document catego-
rizing (Hulth and Megyesi 2006), opinion mining (Berend
2011), etc. Due to the huge potential value, various auto-
matic keyphrase extraction and generation methods have
been developed. As shown in Figure 1, the input usually con-
sists of the title and the main body, and the output is a set of
keyphrases.

Most typical automatic keyphrase extraction meth-
ods (Witten et al. 1999; Medelyan, Frank, and Witten 2009;
Mihalcea and Tarau 2004) focus on extracting present
keyphrases like “relevance profiling” in Figure 1, which
are the exact phrases appearing in the source text. The main
ideas among them are identifying candidate phrases first and
then ranking algorithms. However, these methods ignore the
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Title: Within-document retrieval: A user-centred evaluation of

relevance profiling

Main Body: We present a user-centred, task-oriented, 

comparative evaluation of two within-document retrieval tools. 

ProfileSkim computes a relevance profile for a document with 

respect to a query, and presents the profile as an interactive bar 

graph. … Relevance profiling should prove highly beneficial for 

users trying to identify relevant information within long 

documents. …

(a) Present Keyphrases:

{within-document retrieval; relevance profiling}

(b) Absent Keyphrases:

{interactive information retrieval; task-oriented evaluation;

language models}

Figure 1: An example of keyphrase generation. The present
keyphrases are bold and italic in the source text.

semantic meaning underlying the context content and can-
not generate absent keyphrases like “interactive informa-
tion retrieval”, which do not appear in the source text.

To overcome the above drawbacks, several encoder-
decoder based keyphrase generation methods have been pro-
posed including CopyRNN (Meng et al. 2017) and Copy-
CNN (Zhang, Fang, and Weidong 2017). First, these meth-
ods treat the title and the main body equally and concate-
nate them as the only source text input. Then, the encoder
maps each source text word into a hidden state vector which
is regarded as the contextual representation. Finally, based
on these representations, the decoder generates keyphrases
from a predefined vocabulary regardless of the presence or
absence of the keyphrases. A serious drawback of these
models is that they ignore the leading role of the title and
consequently fail to sufficiently utilize the already summa-
rized information in it.

It is a widely agreed fact that the title can be viewed as a
high-level summary of a document and the keyphrases pro-
vide more details of the key topics introduced in the docu-
ment (Li et al. 2010). They play a similar and complemen-
tary role with each other. Therefore, keyphrases should have
close semantic meaning to the title (Li et al. 2010). For ex-
ample, as shown in Figure 1, the title contains most of the
salient points reflected by these keyphrases including “re-
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trieval”, “profiling”, and “evaluation”. Statistically, we study
the proportion of keyphrases related to the title on the largest
KG dataset and show the results in Table 1. For simplicity,
we define a TitleRelated keyphrase as the keyphrase contain-
ing at least one common non-stop-word with the title. From
Table 1, we find that about 33% absent keyphrases are Ti-
tleRelated. For present keyphrases, the TitleRelated percent-
age is up to around 60%. By considering the fact that the
length of a title is usually only 3%-6% of the corresponding
source text, we can conclude that the title, indeed, contains
highly summative and valuable information for generating
keyphrases. Moreover, information in the title is also helpful
in reflecting which part of the main body is essential, such
as the part containing the same or related information with
the title. For instance, in Figure 1, the point “evaluation” in
the title can guide us to focus on the part “... task-oriented,
comparative evaluation ...” of the main body, which is highly
related to the absent keyphrase “task-oriented evaluation”.

To sufficiently leverage the title content, we introduce a
new title-guided network by taking the above fact into the
keyphrase generation scenario. In our model, the title is ad-
ditionally treated as a query-like input in the encoding stage.
First, two bi-directional Gated Recurrent Unit (GRU) (Cho
et al. 2014) layers are adopted to separately encode the con-
text and the title into corresponding contextual representa-
tions. Then, an attention-based matching layer is used to
gather the relevant title information for each context word
according to the semantic relatedness. Since the context is
the concatenation of the title and the main body, this layer
implicitly contains two parts. The former part is the “title
to title” self-matching, which aims to make the salient in-
formation in the title more important. The latter part is the
“main body to title” matching wherein the title information
is employed to reflect the importance of information in the
main body. Next, an extra bi-directional GRU layer is used
to merge the original contextual information and the corre-
sponding gathered title information into the final title-guided
representation for each context word. Finally, the decoder
equipped with attention and copy mechanisms utilizes the fi-
nal title-guided context representation to predict keyphrases.

We evaluate our model on five real-world benchmarks,
which test the ability of our model to predict present and ab-
sent keyphrases. Using these benchmarks, we demonstrate
that our model can effectively exploit the title information
and it outperforms the relevant baselines by a significant
margin: for present (absent) keyphrase prediction, the im-
provement gain of F1-measure at 10 (Recall at 50) score is
up to 9.4% (19.1%) compared to the best baseline on the
largest dataset. Besides, we probe the performance of our
model and a strong baseline CopyRNN on documents with
different title length ratios (i.e., the title length over the con-
text length). Experimental results show that our model con-
sistently improves the performance with large gains, espe-
cially for documents with either very low or very high title
length ratios.

Our main contributions consist of three parts:
• A new perspective on keyphrase generation is explored,

which sufficiently employs the title to guide the keyphrase
prediction process.

Keyphrase TitleRelated %
Present 54,403 32,328 59.42
Absent 42,997 14,296 33.25

Table 1: The statistics of TitleRelated keyphrases on the val-
idation set of KP20k.

• A novel TG-Net model is proposed, which can effectively
leverage the useful information in the title.

• The overall empirical results on five real-world bench-
marks show that our model outperforms the state-of-
the-art models significantly on both present and absent
keyphrase prediction, especially for documents with ei-
ther very low or very high title length ratios.

Related Work
Automatic Keyphrase Extraction
Most of the automatic keyphrase extraction methods con-
sist of two steps. Firstly, the candidate identification step
obtains a set of candidate phrases such as phrases with
some specific part-of-speech (POS) tags (Medelyan, Frank,
and Witten 2009; Witten et al. 1999). Secondly, in the
ranking step, all the candidates are ranked based on the
importance computed by either unsupervised ranking ap-
proaches (Wan and Xiao 2008; Mihalcea and Tarau 2004;
Florescu and Caragea 2017) or supervised machine learn-
ing approaches (Medelyan, Frank, and Witten 2009; Wit-
ten et al. 1999; Nguyen and Luong 2010; Florescu and
Jin 2018). Finally, the top-ranked candidates are selected
as the keyphrases. Besides these widely developed two-
step approaches, there are also some methods using a se-
quence labeling operation to extract keyphrases (Zhang et
al. 2016; Luan, Ostendorf, and Hajishirzi 2017; Gollapalli,
Li, and Yang 2017). But they still cannot generate absent
keyphrases.

Some extraction approaches (Li et al. 2010; Liu et al.
2011) also consider the influence of the title. Li et al. (2010)
proposes a graph-based ranking algorithm which initializes
the importance score of title phrases as one and the others as
zero and then propagates the influence of title phrases iter-
atively. The biggest difference between Li et al. (2010) and
our method is that our method utilizes the contextual infor-
mation of the title to guide the context encoding, while their
model only considers the phrase occurrence in the title. Liu
et al. (2011) models keyphrase extraction process as a trans-
lation operation from a document to keyphrases. The title is
used as the target output to train the translator. Compared
with our model, one difference is that this method still can-
not handle semantic meaning of the context. The other is
that our model regards the title as an extra query-like input
instead of a target output.

Automatic Keyphrase Generation
Keyphrase generation is an extension of keyphrase ex-
traction which explicitly considers the absent keyphrase
prediction. CopyRNN (Meng et al. 2017) first frames
the generation process as a sequence-to-sequence learning

6269



task and employs a widely used encoder-decoder frame-
work (Sutskever, Vinyals, and Le 2014) with attention (Bah-
danau, Cho, and Bengio 2015) and copy (Gu et al. 2016)
mechanisms. Based on CopyRNN, various extensions (Hai
and Lu 2018; Jun et al. 2018) are recently proposed. How-
ever, these recurrent neural network (RNN) based models
may suffer the low-efficiency issues because of the com-
putation dependency between the current time step and
the preceding time steps in RNN. To overcome this short-
coming, CopyCNN (Zhang, Fang, and Weidong 2017) ap-
plies a convolutional neural network (CNN) based encoder-
decoder model (Gehring et al. 2017). CopyCNN employs
position embedding for obtaining a sense of order in the in-
put sequence and adopts gated linear units (GLU) (Dauphin
et al. 2017) as the non-linearity function. CopyCNN not
only achieves much faster keyphrase generation speed but
also outperforms CopyRNN on five real-world benchmark
datasets.

Nevertheless, both CopyRNN and CopyCNN treat the ti-
tle and the main body equally, which ignores the seman-
tic similarity between the title and the keyphrases. Mo-
tivated by the success of query-based encoding in vari-
ous natural language processing tasks (Gao et al. 2018;
Song, Wang, and Hamza 2017; Nema et al. 2017; Wang et
al. 2017), we regard the title as an extra query-like input to
guide the source context encoding. Consequently, we pro-
pose a TG-Net model to explicitly explore the useful infor-
mation in the title. In this paper, we focus on how to incor-
porate a title-guided encoding into the RNN-based model,
but it is also convenient to apply this idea to the CNN-based
model in a similar way.

Problem Definition
We denote vectors with bold lowercase letters, matrices with
bold uppercase letters and sets with calligraphy letters. We
denote Θ as a set of parameters and W as a parameter ma-
trix.

Keyphrase generation (KG) is usually formulated as fol-
lows: given a context x, which is the concatenation of
the title and the main body, output a set of keyphrases
Y = {yi}i=1,...,M where M is the keyphrase number of
x. Here, the context x = [x1, . . . , xLx ] and each keyphrase
yi = [yi1, . . . , y

i
Lyi

] are both word sequences, where Lx is
the length (i.e., the total word number) of the context and
Lyi is the length of the i-th produced keyphrase yi.

To adapt the encoder-decoder framework, M context-
keyphrase pairs {(x,yi)}i=1,...,M are usually split. Since
we additionally use the title t = [t1, . . . , tLt ] with length
Lt as an extra query-like input, we split M context-title-
keyphrase triplets {(x, t,yi)}i=1,...,M instead of context-
keyphrase pairs to feed our model. For conciseness, we use
(x, t,y) to represent such a triplet, where y is one of its tar-
get keyphrases.

Our Proposed Model
Title-Guided Encoder Module
As shown in Figure 2, the title-guided encoder module con-
sists of a sequence encoding layer, a matching layer, and a
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Figure 2: The title-guided encoder module. (Best viewed in
color.)

merging layer. First, the sequence encoding layer reads the
context input and the title input and learns their contextual
representations separately. Then the matching layer gathers
the relevant title information for each context word reflect-
ing the important parts of the context. Finally, the merging
layer merges the aggregated title information into each con-
text word producing the final title-guided context represen-
tation.

Sequence Encoding Layer At first, an embedding look-
up table is applied to map each word within the context and
the title into a dense vector with a fixed size de. To incor-
porate the contextual information into the representation of
each word, two bi-directional GRUs (Cho et al. 2014) are
used to encode the context and the title respectively:

−→u i = GRU11(xi,−→u i−1), (1)
←−u i = GRU12(xi,←−u i+1), (2)
−→v j = GRU21(tj ,−→v j−1), (3)
←−v j = GRU22(tj ,←−v j+1), (4)

where i = 1, 2, . . . , Lx and j = 1, 2, . . . , Lt. xi and tj are
the de-dimensional embedding vectors of the i-th context
word and the j-th title word separately.−→u i,

←−u i,
−→v j , and←−v j

are d/2-dimensional hidden vectors where d is the hidden
dimension of the bi-directional GRUs. The concatenations
ui = [−→u i;

←−u i] ∈ Rd and vj = [−→v j ;
←−v j ] ∈ Rd are used as

the contextual vectors for the i-th context word and the j-th
title word respectively.

Matching Layer The attention-based matching layer is
engaged to aggregate the relevant information from the title
for each word within the context. The aggregation operation
ci = attn(ui, [v1,v2, . . . ,vLt ];W1) is as follows:

ci =

Lt∑
j=1

αi,jvj , (5)

αi,j = exp(si,j)/

Lt∑
k=1

exp(si,k), (6)

si,j = (ui)
TW1vj , (7)
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where ci ∈ Rd is the aggregated information vector for the
i-th word of x. αi,j (si,j) is the normalized (unnormalized)
attention score between ui and vj .

Here, the matching layer is implicitly composed of two
parts because the context is a concatenation of the title
and the main body. The first part is the “title to title” self-
matching part, wherein each title word attends the whole ti-
tle itself and gathers the relevant title information. This part
is used to strengthen the important information in the title
itself, which is essential to capture the core information be-
cause the title already contains much highly summative in-
formation. The other part is the “main body to title” match-
ing part wherein each main body word also aggregates the
relevant title information based on semantic relatedness. In
this part, the title information is employed to reflect the im-
portance of information in the main body based on the fact
that the highly title-related information in the main body
should contain core information. Through these two parts,
this matching layer can utilize the title information much
more sufficiently than any of the previous sequence to se-
quence methods.

Merging Layer Finally, the original contextual vector ui

and the aggregated information vector ci are used as the in-
puts to another information merging layer:

−→mi = GRU31([ui; ci],
−→mi−1), (8)

←−mi = GRU32([ui; ci],
←−mi+1), (9)

m̃i = λui + (1− λ)[−→mi;
←−mi], (10)

where [ui; ci] ∈ R2d, −→mi ∈ Rd/2,←−mi ∈ Rd/2, [−→mi,
←−mi] ∈

Rd, and m̃i ∈ Rd. The ui in Eq. (10) is a residual connec-
tion, and λ ∈ (0, 1) is the corresponding hyperparameter.
Eventually, we obtain the title-guided contextual represen-
tation of the context (i.e., [m̃1, m̃2, . . . , m̃Lx ]), which is re-
garded as a memory bank for the later decoding process.

Decoder Module
After encoding the context into the title-guided repre-
sentation, we engage an attention-based decoder (Luong,
Pham, and Manning 2015) incorporating with copy mech-
anism (See, Liu, and Manning 2017) to produce keyphrases.
Only one foward GRU is used in this module:

ht = GRU4([et−1; h̃t−1],ht−1), (11)
ĉt = attn(ht, [m̃1, m̃2, . . . , m̃Lx ];W2), (12)

h̃t = tanh(W3[ĉt;ht]), (13)

where t = 1, 2, . . . , Ly, et−1 ∈ Rde is the embedding of the
(t − 1)-th predicted word wherein e0 is the embedding of
the start token, ĉt ∈ Rd is the aggregated vector for ht ∈ Rd

from the memory bank [m̃1, m̃2, . . . , m̃Lx ], and h̃t ∈ Rd is
the attentional vector at time step t.

Consequently, the predicted probability distribution over
the predefined vocabulary V for current step is computed by:

Pv(yt|yt−1,x, t) = softmax(Wvh̃t + bv), (14)

where yt−1 = [y1, . . . , yt−1] is the previous predicted word
sequence, and bv ∈ R|V| is a learnable parameter vector.

Before generating the predicted word, a copy mechanism
is adopted to efficiently exploit the in-text information and
to strengthen the extraction capability of our model. We fol-
low See, Liu, and Manning (2017) and first calculate a soft
switch between generating from the vocabulary and copying
from the source context x at time step t:

gt = σ(wT
g h̃t + bg), (15)

where wg ∈ Rd is a learnable parameter vector and bg is a
learnable parameter scalar. Eventually, we get the final pre-
dicted probability distribution over the dynamic vocabulary
V ∪ X , where X are all words appearing in the source con-
text. For simplicity, we use Pv(yt) and Pfinal(yt) to denote
Pv(yt|yt−1,x, t) and Pfinal(yt|yt−1,x, t) respectively:

Pfinal(yt) = (1− gt)Pv(yt) + gt
∑

i:xi=yt

α̂t,i, (16)

where α̂t,i is the normalized attention score between ht and
m̃i. For all out-of-vocabulary (OOV) words (i.e., yt /∈ V),
we set Pv(yt) as zero. Similarly, if word yt does not appear
in the source context x (i.e., yt /∈ X ), the copy probability∑

i:xi=yt
α̂t,i is set as zero.

Training
We use the negative log likelihood loss to train our model:

L = −
Ly∑
t=1

logPfinal(yt|yt−1,x, t; Θ), (17)

where Ly is the length of target keyphrase y and yt is the
t-th target word in y, and Θ represents all the learnable pa-
rameters.

Experiment Settings
The keyphrase prediction performance is first evaluated by
comparing our model with the popular extractive methods
and the state-of-the-art generative methods on five real-
world benchmarks. Then, comparative experiments of dif-
ferent title length ratios are performed on our model and
CopyRNN for further model exploration. Finally, an abla-
tion study and a case study are conducted to better under-
stand and interpret our model.

The experiment results lead to the following findings:
• Our model outperforms the state-of-the-art models on all

the five benchmark datasets for both present and absent
keyphrase prediction.

• Our model consistently improves the performance on var-
ious title length ratios and obtains relative higher im-
provement gains for both very low and very high title
length ratios.

• The title-guided encoding part and the copy part are con-
sistently effective in both present and absent keyphrase
prediction tasks.

We implement the models using PyTorch (Paszke et al.
2017) on the basis of the OpenNMT-py system (Klein et al.
2017).
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Training Dataset
Because of the public accessibility, many commonly-used
scientific publication datasets are used to evaluate the ex-
plored KG methods. This study also focuses on generat-
ing keyphrases from scientific publications. For all the gen-
erative models (i.e. our TG-Net model as well as all the
encoder-decoder baselines), we choose the largest publicly
available keyphrase generation dataset KP20k constructed
by Meng et al. (2017) as the training dataset. KP20k con-
sists of a large amount of high-quality scientific publications
from various computer science domains. Totally 567,830 ar-
ticles are collected in this dataset, where 527,830 for train-
ing, 20,000 for validation, and 20,000 for testing. Both the
validation set and testing set are randomly selected. Since
the other commonly-used datasets are too small to train a re-
liable generative model, we only train these generative mod-
els on KP20k and then test the trained models on all the
testing part of the datasets listed in Table 2. As for the tra-
ditional supervised extractive baseline, we follow Meng et
al. (2017) and use the dataset configuration shown in Ta-
ble 2. To avoid the out-of-memory problem, for KP20k, we
use the validation set to train the traditional supervised ex-
tractive baseline.

Testing Datasets
Besides KP20k, we also adopt other four widely-used sci-
entific datasets for comprehensive testing, including In-
spec (Hulth 2003), Krapivin (Krapivin, Autaeu, and March-
ese 2009), NUS (Nguyen and Kan 2007), and SemEval-
2010 (Kim et al. 2010). Table 2 summarizes the statistics
of each testing dataset.

Dataset Total Training Testing
Inspec 2,000 1500 500

Krapivin 2,304 1904 400
NUS 211 FFCV 211

SemEval-2010 288 188 100
KP20k 567,830 20,000 20,000

Table 2: The statistics of testing datasets. The “Training”
means the training part for the traditional supervised extrac-
tive baseline. The “FFCV” represents five-fold cross valida-
tion. The “Testing” means the testing part for all models.

Implementation Details
For all datasets, the main body is the abstract, and the con-
text is the concatenation of the title and the abstract. During
preprocessing, various operations are performed including
lowercasing, tokenizing by CoreNLP (Manning et al. 2014),
and replacing all the digits with the symbol 〈digit〉. We de-
fine the vocabulary V as the 50,000 most frequent words.

We set the embedding dimension de to 100, the hidden
size d to 256, and λ to 0.5. All the initial states of GRU
cells are set as zero vectors except that h0 is initialized as
[−→mLx ;←−m1]. We share the embedding matrix among the con-
text words, the title words, and the target keyphrase words.
All the trainable variables including the embedding matrix

are initialized randomly with uniform distribution in [-0.1,
0.1]. The model is optimized by Adam (Kingma and Ba
2015) with batch size = 64, initial learning rate = 0.001, gra-
dient clipping = 1, and dropout rate = 0.1. We decay the
learning rate into the half when the evaluation perplexity
stops dropping. Early stopping is applied when the valida-
tion perplexity stops dropping for three continuous evalua-
tions. During testing, we set the maximum depth of beam
search as 6 and the beam size as 200. We repeat the experi-
ments of our model three times using different random seeds
and report the averaged results.

We do not remove any predicted single-word phrase in
the post-processing for KP20k during testing, which is dif-
ferent from Meng et al. (2017), since our model is trained on
this dataset and it can effectively learn the distribution of the
single-word keyphrases. But for other testing datasets, we
only keep the first predicted single-word phrase following
Meng et al. (2017).

Baseline Models and Evaluation Metric
For present keyphrase predicting experiment, we use
two unsupervised models including TF-IDF and Tex-
tRank (Mihalcea and Tarau 2004), and one supervised model
Maui (Medelyan, Frank, and Witten 2009) as our tradi-
tional extraction baselines. Besides, we also select Copy-
RNN (Meng et al. 2017) and CopyCNN (Zhang, Fang, and
Weidong 2017), the two state-of-the-art encoder-decoder
models with copy mechanism (Gu et al. 2016), as the base-
lines for present keyphrase prediction task. As for absent
keyphrase prediction, since traditional extraction baselines
cannot generate such keyphrases, we only choose CopyRNN
and CopyCNN as the baseline models. For all baselines, we
use the same setups as Meng et al. (2017) and Zhang, Fang,
and Weidong (2017).

The recall and F-measure (F1) are employed as our met-
rics for evaluating these algorithms. Recall is the number
of correctly predicted keyphrases over the total number of
target kayphrases. F1 score is computed based on the Re-
call and the Precision, wherein Precision is defined as the
number of correctly predicted keyphrases over the total pre-
dicted keyphrase number. Following Meng et al. (2017) and
Zhang, Fang, and Weidong (2017), we also employ Porter
Stemmer for preprocessing when determining whether two
keyphrases are matched.

Results and Analysis
Present Keyphrase Predicting
In this section, we compare present keyphrase prediction
ability of these models on the five real-world benchmark
datasets. The F-measures at top 5 and top 10 predictions of
each model are shown in Table 3.

From this table, we find that all the generative models
significantly outperforms all the traditional extraction base-
lines. Besides, we also note that our TG-Net model achieves
the best performance on all the datasets with significant mar-
gins. For example, on KP20k dataset, our model improves
9.4% (F1@10 score) than the best generative model Copy-
CNN. Compared to CopyRNN which also applies an RNN-
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Model Inspec Krapivin NUS SemEval KP20k
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

TF-IDF 0.221 0.313 0.129 0.160 0.136 0.184 0.128 0.194 0.102 0.162
TextRank 0.223 0.281 0.189 0.162 0.195 0.196 0.176 0.187 0.175 0.147

Maui 0.040 0.042 0.249 0.216 0.249 0.268 0.044 0.039 0.270 0.230
CopyRNN 0.278 0.342 0.311 0.266 0.334 0.326 0.293 0.304 0.333 0.262
CopyCNN 0.285 0.346 0.314 0.272 0.342 0.330 0.295 0.308 0.351 0.288

TG-Net 0.315 0.381 0.349 0.295 0.406 0.370 0.318 0.322 0.372 0.315
% gain 10.5% 10.1% 11.1% 8.5% 18.7% 12.1% 7.8% 4.5% 6.0% 9.4%

Table 3: Present keyphrase predicting results on all test datasets. “% gain” is the improvement gain over CopyCNN.

Model Inspec Krapivin NUS SemEval KP20k
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

CopyRNN 0.047 0.100 0.113 0.202 0.058 0.116 0.043 0.067 0.125 0.211
CopyCNN 0.050 0.107 0.119 0.205 0.062 0.120 0.044 0.074 0.147 0.225

TG-Net 0.063 0.115 0.146 0.253 0.075 0.137 0.045 0.076 0.156 0.268
% gain 26.0% 7.5% 22.7% 23.4% 21.0% 14.2% 2.3% 2.7% 6.1% 19.1%

Table 4: Absent keyphrase predicting results on all test datasets. “% gain” is the improvement gain over CopyCNN.

based framework, our model improves about 20.2%. The re-
sults show that our model obtains much stronger keyphrase
extraction ability than CopyRNN and CopyCNN.

Absent Keyphrase Predicting
In this setting, we consider the absent keyphrase predict-
ing ability which requires the understanding of the semantic
meaning of the context. Only the absent target keyphrases
and the absent predictions are preserved for this evaluation.
Generally, recalls at top 10 and top 50 predictions are en-
gaged as the metrics to evaluate how many absent target
keyphrases are correctly predicted.

The performance of all models is listed in Table 4. It is ob-
served that our TG-Net model consistently outperforms the
previous sequence-to-sequence models on all the datasets.
For instance, our model exceeds 19.1% (R@50 score) on
KP20k than the state-of-the-art model CopyCNN. Overall,
the results indicate that our model is able to capture the un-
derlying semantic meaning of the context content much bet-
ter than these baselines, as we have anticipated.

Keyphrase Predicting on Various Title Length
Ratios
To find out how our title incorporation influences the pre-
diction ability, we compare the keyphrase predicting abil-
ity of two RNN-based models (i.e., our model and Copy-
RNN) on different title length ratios. The title length ratio
is defined as the title length over the context length. This
analysis is based on the KP20k testing dataset. In view of
the title length ratio, we preprocess the testing set into five
groups (i.e., <3%, 3%-6%, 6%-9%, 9%-12% and >12%).
Then, the present keyphrase prediction results (F1@5 mea-
sure) and the improvement gain on each group are depicted
in Figure 3.

In Figure 3(a), we notice that both CopyRNN and our TG-
Net model generally perform better when the title length ra-

<3% 3%-6% 6%-9% 9%-12% >12%

0.30

0.32

0.34

0.36

0.38

(a
) 

F
1

@
5

 M
e

a
s
u

re

TG-Net

CopyRNN

<3% 3%-6% 6%-9% 9%-12% >12%

Title Length Ratio

0.11

0.12

0.13

0.14

(b
) 

Im
p

ro
v
e

m
e

n
t 

G
a

in

Figure 3: Present keyphrase predicting ability (F1@5 mea-
sure) on various title length ratios.

tio is higher. One possible explanation is that when the ti-
tle is long, it conveys substantial salient information of the
abstract. Therefore, the chance for the models to attend to
the core information is enhanced, which leads to the ob-
served situation. This figure also shows that both TG-Net
and CopyRNN get worse performance on >12% group than
9%-12% group. The main reason is that there exist some
data with a short abstract in>12% group, which leads to the
lack of enough context information for correctly generating
all keyphrases.

In Figure 3(b), we find that our TG-Net consistently im-
proves the performance with a large margin on five test-
ing groups, which again indicates the effectiveness of our
model. In a finer perspective, we note that the improvement
gain is higher on the lowest (i.e., <3%) and the highest (i.e.,
>12%) title length ratio groups. In >12% group, the title
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Title: Exponential stability of switched stochastic delay systems with non-linear uncertainties

Abstract: This article considers the robust exponential stability of uncertain switched stochastic systems with time-delay. Both almost sure 

(sample) stability and stability in mean square are investigated. Based on Lyapunov functional methods and linear matrix inequality techniques, 

new criteria for exponential robust stability of switched stochastic delay systems with non-linear uncertainties are derived in terms of linear 

matrix inequalities and average dwell-time conditions. Numerical examples are also given to illustrate the results.

(a) Present Keyphrases

Target: {stochastic systems; non-linear uncertainties; exponential stability; linear matrix inequality; average dwell-time}

CopyRNN: 1. linear matrix inequality, 2. switched stochastic systems, 3. robust stability, 4. exponential stability, 5. average dwell-time

TG-Net:     1. exponential stability, 2. switched stochastic systems, 3. average dwell-time, 4. non-linear uncertainties, 5. linear matrix inequality

(b) Absent Keyphrases

Target: {switched systems; time-delay system}

CopyRNN: 1. switched systems, 2. switched delay systems, 3. robust control, 4. uncertain systems, 5. switched stochastic stochastic systems

TG-Net: 1. almost sure stability, 2. switched systems, 3. time-delay systems, 4. mean square stability, 5. uncertain systems

Figure 4: A prediction example of CopyRNN and TG-Net. The top 5 predictions are compared and the correct predictions are
highlighted in bold.

plays a more important role than in other groups, and conse-
quently our model benefits more by not only explicitly em-
phasizing the title information itself, but also utilizing it to
guide the encoding of information in the main body. As for
<3% group, the effect of such a short title is small on the
latter part of the context in CopyRNN because of the long
distance. However, our model explicitly employs the title
to guide the encoding of each context word regardless of
the distance, which utilizes the title information much more
sufficiently. Consequently, our model achieves much higher
improvement in this group. While we only display the re-
sults of present keyphrase prediction, the absent keyphrase
predicting task gets the similar results.

Ablation Study
We also perform an ablation study on Krapivin for bet-
ter understanding the contributions of the main parts of
our model. For a comprehensive comparison, we conduct
this study on both present keyphrase prediction and absent
keyphrase prediction.

As shown in Table 5, after we remove the title-guided
part and only reserve the sequence encoding for the context
(i.e., -title), both the present and absent keyphrase predic-
tion performance become obviously worse, indicating that
our title-guided context encoding is consistently critical for
both present and absent keyphrase generation tasks. We also
investigate the effect of removing the copy mechanism (i.e.,
-copy) from our TG-Net. From Table 5, we notice that the
scores decrease dramatically on both present and absent
keyphrase prediction, which demonstrates the effectiveness
of the copy mechanism in finding important parts of the con-
text.

Case Study
A keyphrase prediction example for a paper about the expo-
nential stability of uncertain switched stochastic delay sys-
tems is shown in Figure 4. To be fair, we also only compare
the RNN-based models (i.e., TG-Net and CopyRNN). For
present keyphrase, we find that a present keyphrase “non-
linear uncertainties”, which is a title phrase, is correctly pre-

Present Absent
Model F1@5 F1@10 R@10 R@50
TG-Net 0.349 0.295 0.146 0.253

-title 0.334 0.288 0.142 0.240
-copy 0.306 0.281 0.127 0.216

Table 5: Ablation study on Krapivin dataset.

dicted by our TG-Net, while CopyRNN fails to do so. As for
absent keyphrase, we note that CopyRNN fails to predict the
absent keyphrase “time-delay systems”. But our TG-Net can
effectively utilize the title information “stochastic delay sys-
tems” to locate the important abstract information “stochas-
tic systems with time-delay” and then successfully generate
this absent keyphrase. These results exhibit that our model is
capable of capturing the title-related core information more
effectively and achieving better results in predicting present
and absent keyphrases.

Conclusion

In this paper, we propose a novel TG-Net for keyphrase gen-
eration task, which explicitly considers the leading role of
the title to the overall document main body. Instead of sim-
ply concatenating the title and the main body as the only
source input, our model explicitly treats the title as an ex-
tra query-like input to guide the encoding of the context.
The proposed TG-Net is able to sufficiently leverage the
highly summative information in the title to guide keyphrase
generation. The empirical experiment results on five popu-
lar real-world datasets exhibit the effectiveness of our model
for both present and absent keyphrase generation, especially
for a document with very low or very high title length ratio.
One interesting future direction is to explore more appropri-
ate evaluation metrics for the predicted keyphrases instead
of only considering the exact match with the human labeled
keyphrases as the current recall and F-measure do.
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